Influence of Nitrogen Nutrition on Fatty Acids in Oilseed Rape (Brassica napus L.)
Abstract
:1. Introduction
2. Results
2.1. Higher Fatty Acids Contents
2.2. Qualitative Parameters
3. Discussion
4. Material and Methods
4.1. Research Material
4.2. Research Methods
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahbandeh, M. Rapeseed Production Volume Worldwide by Country 2019/2020. 2021. Available online: https://www.statista.com/statistics/263930/worldwide-production-of-rapeseed-by-country/ (accessed on 19 November 2021).
- Jahreis, G.; Schäfer, U. Rapeseed (Brassica napus) Oil and its Benefits for Human Health. In Nuts and Seeds in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2011; pp. 967–974. ISBN 978-0-12-375688-6. [Google Scholar] [CrossRef]
- Scarth, R.; McVetty, P. Designer oil canola a review of new food-grade Brassica oils with focus on high oleic, low linoleic types. In Proceedings of the 10th International Rapeseed Congress, Canberra, Australia, 26–29 September 1999. [Google Scholar]
- Zatonski, W.; Campos, H.; Willett, W. Rapid declines in coronary heart disease mortality in Eastern Europe are associated with increased consumption of oils rich in alpha-linolenic acid. Eur. J. Epidemiol. 2008, 23, 3–10. [Google Scholar] [CrossRef]
- Orlovius, K. Fertilizing for High Yield and Quality Oilseed Rape; IPI-Bulletin No. 16; Kirkby, E.A., Ed.; Imprimerie de Saint-Louis: Saint-Louis, France, 2003; pp. 1–130. [Google Scholar]
- Sarwar, M.F.; Sarwar, M.H.; Sarwar, M.; Qadri, N.A.; Moghal, S. The role of oilseeds nutrition in human health: A critical review. J. Cereals Oilseeds 2013, 4, 97–100. [Google Scholar] [CrossRef] [Green Version]
- Khajehpour, M.R. Principles and Fundamentals of Crop Production; Jahad-e Daneshgahi Isfahan Press, Persian: Mashhad, Iran, 2006; p. 654. [Google Scholar]
- Pavlista, A.D.; Isbell, T.A.; Baltensperger, D.D.; Hergert, G.W. Planting date and development of spring-seeded irrigated canola, brown mustard and camelina. Ind. Crop. Prod. 2011, 33, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Velicka, R.; Marcinkeviciene, A.; Pupaliene, R.; Butkeviciene, L.M.; Kosteckas, R.; Cekanauskas, S.; Kriauciuniene, Z. Winter oilseed rape and weed competition in organic farming using non-chemical weed control. Zemdirb. Agric. 2016, 103, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, G.; Jan, A.; Arif, M.; Jan, M.T.; Khattak, R.A. Influence of nitrogen and sulfur fertilization on quality of canola (Brassica napus L.) under rainfed conditions. J. Zhejiang Univ. Sci. B 2007, 8, 731–737. [Google Scholar] [CrossRef]
- Malhi, S. Improving crop yield, N uptake, and economic returns by intercropping barley or canola with pea. Agric. Sci. 2012, 3, 1023–1033. [Google Scholar] [CrossRef] [Green Version]
- Ngezimana, W.; Agenbag, G.A. Nitrogen and sulfur effects on macro and micronutrient contents in canola (Brassica napus L.) grown on acidic soils of the Western Cape province of South Africa. Commun. Soil Sci. Plant Anal. 2014, 45, 1840–1851. [Google Scholar] [CrossRef]
- Brennan, R.F.; Mason, M.G.; Walton, G.H. Effect of nitrogen fertilizer on the concentrations of oil and protein in canola (Brassica napus) seed. Plant Nutr. 2000, 23, 339–348. [Google Scholar] [CrossRef]
- Hocking, P.J.; Kirkegaard, J.A.; Angus, J.F.; Gibson, A.H.; Koetz, E.A. Comparison of canola, Indian mustard and Linola in two contrasting environments. I. Effects of nitrogen fertilizer on dry-matter production, seed yield and seed quality. Field Crops Res. 1997, 49, 107–125. [Google Scholar] [CrossRef]
- Rathke, G.W.; Christen, O.; Diepenbrock, W. Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops Res. 2005, 94, 103–113. [Google Scholar] [CrossRef]
- Ibrahim, A.F.; Abusteit, E.O.; El-Metwally, E.-M.A. Response of Rapeseed (Brassica napus L.) Growth, Yield, Oil Content and Its Fatty Acids to Nitrogen Rates and Application Times. J. Agron. Food Sci. 1989, 162, 107–112. [Google Scholar] [CrossRef]
- Jham, G.N.; Moser, B.R.; Shah, S.N.; Holser, R.A.; Dhingra, O.D.; Vaughn, S.F.; Berhow, M.A.; Winkler-Moser, J.K.; Isbell, T.A.; Holloway, R.K.; et al. Wild Brazilian mustard (Brassica juncea L.) seed oil methyl esters as biodiesel fuel. J. Am. Oil Chem. Soc. 2009, 86, 917–926. [Google Scholar] [CrossRef]
- Smith, E.G.; Janzen, H.H.; Newlands, N.K. Energy balances of biodiesel production from soybean and canola in Canada. Can. J. Plant Sci. 2007, 87, 793–801. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Vick, B.; Ebelhar, M.W.; Buehring, N.; Astatkie, T. Nitrogen applications modify seed and oil yields and fatty acid composition of winter mustard. Ind. Crop. Prod. 2012, 36, 28–30. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Broch, A.; Robbins, C.; Ceniceros, E.; Natarajan, M. Review of Biodiesel Composition, Properties, and Specifications. Renew. Sustain. Energy Rev. 2012, 16, 143–169. [Google Scholar] [CrossRef]
- Knothe, G. Dependence of Biodiesel Fuel Properties on the Structure of Fatty Acid Alkyl Esters. Fuel Process. Technol. 2005, 86, 1059–1070. [Google Scholar] [CrossRef]
- Sokoto, M.; Hassan, L.; Dangoggo, S.; Ahmad, H.; Uba, A. Influence of Fatty Acid Methyl Esters on Fuel properties of Biodiesel Produced from the Seeds Oil of Curcubita pepo. Niger. J. Basic Appl. Sci. 2011, 19, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Sharma, Y.C.; Singh, B. Development of Biodiesel: Current Scenario. Renew. Sustain. Energy Rev. 2009, 13, 1646–1651. [Google Scholar] [CrossRef]
- Khethiwe, E.; Clever, K.; Jerekias, G. Effects of Fatty Acids Composition on Fuel Properties of Jatropha Curcas Biodiesel. Smart Grid Renew. Energy 2020, 11, 165–180. [Google Scholar] [CrossRef]
- Gugała, M.; Zarzecka, K.; Sikorska, A. Prozdrowotne właściwości oleju rzepakowego. Post. Fitoter. 2014, 2, 100–103. [Google Scholar]
- Rękas, A.; Wroniak, M.; Szterk, A. Charakterystyka wybranych cech jakościowych i składu chemicznego olejów tłoczonych na zimno otrzymanych z różnych odmian rzepaku uprawianego w Polsce. Pol. J. Nat. Sci. 2016, 31, 249–261. [Google Scholar]
- Griffin, B.A. Serum low-density lipoprotein as a dietary responsive biomarker of cardiovascular disease risk: Consensus and confusion. Nutr. Bull. 2017, 42, 266–273. [Google Scholar] [CrossRef] [Green Version]
- Oomah, B.D.; Mazza, G. Health benefits of phytochemicals from selected Canadian crops. Trends Food Sci. Technol. 1999, 10, 193–198. [Google Scholar] [CrossRef]
- Hooper, L.; Martin, N.; Abdelhamid, A.; Davey Smith, G. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst. Rev. 2015, 10, CD011737. [Google Scholar] [CrossRef] [PubMed]
- Stepien, A.; Wojtkowiak, K.; Pietrzak-Fiecko, R. Nutrient content, fat yield and fatty acid profile of winter rapeseed (Brassica napus L.) grown under different agricultural production systems. Chil. J. Agric. Res. 2017, 77, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Christie, W.W. Preparation of Ester Derivatives of Fatty Acids for Chromatographic Analysis. Adv. Lipid Methodol. 1993, 2, e111. [Google Scholar]
(A) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variant | Palmitic Acid | Palmitoleic Acid | Stearic Acid | Oleic Acid | Linoleic Acid | ||||||||||
2008–2009 | 2009–2010 | Mean | 2008–2009 | 2009–2010 | Mean | 2008–2009 | 2009–2010 | Mean | 2008–2009 | 2009–2010 | Mean | 2008–2009 | 2009–2010 | Mean | |
Variant 0 kg/ha N | 4.55 ± 0.12 a | 4.39 ± 0.04 a | 4.47 a | 0.28 ± 0.02 a | 0.27 ± 0.02 ab | 0.27 ab | 1.79 ± 0.02 b | 1.82 ± 0.01 a | 1.81 a | 67.27 ± 0,31 c | 65.97 ± 2.35 b | 66.62 b | 17.31 ± 0.02 a | 18.21 ± 1.11 a | 17.76 a |
Fertilized to 100 kg/ha N | 4.49 ± 0.01 a | 4.42 ± 0.00 a | 4.46 a | 0.28 ± 0.01 a | 0.29 ± 0.01 b | 0.28 b | 1.75 ± 0.01 ab | 1.95 ± 0.01 c | 1.85 a | 65.89 ± 0.08 a | 63.60 ± 0.02 ab | 64.74 a | 18.06 ± 0.04 b | 19.33 ± 0.010 ab | 18.70 b |
Fertilized to 120 kg/ha N | 4.48 ± 0.01 a | 4.54 ± 0.16 ab | 4.51 a | 0.27 ± 0.02 a | 0.23 ± 0.04 a | 0.25 a | 1.75 ± 0.01 ab | 1.88 ± 0.01 b | 1.82 a | 66.28 ± 0.03 ab | 62.81 ± 0.34 a | 64.55 a | 18.02 ± 0.03 b | 18.76 ± 0.04 ab | 18.39 b |
Fertilized to 140 kg/ha N | 4.55 ± 0.01 a | 4.56 ± 0.02 ab | 4.55 a | 0.26 ± 0.01 a | 0.27 ± 0.00 ab | 0.26 ab | 1.71 ± 0.05 a | 1.86 ± 0.01 b | 1.78 a | 66.52 ± 0.04 b | 63.13 ± 0.06 a | 64.82 a | 18.06 ± 0.06 b | 19.57 ± 0.04 b | 18.81 b |
Fertilized to 160 kg/ha N | 4.51 ± 0.13 a | 4.66 ± 0.01 b | 4.58 a | 0.28 ± 0.01 a | 0.27 ± 0.00 ab | 0.27 ab | 1.74 ± 0.04 ab | 1.88 ± 0.01 b | 1.81 a | 65.88 ± 0.14 a | 63.49 ± 0.01 ab | 64.68 a | 18.20 ± 0.15 b | 19.36 ± 0.06 ab | 18.78 b |
Standard error | 0.0460 | 0.0094 | 0.0210 | 0.4080 | 0.1691 | ||||||||||
Year | 4.51 a | 4.52 a | 0.27 a | 0.26 a | 1.75 a | 1.88 a | 66.37 b | 63.80 a | 17.93 a | 19.04 b | |||||
Standard error | 0.029 | 0.006 | 0.013 | 0.013 | 0.260 | ||||||||||
(B) | |||||||||||||||
Variant | Linolenic Acid | Arachic Acid | Behenic Acid | Erucic Acid | Lignoceric Acid | ||||||||||
2008–2009 | 2009–2010 | Mean | 2008–2009 | 2009–2010 | Mean | 2008–2009 | 2009–2010 | Mean | 2008–2009 | 2009–2010 | Mean | 2008–2009 | 2009–2010 | Mean | |
Variant 0 kg/ha N | 7.16 ± 0.01 a | 9.16 ± 0.01 a | 8.16 a | 0.53 ± 0.08 a | 0.49 ± 0.01 a | 0.51 a | 0.30 ± 0.05 a | 0.33 ± 0.01 a | 0.31 a | 0.21 ± 0.02 ab | 0.11 ± 0.08 a | 0.16 ab | 0.20 ± 0.03 ab | 0.14 ± 0.01 a | 0.17 ab |
Fertilized to 100 kg/ha N | 7.96 ± 0.03 c | 9.27 ± 0.01 b | 8.61 b | 0.60 ± 0.01 a | 0.55 ± 0.01 b | 0.58 a | 0.35 ± 0.01 a | 0.40 ± 0.01 a | 0.37 b | 0.27 ± 0.03 bc | 0.07 ± 0.05 a | 0.17 ab | 0.36 ± 0.16 b | 0.15 ± 0.02 ab | 0.25 ab |
Fertilized to 120 kg/ha N | 7.95 ± 0.01 c | 9.28 ± 0.01 b | 8.61 b | 0.50 ± 0.01 a | 0.54 ± 0.04 ab | 0.52 ab | 0.31 ± 0.01 a | 0.40 ± 0.07 a | 0.35 ab | 0.23 ± 0.01 b | 0.10 ± 0.07 a | 0.16 ab | 0.24 ± 0.02 ab | 0.38 ± 0.08 c | 0.31 b |
Fertilized to 140 kg/ha N | 7.76 ± 0.04 b | 9.50 ± 0.05 c | 8.63 b | 0.56 ± 0.07 a | 0.52 ± 0.01 ab | 0.54 ab | 0.33 ± 0.02 a | 0.36 ± 0.04 a | 0.34 ab | 0.13 ± 0.01 a | 0.12 ± 0.01 a | 0.12 a | 0.13 ± 0.01 a | 0.15 ± 0.01 ab | 0.14 a |
Fertilized to 160 kg/ha N | 8.01 ± 0.10 c | 9.27 ± 0.02 b | 8.64 b | 0.57 ± 0.01 a | 0.53 ± 0.01 ab | 0.55 ab | 0.30 ± 0.04 a | 0.32 ± 0.04 a | 0.31 a | 0.37 ± 0.08 c | 0.11 ± 0.03 a | 0.24 b | 0.16 ± 0.02 a | 0.24 ± 0.01 b | 0.20 ab |
Standard error | 0.0921 | 0.0192 | 0.0193 | 0.0333 | 0.0461 | ||||||||||
Year | 7.77 a | 9.29 b | 0.55 a | 0.53 a | 0.31 a | 0.36 b | 0.24 b | 0.10 a | 0.22 a | 0.21 a | |||||
Standard error | 0.107 | 0.058 | 0.012 | 0.012 | 0.020 |
Variant | Nitrogenous Substances (%) | Ash (%) | Crude Fiber (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
2008–2009 | 2009–2010 | Mean | 2008–2009 | 2009–2010 | Mean | 2008–2009 | 2009–2010 | Mean | |
Variant 0 kg/ha N | 183.14 ± 7.18 a | 232.64 ± 10.57 a | 207.89 a | 42.65 ± 3.05 a | 41.74 ± 1.89 a | 42.16 a | 222.53 ± 8.73 ab | 216.64 ± 9.84 b | 219.59 b |
Fertilized to 100 kg/ha N | 236.30 ± 10.39 b | 254.62 ± 12.02 a | 245.45 b | 44.56 ± 1.96 a | 43.17 ± 2.04 a | 43.86 bc | 229.09 ± 10.08 ab | 191.83 ± 9.05 a | 210.46 ab |
Fertilized to 120 kg/ha N | 238.94 ± 10.68 b | 252.54 ± 11.31 a | 245.74 b | 43.99 ± 1.97 a | 42.84 ± 2.60 a | 43.42 ab | 206.63 ± 9.22 a | 207.84 ± 9.31 ab | 207.07 ab |
Fertilized to 140 kg/ha N | 236.84 ± 16.97 b | 250.22 ± 11.40 a | 243.53 b | 43.69 ± 1.89 a | 43.04 ± 3.33 a | 43.36 ab | 209.63 ± 9.03 a | 196.85 ± 8.97 ab | 203.24 a |
Fertilized to 160 kg/ha N | 244.45 ± 10.92 b | 249.77 ± 8.85 a | 247.11 b | 46.10 ± 2.06 a | 43.29 ± 4.29 a | 44.69 c | 231.31 ± 31 b | 190.08 ± 6.73 a | 210.69 ab |
Standard error | 4.8637 | 0.4113 | 5.3142 | ||||||
Year | 227.93 a | 247.96 b | 44.19 a | 42.81 b | 219.77 a | 200.65 b | |||
Standard error | 3.0761 | 0.2601 | 0.3610 |
Nan (sum of N-NH4+ a N-NO3−): | 2008–2009—10.0 mg/kg soil 2009–2010—11.1 mg/kg soil |
N-NH4+ (colorimetrically, Nessler’s reagent): | 2008–2009—4.0 mg/kg soil 2009–2010—4.6 mg/kg soil |
N-NO3− (colorimetrically, phenol 2,4-disulfonic acid) | 2008–2009—6.0 mg/kg soil 2009–2010—6.3 mg/kg soil |
P—available (colorimetrically, Mehlich III): | 2008–2009—96.3 mg/kg soil 2009–2010—89.6 mg/kg soil |
K—available (flame photometry, Mehlich III): | 2008–2009—190.0 mg/kg soil 2009–2010—206.3 mg/kg soil |
Mg—available (AAS, Mehlich III): | 2008—275.0 mg/kg soil 2009—298.6 mg/kg soil |
Ca—available (flame photometry, Mehlich III): | 2008–2009—1450 mg/kg soil 2009–2010—1965 mg/kg soil |
% of humus | 2008–2009—2.68 2009–2010—2.36 |
pH/KCl (0.2 mol/dm3 KCl) (pH units) | 2008–2009—5.0 2009–2010—5.8 |
Month | Long-Term Average 1961–2001 | 2007–2008 | 2008–2009 | 2009–2010 | |||
---|---|---|---|---|---|---|---|
Temperature (°C) | Evaluation of Year | Temperature (°C) | Evaluation of Year | Temperature (°C) | Evaluation of Year | ||
I. | −3.8 | - | - | −4.4 | N | −2.9 | N |
II. | −1.5 | - | - | −1.1 | N | −1.0 | N |
III. | 2.8 | - | - | 3.4 | N | 2.5 | N |
IV. | 8.4 | - | - | 11.5 | SAN | 9.1 | N |
V. | 13.1 | - | - | 14.4 | N | 13.6 | N |
VI. | 16.3 | - | - | 16.1 | N | 17.5 | AN |
VII. | 17.8 | - | - | 19.8 | SAN | 20.6 | SAN |
VIII. | 17.3 | - | - | 19.5 | SAN | - | - |
IX. | 13.2 | 12.8 | N | 15.3 | SAN | - | - |
X. | 8.1 | 10.0 | AN | 8.5 | N | - | - |
XI. | 3.00 | 4.9 | SAN | 4.8 | SAN | - | - |
XII. | −1.6 | 1.5 | SAN | −0.8 | N | - | - |
IV.–IX. | 15.7 | - | - | 16.1 | N | - | - |
X.–III. | 1.2 | - | - | 2.4 | SAN | 1.9 | AN |
I.–XII. | 7.8 | - | - | 8.9 | N | - | - |
Month | Long-Term Average 1961–2001 | 2007–2008 | 2008–2009 | 2009–2010 | |||
---|---|---|---|---|---|---|---|
Precipitation (mm) | Evaluation of Year | Precipitation (mm) | Evaluation of Year | Precipitation (mm) | Evaluation of Year | ||
I. | 28.1 | - | - | 39.2 | AN | 43.1 | AN |
II. | 28.5 | - | - | 40.2 | AN | 34.7 | N |
III. | 29.8 | - | - | 19.4 | AN | 52.2 | AN |
IV. | 46.7 | - | - | 11.0 | SBN | 55.0 | N |
V. | 63.9 | - | - | 62.8 | N | 132.8 | SAN |
VI. | 85.2 | - | - | 96.4 | N | 207.1 | EAN |
VII. | 75.6 | - | - | 34.2 | BN | 100.2 | AN |
VIII. | 61.6 | - | - | 35.6 | N | - | - |
IX. | 49.5 | 40.9 | N | 37.8 | N | - | - |
X. | 45.7 | 49.8 | N | 115.9 | SAN | - | - |
XI. | 53.5 | 35.8 | N | 81.6 | AN | - | - |
XII. | 41.8 | 83.5 | SAN | 101.6 | SAN | - | - |
IV.–IX. | 63.8 | - | - | 46.3 | N | - | - |
X.–III. | 37.9 | - | - | 49.7 | SAN | 71.5 | EAN |
I.–XII. | 50.83 | - | - | 58.8 | AN | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapletalová, A.; Ducsay, L.; Varga, L.; Sitkey, J.; Javoreková, S.; Hozlár, P. Influence of Nitrogen Nutrition on Fatty Acids in Oilseed Rape (Brassica napus L.). Plants 2022, 11, 44. https://doi.org/10.3390/plants11010044
Zapletalová A, Ducsay L, Varga L, Sitkey J, Javoreková S, Hozlár P. Influence of Nitrogen Nutrition on Fatty Acids in Oilseed Rape (Brassica napus L.). Plants. 2022; 11(1):44. https://doi.org/10.3390/plants11010044
Chicago/Turabian StyleZapletalová, Alexandra, Ladislav Ducsay, Ladislav Varga, Jakub Sitkey, Soňa Javoreková, and Peter Hozlár. 2022. "Influence of Nitrogen Nutrition on Fatty Acids in Oilseed Rape (Brassica napus L.)" Plants 11, no. 1: 44. https://doi.org/10.3390/plants11010044
APA StyleZapletalová, A., Ducsay, L., Varga, L., Sitkey, J., Javoreková, S., & Hozlár, P. (2022). Influence of Nitrogen Nutrition on Fatty Acids in Oilseed Rape (Brassica napus L.). Plants, 11(1), 44. https://doi.org/10.3390/plants11010044