Optimization of Potassium Supply under Osmotic Stress Mitigates Oxidative Damage in Barley
Abstract
:1. Introduction
2. Results
2.1. Biomass Production
2.2. ROS Concentration, Antioxidant Enzyme Activity and the Respective Gene Expression Levels
2.2.1. Effect of Low-K Supply under Non-Osmotic Stress Conditions
2.2.2. Effect of PEG-Induced Water Deficit on Adequate-K Plants
2.2.3. Effect of PEG Introduction to Low-K Treated Plants
3. Discussion
3.1. Dry Matter Production Responses to Potassium Supply and PEG Stress
3.2. Responses of Reactive Oxygen Species and Antioxidant Activity to K and PEG Treatments
3.2.1. Effects of Low-Potassium Supply under Non-Osmotic Stress Conditions
3.2.2. Osmotic Stress Conditions Induced by PEG to Adequate-K Plants
3.2.3. PEG-Induced Osmotic Stress to Low-K-Treated Plants
4. Materials and Methods
4.1. Experimental Setup
4.2. Biomass Harvest and Dry Matter K+ Concentrations
4.3. Leaf Gas Exchange Measurements
4.4. Hydrogen Peroxide and Superoxide Concentrations
4.5. Anti-Oxidative Enzyme Activities
4.6. Gene Expression
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
DAO | K Supply | PEG | APX | GR | CAT | SOD |
(mM K+) | (µmol H2O2 g−1 FW min−1) | (µmol NADPH g−1 FW min−1) | (mmol H2O2 g−1 FW min−1) | (U g−1 FW) | ||
Sahin-91 | ||||||
6 | 0.8 | - | 1.31 ± 0.19 | 0.37 ± 0.01 | 2.01 ± 0.07 | 128.7 ± 1.3 |
6 | 0.04 | - | 0.72 ± 0.10 | 0.19 ± 0.01 | 1.35 ± 0.08 | 106.8 ± 2.0 |
10 | 0.8 | - | 0.77 ± 0.10 | 0.34 ± 0.03 | 1.98 ± 0.07 | 93.1 ± 3.9 |
10 | 0.04 | - | 1.16 ± 0.06 | 0.19 ± 00.2 | 0.91 ± 0.05 | 88.9 ± 6.8 |
12 | 0.8 | - | 1.53 ± 0.22 | 0.26 ± 0.02 | 1.21 ± 0.08 | 108.0 ± 2.3 |
12 | 0.04 | - | 1.69 ± 0.23 | 0.27 ± 0.02 | 0.82 ± 0.06 | 102.7 ± 6.7 |
12 | 0.8 | + | 1.44 ± 0.09 | 0.37 ± 0.02 | 1.61 ± 0.16 | 103.2 ± 5.2 |
12 | 0.04 | + | 3.64 ± 0.23 | 0.62 ± 0.06 | 1.27 ± 0.08 | 115.6 ± 3.8 |
14 | 0.8 | - | 1.33 ± 0.20 | 0.24 ± 0.03 | 1.09 ± 0.08 | 96.2 ± 6.5 |
14 | 0.04 | - | 1.15 ± 0.08 | 0.26 ± 0.05 | 0.82 ± 0.04 | 107.1 ± 5.9 |
14 | 0.8 | + | 2.86 ± 0.22 | 0.39 ± 0.04 | 1.68 ± 0.16 | 102.5 ± 6.4 |
14 | 0.04 | + | 4.32 ± 0.32 | 0.68 ± 0.04 | 0.93 ± 0.09 | 130.5 ± 4.9 |
19 | 0.8 | - | 1.75 ± 0.23 | 0.20 ± 0.02 | 1.22 ± 0.07 | 91.9 ± 2.4 |
19 | 0.04 | - | 1.81 ± 0.21 | 0.28 ± 0.03 | 0.70 ± 0.05 | 117.0 ± 5.7 |
19 | 0.8 | + | 3.21 ± 0.30 | 0.81 ± 0.04 | 1.83 ± 0.20 | 105.1 ± 7.6 |
19 | 0.04 | + | 6.15 ± 0.36 | 0.69 ± 0.04 | 0.49 ± 0.04 | 131.1 ± 3.4 |
21 | 0.8 | - | 1.53 ± 0.27 | 0.22 ± 0.02 | 1.54 ± 0.07 | 48.5 ± 4.7 |
21 | 0.04 | - | 1.72 ± 0.25 | 0.26 ± 0.04 | 0.44 ± 0.08 | 105.1 ± 5.9 |
21 | 0.8 | + | 1.89 ± 0.12 | 0.26 ± 0.02 | 1.88 ± 0.04 | 67.2 ± 3.2 |
21 | 0.04 | + | 2.06 ± 0.17 | 0.34 ± 0.02 | 0.55 ± 0.07 | 95.3 ± 5.5 |
25 | 0.8 | - | 2.45 ± 0.24 | 0.16 ± 0.02 | 1.81 ± 0.13 | 51.9 ± 5.5 |
25 | 0.04 | - | 2.28 ± 0.25 | 0.23 ± 0.01 | 0.41 ± 0.06 | 98.3 ± 7.8 |
25 | 0.8 | + | 1.73 ± 0.20 | 0.19 ± 0.02 | 1.87 ± 0.12 | 92.0 ± 5.9 |
25 | 0.04 | + | 1.66 ± 0.18 | 0.26 ± 0.04 | 0.38 ± 0.01 | 116.5 ± 1.8 |
Milford | ||||||
6 | 0.8 | - | 2.33 ± 0.32 | 0.38 ± 0.02 | 2.43 ± 0.08 | 116.6 ± 3.2 |
6 | 0.04 | - | 1.75 ± 0.22 | 0.32 ± 0.02 | 1.94 ± 0.10 | 129.6 ± 1.9 |
10 | 0.8 | - | 1.27 ± 0.16 | 0.21 ± 0.02 | 1.50 ± 0.10 | 122.8 ± 2.7 |
10 | 0.04 | - | 1.79 ± 0.20 | 0.17 ± 0.03 | 1.97 ± 0.12 | 123.4 ± 2.2 |
12 | 0.8 | - | 1.93 ± 0.43 | 0.25 ± 0.03 | 1.52 ± 0.09 | 128.3 ± 3.6 |
12 | 0.04 | - | 1.46 ± 0.12 | 0.27 ± 0.02 | 1.59 ± 0.08 | 142.5 ± 2.4 |
12 | 0.8 | + | 5.71 ± 0.37 | 0.45 ± 0.04 | 1.32 ± 0.07 | 114.1 ± 2.5 |
12 | 0.04 | + | 3.65 ± 0.47 | 0.53 ± 0.06 | 2.74 ± 0.17 | 131.5 ± 1.8 |
14 | 0.8 | - | 1.17 ± 0.15 | 0.22 ± 0.02 | 1.59 ± 0.08 | 117.8 ± 2.5 |
14 | 0.04 | - | 1.77 ± 0.18 | 0.20 ± 0.02 | 1.07 ± 0.06 | 130.0 ± 3.6 |
14 | 0.8 | + | 2.45 ± 0.08 | 0.46 ± 0.06 | 2.26 ± 0.09 | 105.1 ± 3.3 |
14 | 0.04 | + | 9.96 ± 0.50 | 1.83 ± 0.18 | 2.50 ± 0.09 | 150.9 ± 1.2 |
19 | 0.8 | - | 1.67 ± 0.23 | 0.32 ± 0.02 | 1.44 ± 0.12 | 118.8 ± 1.8 |
19 | 0.04 | - | 2.60 ± 0.34 | 0.27 ± 0.02 | 1.13 ± 0.09 | 144.1 ± 3.0 |
19 | 0.8 | + | 2.36 ± 0.17 | 0.42 ± 0.04 | 1.98 ± 0.07 | 114.2 ± 3.1 |
19 | 0.04 | + | 15.32 ± 0.69 | 2.51 ± 0.13 | 1.48 ± 0.10 | 155.7 ± 1.7 |
21 | 0.8 | - | 1.80 ± 0.04 | 0.13 ± 0.02 | 1.78 ± 0.13 | 85.7 ± 6.4 |
21 | 0.04 | - | 2.54 ± 0.32 | 0.18 ± 0.02 | 1.33 ± 0.07 | 103.6 ± 4.4 |
21 | 0.8 | + | 1.37 ± 0.15 | 0.24 ± 0.02 | 1.80 ± 0.10 | 76.0 ± 3.7 |
21 | 0.04 | + | 2.48 ± 0.24 | 0.14 ± 0.02 | 1.35 ± 0.09 | 105.7 ± 4.8 |
25 | 0.8 | - | 2.63 ± 0.33 | 0.18 ± 0.02 | 1.77 ± 0.07 | 104.7 ± 5.7 |
25 | 0.04 | - | 2.49 ± 0.27 | 0.17 ± 0.02 | 1.15 ± 0.07 | 97.7 ± 6.5 |
25 | 0.8 | + | 2.01 ± 0.23 | 0.18 ± 0.02 | 1.81 ± 0.11 | 102.8 ± 4.1 |
25 | 0.04 | + | 1.69 ± 0.19 | 0.19 ± 0.02 | 1.15 ± 0.07 | 118.5 ± 3.0 |
DAO | K Supply | PEG | H2O2 | O2− | ||
(mM K+) | (µmol g−1 FW) | (nmol g−1 FW min−1) | ||||
Sahin-91 | ||||||
6 | 0.8 | - | 0.57 ± 0.04 b | 0.27 ± 0.07 a | ||
6 | 0.04 | - | 1.10 ± 0.11 a | 0.31 ± 0.03 a | ||
10 | 0.8 | - | 0.52 ± 0.06 b | 0.42 ± 0.14 b | ||
10 | 0.04 | - | 1.42 ± 0.16 a | 2.83 ± 0.29 a | ||
12 | 0.8 | - | 0.80 ± 0.05 b | 0.58 ± 0.08 c | ||
12 | 0.04 | - | 1.61 ± 0.13 a | 3.03 ± 0.66 b | ||
12 | 0.8 | + | 0.83 ± 0.05 b | 5.47 ± 0.48 a | ||
12 | 0.04 | + | 1.87 ± 0.14 a | 4.71 ± 0.84 a,b | ||
14 | 0.8 | - | 0.52 ± 0.04 d | 0.77 ± 0.05 c | ||
14 | 0.04 | - | 1.00 ± 0.05 b | 1.59 ± 0.60 a,b | ||
14 | 0.8 | + | 0.77 ± 0.12 c | 3.27 ± 0.88 a | ||
14 | 0.04 | + | 1.24 ± 0.09 a | 3.39 ± 1.09 a | ||
19 | 0.8 | - | 0.70 ± 0.12 b | 0.39 ± 0.08 b | ||
19 | 0.04 | - | 1.46 ± 0.18 a | 2.91 ± 0.81 a | ||
19 | 0.8 | + | 0.84 ± 0.09 b | 2.30 ± 0.66 a,b | ||
19 | 0.04 | + | 1.35 ± 0.19 a | 2.82 ± 0.78 a | ||
21 | 0.8 | - | 0.52 ± 0.10 b | 0.30 ± 0.08 a | ||
21 | 0.04 | - | 1.02 ± 0.14 a | 1.99 ± 0.82 a | ||
21 | 0.8 | + | 0.57 ± 0.08 b | 0.36 ± 0.09 a | ||
21 | 0.04 | + | 1.30 ± 0.15 a | 0.40 ± 0.09 a | ||
25 | 0.8 | - | 0.49 ± 0.09 b | 0.35 ± 0.17 b | ||
25 | 0.04 | - | 0.80 ± 0.10 a | 3.54 ± 1.80 a | ||
25 | 0.8 | + | 0.50 ± 0.04 b | 0.70 ± 0.14 b | ||
25 | 0.04 | + | 0.62 ± 0.06 a,b | 1.18 ± 0.36 b | ||
Milford | ||||||
6 | 0.8 | - | 0.71 ± 0.07 a | 0.31 ± 0.05 b | ||
6 | 0.04 | - | 0.99 ± 0.11 a | 0.78 ± 0.09 a | ||
10 | 0.8 | - | 0.61 ± 0.05 a | 0.28 ± 0.10 b | ||
10 | 0.04 | - | 0.86 ± 0.12 a | 2.72 ± 0.57 a | ||
12 | 0.8 | - | 0.81 ± 0.05 c | 0.52 ± 0.06 c | ||
12 | 0.04 | - | 1.14 ± 0.02 b | 3.27 ± 0.29 b | ||
12 | 0.8 | + | 1.12 ± 0.10 b | 1.95 ± 1.25 b,c | ||
12 | 0.04 | + | 1.57 ± 0.10 a | 6.69 ± 0.55 a | ||
14 | 0.8 | - | 0.67 ± 0.04 c | 0.68 ± 0.08 b | ||
14 | 0.04 | - | 0.76 ± 0.07 b,c | 2.89 ± 0.39 b | ||
14 | 0.8 | + | 0.96 ± 0.08 b | 1.78 ± 0.24 b | ||
14 | 0.04 | + | 1.20 ± 0.10 a | 6 92 ± 1.01 a | ||
19 | 0.8 | - | 0.52 ± 0.07 b | 0.70 ± 0.07 b | ||
19 | 0.04 | - | 0.93 ± 0.11 a,b | 1.66 ± 0.47 b | ||
19 | 0.8 | + | 0.93 ± 0.13 a,b | 1.76 ± 0.50 b | ||
19 | 0.04 | + | 1.02 ± 0.23 a | 5.10 ± 0.46 a | ||
21 | 0.8 | - | 0.55 ± 0.11 c | 0.18 ± 0.06 a | ||
21 | 0.04 | - | 0.89 ± 0.10 a,b | 0.64 ± 0.12 a | ||
21 | 0.8 | + | 0.63 ± 0.07 b,c | 0.81 ± 0.30 a | ||
21 | 0.04 | + | 0.96 ± 0.08 a | 0.24 ± 0.12 a | ||
25 | 0.8 | - | 0.37 ± 0.02 b | 0.73 ± 0.10 a | ||
25 | 0.04 | - | 0.61 ± 0.08 a | 0.51 ± 0.08 a | ||
25 | 0.8 | + | 0.37 ± 0.04 b | 0.70 ± 0.15 a | ||
25 | 0.04 | + | 0.72 ± 0.05 a | 0.40 ± 0.06 a |
References
- Kebede, A.; Kang, M.S.; Bekele, E. Advances in mechanisms of drought tolerance in crops, with emphasis on barley. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Takahashi, F.; Kuromori, T.; Urano, K.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Drought Stress Responses and Resistance in Plants: From Cellular Responses to Long-Distance Intercellular Communication. Front. Plant Sci. 2020, 11, 1407. [Google Scholar] [CrossRef]
- Cai, K.; Chen, X.; Han, Z.; Wu, X.; Zhang, S.; Li, Q.; Nazir, M.M.; Zhang, G.; Zeng, F. Screening of Worldwide Barley Collection for Drought Tolerance: The Assessment of Various Physiological Measures as the Selection Criteria. Front. Plant Sci. 2020, 11, 1159. [Google Scholar] [CrossRef] [PubMed]
- Blum, A. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crop. Res. 2009, 112, 119–123. [Google Scholar] [CrossRef]
- Noctor, G.; Veljovic-Jovanovic, S.; Driscoll, S.; Novitskaya, L.; Foyer, C.H. Drought and Oxidative Load in the Leaves of C3 Plants: A Predominant Role for Photorespiration? Ann. Bot. 2002, 89, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Dietz, K.-J.; Mittler, R.; Noctor, G. Recent Progress in Understanding the Role of Reactive Oxygen Species in Plant Cell Signaling. Plant Physiol. 2016, 171, 1535–1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, J.R.; Caverzan, A.; Chavarria, G. Water deficit stress, ROS involvement, and plant performance. Arch. Agron. Soil Sci. 2019, 65, 1160–1181. [Google Scholar] [CrossRef]
- Shcolnick, S.; Keren, N. Metal Homeostasis in Cyanobacteria and Chloroplasts. Balancing Benefits and Risks to the Photosynthetic Apparatus. Plant Physiol. 2006, 141, 805–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, G.; Suzuki, N.; Ciftci-Yilmaz, S.; Mittler, R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010, 33, 453–467. [Google Scholar] [CrossRef]
- Asada, K. Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions. Plant Physiol. 2006, 141, 391–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Møller, I.M.; Jensen, P.E.; Hansson, A. Oxidative Modifications to Cellular Components in Plants. Annu. Rev. Plant Biol. 2007, 58, 459–481. [Google Scholar] [CrossRef] [Green Version]
- Noctor, G.; Reichheld, J.-P.; Foyer, C.H. ROS-related redox regulation and signaling in plants. Semin. Cell Dev. Biol. 2018, 80, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhury, F.K.; Rivero, R.M.; Blumwald, E.; Mittler, R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017, 90, 856–867. [Google Scholar] [CrossRef] [PubMed]
- Zandalinas, S.I.; Mittler, R.; Balfagón, D.; Arbona, V.; Gómez-Cadenas, A. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant 2018, 162, 2–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karuppanapandian, T.; Moon, J.C.; Kim, C.; Manoharan, K.; Kim, W. Reactive Oxygen Species in Plants: Their Generation, Signal Transduction, and Scavenging Mechanisms. Aust. J. Crop Sci. 2011, 5, 709. [Google Scholar]
- You, J.; Chan, Z. ROS Regulation During Abiotic Stress Responses in Crop Plants. Front. Plant Sci. 2015, 6, 1092. [Google Scholar] [CrossRef] [Green Version]
- Tränkner, M.; Tavakol, E.; Jákli, B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant. 2018, 163, 414–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier: London, UK; Academic Press: Waltham, MA, USA, 2012. [Google Scholar]
- Weng, X.-Y.; Zheng, C.-J.; Xu, H.-X.; Sun, J.-Y. Characteristics of photosynthesis and functions of the water-water cycle in rice (Oryza sativa) leaves in response to potassium deficiency. Physiol. Plant 2007, 131, 614–621. [Google Scholar] [CrossRef]
- Jin, S.H.; Huang, J.Q.; Li, X.Q.; Zheng, B.S.; Wu, J.S.; Wang, Z.J.; Liu, G.H.; Chen, M. Effects of potassium supply on limitations of photosynthesis by mesophyll diffusion conductance in Carya cathayensis. Tree Physiol. 2011, 31, 1142–1151. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, I.; Hengeler, C.; Marschner, H. Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. J. Exp. Bot. 1994, 45, 1251–1257. [Google Scholar] [CrossRef]
- Cakmak, I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil Sci. 2005, 168, 521–530. [Google Scholar] [CrossRef]
- Dreyer, I.; Gomez-Porras, J.L.; Riedelsberger, J. The potassium battery: A mobile energy source for transport processes in plant vascular tissues. New Phytol. 2017, 216, 1049–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, R.; Schachtman, D.P. Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc. Natl. Acad. Sci. USA 2004, 101, 8827–8832. [Google Scholar] [CrossRef] [Green Version]
- Shin, R.; Berg, R.H.; Schachtman, D.P. Reactive Oxygen Species and Root Hairs in Arabidopsis Root Response to Nitrogen, Phosphorus and Potassium Deficiency. Plant Cell Physiol. 2005, 46, 1350–1357. [Google Scholar] [CrossRef]
- Zhu, B.; Xu, Q.; Zou, Y.; Ma, S.; Zhang, X.; Xie, X.; Wang, L. Effect of potassium deficiency on growth, antioxidants, ionome and metabolism in rapeseed under drought stress. Plant Growth Regul. 2020, 90, 455–466. [Google Scholar] [CrossRef]
- Zörb, C.; Senbayram, M.; Peiter, E. Potassium in agriculture—Status and perspectives. J Plant Physiol. 2014, 171, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, H.; Chen, L.; Wang, N.; Wei, C.; Wan, X. Mesophyll cells’ ability to maintain potassium is correlated with drought tolerance in tea (Camellia sinensis). Plant Physiol. Biochem. 2019, 136, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Marschner, H.; Cakmak, I. High Light Intensity Enhances Chlorosis and Necrosis in Leaves of Zinc, Potassium, and Magnesium Deficient Bean (Phaseolus vulgaris) Plants. J. Plant Physiol. 1989, 134, 308–315. [Google Scholar] [CrossRef]
- Selote, D.S.; Khanna-Chopra, R. Antioxidant response of wheat roots to drought acclimation. Protoplasma 2010, 245, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Wang, Y.; Xie, Z.; Guo, D.; Chen, C.; Fan, Q.; Deng, X.; Liu, J.H. Enhanced ROS scavenging and sugar accumulation contribute to drought tolerance of naturally occurring autotetraploids in Poncirus trifoliata. Plant Biotechnol. J. 2019, 17, 1394–1407. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Shi, S.; Liu, Z.; Yang, F.; Yin, G. Drought tolerance in alfalfa (Medicago sativa L.) varieties is associated with enhanced antioxidative protection and declined lipid peroxidation. J. Plant Physiol. 2019, 232, 226–240. [Google Scholar] [CrossRef]
- Tewari, R.K.; Kumar, P.; Sharma, P.N. Oxidative Stress and Antioxidant Responses in Young Leaves of Mulberry Plants Grown Under Nitrogen, Phosphorus or Potassium Deficiency. J. Integr. Plant Biol. 2007, 49, 313–322. [Google Scholar] [CrossRef]
- Hafsi, C.; Romero-Puertas, M.C.; Luis, A.; Abdelly, C.; Sandalio, L.M. Antioxidative response of Hordeum maritimum L. to potassium deficiency. Acta Physiol. Plant. 2011, 33, 193–202. [Google Scholar] [CrossRef]
- Hafsi, C.; Falleh, H.; Saada, M.; Rabhi, M.; Mkadmini, K.; Ksouri, R.; Abdelly, C.; Smaoui, A. Effects of potassium supply on growth, gas exchange, phenolic composition, and related antioxidant properties in the forage legume Sulla carnosa. Flora 2016, 223, 38–45. [Google Scholar] [CrossRef]
- Waqas, M.; Yaning, C.; Iqbal, H.; Shareef, M.; ur Rehman, H.; Bilal, H.M. Synergistic consequences of salinity and potassium deficiency in quinoa: Linking with stomatal patterning, ionic relations and oxidative metabolism. Plant Physiol. Biochem. 2021, 159, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dai, X.; Xu, G.; Dai, Z.; Chen, P.; Zhang, T.; Zhang, H. The Ca2+-CaM Signaling Pathway Mediates Potassium Uptake by Regulating Reactive Oxygen Species Homeostasis in Tobacco Roots Under Low-K+ Stress. Front. Plant Sci. 2021, 12, 658609. [Google Scholar] [CrossRef] [PubMed]
- Türkan, İ.; Bor, M.; Özdemir, F.; Koca, H. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci. 2005, 168, 223–231. [Google Scholar] [CrossRef]
- Pompelli, M.F.; Barata-Luís, R.; Vitorino, H.S.; Gonçalves, E.R.; Rolim, E.V.; Santos, M.G.; Almeida-Cortez, J.S.; Ferreira, V.M.; Lemos, E.E.; Endres, L. Photosynthesis, photoprotection and antioxidant activity of purging nut under drought deficit and recovery. Biomass Bioenergy 2010, 34, 1207–1215. [Google Scholar] [CrossRef]
- Tavakol, E.; Jákli, B.; Cakmak, I.; Dittert, K.; Karlovsky, P.; Pfohl, K.; Senbayram, M. Optimized potassium nutrition improves plant-water-relations of barley under PEG-induced osmotic stress. Plant Soil 2018, 430, 23–35. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The Critical Role of Potassium in Plant Stress Response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vishwakarma, K.; Upadhyay, N.; Kumar, N.; Yadav, G.; Singh, J.; Mishra, R.K.; Kumar, V.; Verma, R.; Upadhyay, R.G.; Pandey, M.; et al. Abscisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and Future Prospects. Front. Plant Sci. 2017, 8, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, C.W.; Baek, W.; Jung, J.; Kim, J.H.; Lee, S.C. Function of ABA in Stomatal Defense against Biotic and Drought Stresses. Int. J. Mol. Sci. 2015, 16, 15251–15270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jákli, B.; Tränkner, M.; Senbayram, M.; Dittert, K. Adequate supply of potassium improves plant water-use efficiency but not leaf water-use efficiency of spring wheat. J. Plant Nutr. Soil Sci. 2016, 179, 733–745. [Google Scholar] [CrossRef]
- Jákli, B.; Tavakol, E.; Tränkner, M.; Senbayram, M.; Dittert, K. Quantitative limitations to photosynthesis in K deficient sunflower and their implications on water-use efficiency. J. Plant Physiol. 2017, 209, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Liu, W.; Qiu, C.W.; Zeng, F.; Wang, Y.; Zhang, G.; Chen, Z.-H.; Wu, F. HvAKT2 and HvHAK1 confer drought tolerance in barley through enhanced leaf mesophyll H+ homoeostasis. Plant Biotechnol. J. 2020, 18, 1683–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degl’Innocenti, E.; Hafsi, C.; Guidi, L.; Navari-Izzo, F. The effect of salinity on photosynthetic activity in potassium-deficient barley species. J. Plant Physiol. 2009, 166, 1968–1981. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Li, C.; Li, Y.; Jiang, G.; Cheng, G.; Zheng, Y. Effects of External Potassium (K) Supply on Drought Tolerances of Two Contrasting Winter Wheat Cultivars. PLoS ONE 2013, 8, e69737. [Google Scholar] [CrossRef]
- Tsonev, T.; Velikova, V.; Yildiz-Aktas, L.; Gürel, A.Y.N.U.R.; Edreva, A. Effect of water deficit and potassium fertilization on photosynthetic activity in cotton plants. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2011, 145, 841–847. [Google Scholar] [CrossRef]
- Jákli, B.; Hauer-Jákli, M.; Böttcher, F.; Meyer zur Müdehorst, J.; Senbayram, M.; Dittert, K. Leaf, canopy and agronomic water-use efficiency of field-grown sugar beet in response to potassium fertilization. J. Agron. Crop Sci. 2018, 204, 99–110. [Google Scholar] [CrossRef]
- Jordan-Meille, L.; Pellerin, S. Leaf area establishment of a maize (Zea Mays L.) field crop under potassium deficiency. Plant Soil 2004, 265, 75–92. [Google Scholar] [CrossRef]
- Liesche, J. How regulation of phloem transport could link potassium fertilization to increased growth. Tree Physiol. 2016, 36, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, N.; Hua, H.; Eneji, A.E.; Li, Z.; Duan, L.; Tian, X. Genotypic variations in photosynthetic and physiological adjustment to potassium deficiency in cotton (Gossypium hirsutum). J. Photochem. Photobiol. B 2012, 110, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Lv, X.; Yang, J.; Chen, B.; Zhao, W.; Meng, Y.; Wang, Y.; Zhou, Z.; Oosterhuis, D.M. Effects of potassium deficiency on antioxidant metabolism related to leaf senescence in cotton (Gossypium hirsutum L.). Field Crop. Res. 2016, 191, 139–149. [Google Scholar] [CrossRef]
- Hernandez, M.; Fernandez-Garcia, N.; Garcia-Garma, J.; Rubio-Asensio, J.S.; Rubio, F.; Olmos, E. Potassium starvation induces oxidative stress in Solanum lycopersicum L. roots. J. Plant Physiol. 2012, 169, 1366–1374. [Google Scholar] [CrossRef] [PubMed]
- Deeken, R.; Geiger, D.; Fromm, J.; Koroleva, O.; Ache, P.; Langenfeld-Heyser, R.; Sauer, N.; May, S.T.; Hedrich, R. Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 2002, 216, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Apel, K.; Hirt, H. Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [Green Version]
- Ahanger, M.A.; Agarwal, R.M. Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L). Protoplasma 2017, 254, 1471–1486. [Google Scholar] [CrossRef]
- Skadsen, R.W.; Schulze-Lefert, P.; Herbst, J.M. Molecular cloning, characterization and expression analysis of two catalase isozyme genes in barley. Plant Mol. Biol. 1995, 29, 1005–1014. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Lu, Z.; Meng, F.; Li, X.; Cong, R.; Ren, T.; Lu, J. Potassium modulates central carbon metabolism to participate in regulating CO2 transport and assimilation in Brassica napus leaves. Plant Sci. 2021, 307, 110891. [Google Scholar] [CrossRef]
- Luna, C.M. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J. Exp. Bot. 2004, 56, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.L.; Wang, Z.Y.; Fan, J.W.; Turner, N.C.; Wang, T.; Li, F.M. β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying. J. Exp. Bot. 2012, 63, 4849–4860. [Google Scholar] [CrossRef]
- Bouchemal, K.; Bouldjadj, R.; Belbekri, M.N.; Ykhlef, N.; Djekoun, A. Differences in antioxidant enzyme activities and oxidative markers in ten wheat (Triticum durum Desf.) genotypes in response to drought, heat and paraquat stress. Arch. Agron. Soil Sci. 2017, 63, 710–722. [Google Scholar] [CrossRef]
- Kubiś, J. Exogenous spermidine differentially alters activities of some scavenging system enzymes, H2O2 and superoxide radical levels in water-stressed cucumber leaves. J. Plant Physiol. 2008, 165, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.M.; Huang, Q.C.; Qin, G.Y.; Zhao, S.P.; Zhou, J.G. Different drought-stress responses in photosynthesis and reactive oxygen metabolism between autotetraploid and diploid rice. Photosynthetica 2014, 52, 193–202. [Google Scholar] [CrossRef]
- Qi, J.; Song, C.P.; Wang, B.; Zhou, J.; Kangasjärvi, J.; Zhu, J.K.; Gong, Z. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J. Integr. Plant Biol. 2018, 60, 805–826. [Google Scholar] [CrossRef] [Green Version]
- Sierla, M.; Waszczak, C.; Vahisalu, T.; Kangasjärvi, J. Reactive Oxygen Species in the Regulation of Stomatal Movements. Plant Physiol. 2016, 171, 1569–1580. [Google Scholar] [CrossRef] [Green Version]
- Seiler, C.; Harshavardhan, V.T.; Rajesh, K.; Reddy, P.S.; Strickert, M.; Rolletschek, H.; Scholz, U.; Wobus, U.; Sreenivasulu, N. ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. J. Exp. Bot. 2011, 62, 2615–2632. [Google Scholar] [CrossRef] [Green Version]
- Daszkowska-Golec, A.; Szarejko, I. Open or Close the Gate—Stomata Action Under the Control of Phytohormones in Drought Stress Conditions. Front. Plant Sci. 2013, 4, 138. [Google Scholar] [CrossRef] [Green Version]
- Ye, N.; Zhu, G.; Liu, Y.; Li, Y.; Zhang, J. ABA Controls H2O2 Accumulation Through the Induction of OsCATB in Rice Leaves Under Water Stress. Plant Cell Physiol. 2011, 52, 689–698. [Google Scholar] [CrossRef] [Green Version]
- Harb, A.M.; Samarah, N.H. Physiological and Molecular Responses to Controlled Severe Drought in Two Barley (Hordeum Vulgare L.) Genotypes. J. Crop Improv. 2015, 29, 82–94. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X.; He, Y.; Zhang, J.; Yan, T.; Liu, X. Physiological investigation of C4-phosphoenolpyruvate-carboxylase-introduced rice line shows that sucrose metabolism is involved in the improved drought tolerance. Plant Physiol. Biochem. 2017, 115, 328–342. [Google Scholar] [CrossRef] [PubMed]
- Winterbourn, C.C.; Metodiewa, D. The Reaction of Superoxide with Reduced Glutathione. Arch. Biochem. Biophys. 1994, 314, 284–290. [Google Scholar] [CrossRef]
- Chen, G.; Liu, C.; Gao, Z.; Zhang, Y.; Jiang, H.; Zhu, L.; Ren, D.; Yu, L.; Xu, G.; Qian, Q. OsHAK1, a High-Affinity Potassium Transporter, Positively Regulates Responses to Drought Stress in Rice. Front. Plant Sci. 2017, 8, 1885. [Google Scholar] [CrossRef]
- Pena, L.B.; Azpilicueta, C.E.; Gallego, S.M. Sunflower cotyledons cope with copper stress by inducing catalase subunits less sensitive to oxidation. J. Trace Elem. Med. Biol. 2011, 25, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Campos, M.L.D.O.; Hsie, B.S.D.; Granja, J.A.D.A.; Correia, R.M.; Almeida-Cortez, J.S.D.; Pompelli, M.F. Photosynthesis and antioxidant activity in Jatropha curcas L. under salt stress. Braz. J. Plant Physiol. 2012, 24, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Vuleta, A.; Jovanovic, S.M.; Tucić, B. How do plants cope with oxidative stress in nature? A study on the dwarf bearded iris (Iris pumila). Acta Physiol. Plant 2015, 37, 1711. [Google Scholar] [CrossRef]
- Poór, P.; Ördög, A.; Czékus, Z.; Borbély, P.G.; Takács, Z.; Kovács, J.; Tari, I.G.M. Regulation of the key antioxidant enzymes by developmental processes and environmental stresses in the dark. Biol. Plant. 2018, 62, 201–210. [Google Scholar] [CrossRef]
- Von Caemmerer, S.; von Farquhar, G.D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 1981, 153, 376–387. [Google Scholar] [CrossRef]
- Able, A.J.; Guest, D.I.; Sutherland, M.W. Use of a New Tetrazolium-Based Assay to Study the Production of Superoxide Radicals by Tobacco Cell Cultures Challenged with Avirulent Zoospores ofPhytophthora parasitica varnicotianae. Plant Physiol. 1998, 117, 491–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannopolitis, C.N.; Ries, S.K. Superoxide Dismutases, I. Occurrence in Higher Plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
Cultivar | K Application | PEG | Total Plant DM (g pot−1) | K Conc. (mg g−1 DM) | AN (µmol CO2 m−2 s−1) | gs (mmol m−2 s−1) |
---|---|---|---|---|---|---|
Sahin-91 | low K | - | 10.1 ± 1.9 c | 21.9 ± 0.5 b | 24.0 ± 2.5 ab | 383.5 ± 53.1 a |
+ | 4.9 ± 1.1 d | 24.8 ± 3.7 b | 0.7 ± 0.1 c | 8.8 ± 0.3 c | ||
adequate K | - | 29.8 ± 0.8 a | 42.4 ± 1.8 a | 26.4 ± 2.3 a | 437.7 ± 32.0 a | |
+ | 15.8 ± 0.5 b | 44.4 ± 1.5 a | 17.3 ± 2.42 b | 146.3 ± 21.7 b | ||
Milford | low K | - | 18.1 ± 1.7 b | 13.2 ± 1.2 b | 28.7 ± 2.0 a | 408.6 ± 26.4 b |
+ | 8.5 ± 1.8 c | 17.6 ± 0.1 b | 4.3 ± 2.1 c | 38.5 ± 19.4 d | ||
adequate K | - | 38.9 ± 5.7 a | 40.8 ± 1.3 a | 28.1 ± 1.0 a | 534.6 ± 60.3 a | |
+ | 26.3 ± 2.6 b | 39.4 ± 1.8 a | 18.7 ± 1.2 b | 178.2 ± 19.1 c |
K Supply | PEG | APX | GR | CAT | SOD | H2O2 | O2− |
---|---|---|---|---|---|---|---|
(mM K+) | (µmol H2O2 g−1 FW min−1) | (µmol NADPH g−1 FW min−1) | (mmol H2O2 g−1 FW min−1) | (U g−1 FW) | (µmol g−1 FW) | (nmol g−1 FW) | |
Milford | |||||||
0.04 | - | 1.94 ± 0.17 | 0.25 ± 0.01 | 1.26 ± 0.07 | 138.9 ± 2.2 | 0.94 ± 0.06 | 2.63 ± 0.28 |
0.8 | - | 1.59 ± 0.18 | 0.26 ± 0.02 | 1.52 ± 0.05 | 121.6 ± 1.9 | 0.67 ± 0.04 | 0.61 ± 0.05 |
0.04 | + | 9.64 ± 1.20 | 1.63 ± 0.21 | 2.21 ± 0.15 | 146.9 ± 2.7 | 1.26 ± 0.10 | 6.34 ± 0.46 |
0.8 | + | 3.57 ± 0.42 | 0.44 ± 0.02 | 1.88 ± 0.10 | 111.0 ± 2.0 | 1.01 ± 0.06 | 1.83 ± 0.43 |
Sahin-91 | |||||||
0.04 | - | 1.54 ± 0.12 | 0.27 ± 0.02 | 0.78 ± 0.03 | 109.0 ± 3.7 | 1.36 ± 0.10 | 2.56 ± 0.41 |
0.8 | - | 1.53 ± 0.13 | 0.23 ± 0.02 | 1.17 ± 0.05 | 98.7 ± 2.8 | 0.67 ± 0.05 | 0.58 ± 0.06 |
0.04 | + | 4.76 ± 0.31 | 0.66 ± 0.03 | 0.90 ± 0.09 | 125.7 ± 2.8 | 1.49 ± 0.10 | 3.79 ± 0.54 |
0.8 | + | 2.46 ± 0.22 | 0.53 ± 0.05 | 1.71 ± 0.10 | 103.6 ± 3.5 | 0.81 ± 0.05 | 3.86 ± 0.57 |
APX | GR | CAT | SOD | H2O2 | O2− | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Milford | ||||||||||||
K | 0.062 | 0.548 | 0.009 | - | <0.001 | + | 0.002 | + | <0.001 | + | ||
PEG | <0.001 | + | <0.001 | + | 0.008 | + | <0.001 | - | <0.001 | + | 0.004 | + |
K:PEG | <0.001 | + | <0.001 | + | <0.001 | + | 0.025 | + | 0.016 | + | <0.001 | + |
Sahin-91 | ||||||||||||
K | 0.987 | 0.142 | <0.001 | - | 0.023 | + | <0.001 | + | <0.001 | + | ||
PEG | 0.002 | + | <0.001 | + | <0.001 | + | 0.206 | 0.023 | + | <0.001 | + | |
K:PEG | <0.001 | + | <0.001 | + | 0.428 | 0.002 | + | 0.255 | 0.127 |
Gene | Sequence | Gi-Number |
---|---|---|
CAT1 | 5′-GCGGAAAATGAACAGCTTGC-3′ | 684945 |
5′-CATTCACGGGGAGCATCAAG-3′ | ||
CAT2 | 5′-CGTGGTTGGAAAGAGGGAGA-3′ | 684947 |
5′-ATGCTTGGCTTCACGTTGAG-3′ | ||
APX a | 5′-GATTCGTCAGTTTGTCCCCG-3′ | 15080681 |
5′-TTTCAGAGGGTCACGAGTCC-3′ | ||
GR1 b | 5′-TACCGAGGAGCAGGCTATTG-3′ | 157362216 |
5′-TCTTGCTTTGTCAACCCAGC-3′ | ||
GR2 c | 5′-TCTTTCCGGGGTGAATTCGA-3′ | 157362218 |
5′-ATATGTGCTTCGTCGTGTGC-3′ | ||
SOD d | 5′-GACTGGCCCTAATGCAGTTG-3′ | 304651503 |
5′-TGGCGTCGTTACAGGTATGA-3′ | ||
Control | 5′-AAGTACAGTGTCTGGATTGGAGGG-3′ | DN182500R533 |
5′-TCGCAACTTAGAAGCACTTCCG-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavakol, E.; Jákli, B.; Cakmak, I.; Dittert, K.; Senbayram, M. Optimization of Potassium Supply under Osmotic Stress Mitigates Oxidative Damage in Barley. Plants 2022, 11, 55. https://doi.org/10.3390/plants11010055
Tavakol E, Jákli B, Cakmak I, Dittert K, Senbayram M. Optimization of Potassium Supply under Osmotic Stress Mitigates Oxidative Damage in Barley. Plants. 2022; 11(1):55. https://doi.org/10.3390/plants11010055
Chicago/Turabian StyleTavakol, Ershad, Bálint Jákli, Ismail Cakmak, Klaus Dittert, and Mehmet Senbayram. 2022. "Optimization of Potassium Supply under Osmotic Stress Mitigates Oxidative Damage in Barley" Plants 11, no. 1: 55. https://doi.org/10.3390/plants11010055
APA StyleTavakol, E., Jákli, B., Cakmak, I., Dittert, K., & Senbayram, M. (2022). Optimization of Potassium Supply under Osmotic Stress Mitigates Oxidative Damage in Barley. Plants, 11(1), 55. https://doi.org/10.3390/plants11010055