Effect of Traditional Cooking and In Vitro Gastrointestinal Digestion of the Ten Most Consumed Beans from the Fabaceae Family in Thailand on Their Phytochemicals, Antioxidant and Anti-Diabetic Potentials
Abstract
:1. Introduction
2. Results and Discussion
2.1. Plant Collections
2.2. Impact of Traditional Cooking and In Vitro Gastroinstetinal Digestion on Phytochemicals
2.3. Impact of Traditional Cooking and In Vitro Gastroinstetinal Digestion on In Vitro and Cellular Antioxidant Capacity
2.4. Impact of Traditional Cooking and In Vitro Gastroinstetinal Digestion on In Vitro and Cellular Anti-Diabetic Potential
2.5. Correlation Analysis
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Materials
3.3. Traditional Cooking
3.4. In Vitro Gastrointestinal Digestion
3.5. Extraction
3.6. Determination of Total Phenolic Content (TPC)
3.7. Determination of Total Flavonoid Content (TFC)
3.8. Determination of Monomeric Anthocyanin Content (MAC)
3.9. HPLC Analysis
3.10. In Vitro Cell Free Antioxidant Assays
3.11. In Vitro Anti-Advanced Glycation End Products (AGE) Formation
3.12. In Vitro Anti-Diabetic Enzymes Inibition
3.12.1. Pancreatic α-Amylase Inhibition
3.12.2. Intestinal α-Glucosidase Inhibition
3.13. Yeast Culture Conditions
3.14. Cellular Antioxidant Assay
3.15. Glucose Uptake Assay in Yeast Cell
3.16. Bio-Accessibility of Phytochemicals
3.17. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gepts, P.; Beavis, W.D.; Brummer, E.C.; Shoemaker, R.C.; Stalker, H.T.; Weeden, N.F.; Young, N.D. Legumes as a model plant family. Genomics for food and feed report of the cross-legume advances through genomics conference. ASPB Am. Soc. Plant Biol. 2005, 137, 1228–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bielefeld, D.; Grafenauer, S.; Rangan, A. The Effects of Legume Consumption on Markers of Glycaemic Control in Individuals with and without Diabetes Mellitus: A Systematic Literature Review of Randomised Controlled Trials. Nutrients 2020, 12, 2123. [Google Scholar] [CrossRef] [PubMed]
- Bielefeld, D.; Hughes, J.; Grafenauer, S. The Changing Landscape of Legume Products Available in Australian Supermarkets. Nutrients 2021, 13, 3226. [Google Scholar] [CrossRef]
- Didinger, C.; Thompson, H.J. Defining Nutritional and Functional Niches of Legumes: A Call for Clarity to Distinguish a Future Role for Pulses in the Dietary Guidelines for Americans. Nutrients 2021, 13, 1100. [Google Scholar] [CrossRef]
- Fernandes Gomes, A.P.; da Costa, A.C.C.; Massae Yokoo, E.; Matos Fonseca, V.D. Impact of Bean Consumption on Nutritional Outcomes amongst Adolescents. Nutrients 2020, 12, 1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrire, B.; Lavin, M.; Lewis, G. Global distribution patterns of the leguminosae: Insights from recent phylogenies. Biologiske skrifter. In Proceedings of the Plant Diversity and Complexity Patterns: Local, Regional and Global Dimensions, Copenhagen, Denmark, 25–28 May 2003; Det Kongelige Danske Videnskabernes Selskab: Copenhagen, Denmark, 2005; pp. 375–422. [Google Scholar]
- Capistrán-Carabarin, A.; Aquino-Bolaños, E.N.; García-Díaz, Y.D.; Chávez-Servia, J.L.; Vera-Guzmán, A.M.; Carrillo-Rodríguez, J.C. Complementarity in Phenolic Compounds and the Antioxidant Activities of Phaseolus coccineus L. and P. vulgaris L. Landraces. Foods 2019, 8, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moloto, M.R.; Phan, A.D.T.; Shai, J.L.; Sultanbawa, Y.; Sivakumar, D. Comparison of Phenolic Compounds, Carotenoids, Amino Acid Composition, In Vitro Antioxidant and Anti-Diabetic Activities in the Leaves of Seven Cowpea (Vigna unguiculata) Cultivars. Foods 2020, 9, 1285. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, M.; Pontonio, E.; Coda, R.; Rizzello, C.G. Plant-Based Alternatives to Yogurt: State-of-the-Art and Perspectives of New Biotechnological Challenges. Foods 2021, 10, 316. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Hano, C. Cosmetic Potential of Cajanus cajan (L.) Millsp: Botanical Data, Traditional Uses, Phytochemistry and Biological Activities. Cosmetics 2020, 7, 84. [Google Scholar] [CrossRef]
- Khamfachuea, K.; Trisonthi, P.; Trisonthi, C. Ethnobotany of the karen at ban chan and chaem luang subdistricts, mae chaem district, chiang mai province. Thai J. Bot. 2010, 2, 275–297. [Google Scholar]
- Khuankaew, S.; Srithi, K.; Tiansawat, P.; Jampeetong, A.; Inta, A.; Wangpakapattanawong, P. Ethnobotanical study of medicinal plants used by tai yai in northern Thailand. J. Ethnopharmacol. 2014, 151, 829–838. [Google Scholar] [CrossRef]
- Sutjaritjai, N.; Wangpakapattanawong, P.; Balslev, H.; Inta, A. Traditional Uses of Leguminosae among the Karen in Thailand. Plants 2019, 8, 600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tungmunnithum, D.; Pinthong, D.; Hano, C. Welcome Aging Society by the Analyzing the Amount of Sex-Hormone-Liked Phytochemical Compounds from Edible Peas (Fabaceae) as the Potential Raw Materials for Phytopharmaceutical Industrial and Health Products; National Research Council of Thailand: Bangkok, Thailand, 2019. [Google Scholar]
- Magalhaes, S.C.; Taveira, M.; Cabrita, A.R.; Fonseca, A.J.; Valentão, P.; Andrade, P.B. European marketable grain legume seeds: Further insight into phenolic compounds profiles. Food Chem. 2017, 215, 177–184. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res. Int. 2017, 101, 1–16. [Google Scholar] [CrossRef]
- Mazur, W.M.; Duke, J.A.; Wähälä, K.; Rasku, S.; Adlercreutz, H. Isoflavonoids and lignans in legumes: Nutritional and health aspects in humans. J. Nutr. Biochem. 1998, 9, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.S. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans. Antioxidants 2021, 10, 1064. [Google Scholar] [CrossRef]
- Alshehri, M.M.; Sharifi-Rad, J.; Herrera-Bravo, J.; Jara, E.L.; Salazar, L.A.; Kregiel, D.; Uprety, Y.; Akram, M.; Iqbal, M.; Martorell, M.; et al. Therapeutic Potential of Isoflavones with an Emphasis on Daidzein. Oxid. Med. Cell. Longev. 2021, 2021, 6331630. [Google Scholar] [CrossRef]
- Islam, A.; Islam, M.S.; Uddin, M.N.; Hasan, M.M.I.; Akanda, M.R. The potential health benefits of the isoflavone glycoside genistin. Arch. Pharm. Res. 2020, 43, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, M.; Otsuka, R.; Tange, C.; Nishita, Y.; Tomida, M.; Imai, T.; Sakai, T.; Ando, F.; Shimokata, H. Intake of isoflavones reduces the risk of all-cause mortality in middle-aged Japanese. Eur. J. Clin. Nutr. 2021, 75, 1781–1791. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Becerra-Tomás, N.; Díaz-López, A.; Rosique-Esteban, N.; Ros, E.; Buil-Cosiales, P.; Corella, D.; Alba, M.B. Legume consumption is inversely associated with type 2 diabetes incidence in adults: A prospective assessment from the PREDIMED study. Clin. Nutr. 2018, 37, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.M.; Guarino, M.P.; Barroso, S.; Gil, M.M. Phytopharmacological strategies in the management of type 2 diabetes mellitus. Foods 2020, 9, 271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 15 November 2021).
- Khan, W.; Parveen, R.; Chester, K.; Parveen, S.; Ahmad, S. Hypoglycemic potential of aqueous extract of Moringa oleifera leaf and in vivo GC-MS metabolomics. Front. Pharmacol. 2017, 8, 577. [Google Scholar] [CrossRef] [Green Version]
- Van De Laar, F.A.; Lucassen, P.L.; Akkermans, R.P.; Van De Lisdonk, E.H.; Rutten, G.E.; Van Weel, C. α-Glucosidase inhibitors for patients with type 2 diabetes: Results from a Cochrane systematic review and meta-analysis. Diabetes Care 2005, 28, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Proença, C.; Freitas, M.; Ribeiro, D.; Oliveira, E.F.T.; Sousa, J.L.C.; Tomé, S.M.; Ramos, M.J.; Silva, A.M.S.; Fernandes, P.A.; Fernandes, E. α-Glucosidase inhibition by flavonoids: An in vitro and in silico structure–activity relationship study. J. Enzym. Inhib. Med. Chem. 2017, 32, 1216–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proença, C.; Freitas, M.; Ribeiro, D.; Tomé, S.M.; Oliveira, E.F.T.; Viegas, M.F.; Araújo, A.N.; Ramos, M.J.; Silva, A.M.S.; Fernandes, P.A. Evaluation of a flavonoids library for inhibition of pancreatic α-amylase towards a structure–activity relationship. J. Enzym. Inhib. Med. Chem. 2019, 34, 577–588. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Gonzalez, A.I.; Díaz-Sánchez, Á.G.; De La Rosa, L.A.; Bustos-Jaimes, I.; Alvarez-Parrilla, E. Inhibition of α-amylase by flavonoids: Structure activity relationship (SAR). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 206, 437–447. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Liu, X.; Jiang, Z.; Geng, S.; Ma, H.; Liu, B. Interaction mechanism of flavonoids and α-glucosidase: Experimental and molecular modelling studies. Foods 2019, 8, 355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hano, C.; Renouard, S.; Molinié, R.; Corbin, C.; Barakzoy, E.; Doussot, J.; Lamblin, F.; Lainé, E. Flaxseed (Linum usitatissimum L.) extract as well as (+)-secoisolariciresinol diglucoside and its mammalian derivatives are potent inhibitors of α-amylase activity. Bioorg. Med. Chem. Lett. 2013, 23, 3007–3012. [Google Scholar] [CrossRef]
- Khurshid, R.; Ullah, M.A.; Tungmunnithum, D.; Drouet, S.; Shah, M.; Zaeem, A.; Hameed, S.; Hano, C.; Abbasi, B.H. Lights triggered differential accumulation of antioxidant and antidiabetic secondary metabolites in callus culture of Eclipta alba L. PLoS ONE 2020, 15, e0233963. [Google Scholar] [CrossRef] [PubMed]
- Benayad, O.; Bouhrim, M.; Tiji, S.; Kharchoufa, L.; Addi, M.; Drouet, S.; Hano, C.; Lorenzo, J.M.; Bendaha, H.; Bnouham, M.; et al. Phytochemical Profile, α-Glucosidase, and α-Amylase Inhibition Potential and Toxicity Evaluation of Extracts from Citrus aurantium (L) Peel, a Valuable By-Product from Northeastern Morocco. Biomolecules 2021, 11, 1555. [Google Scholar] [CrossRef]
- Park, M.H.; Ju, J.W. Daidzein inhibits carbohydrate digestive enzymes in vitro and alleviates postprandial hyperglycemia in diabetic mice. Eur. J. Pharmacol. 2013, 712, 48–52. [Google Scholar] [CrossRef]
- Kuryłowicz, A. The Role of Isoflavones in Type 2 Diabetes Prevention and Treatment—A Narrative Review. Int. J. Mol. Sci. 2021, 22, 218. [Google Scholar] [CrossRef] [PubMed]
- Maliehe, A.; Ghahremani, S.; Kharghani, S.; Ghazanfarpour, M.; Shariati, K.; Kazemi, M.; Khadivzadeh, T. Effect of Isoflavones and Genistein on Glucose Metabolism in Peri-and Post-Menopausal Women: An Overview of Meta-Analysis. J. Menopausal Med. 2019, 25, 69–73. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, Y.; Haytowitz, D.B.; Chen, P.; Pehrsson, P.R. Effects of domestic cooking on flavonoids in broccoli and calculation of retention factors. Heliyon 2019, 5, e01310. [Google Scholar] [CrossRef] [Green Version]
- Mihaylova, D.; Desseva, I.; Stoyanova, M.; Petkova, N.; Terzyiska, M.; Lante, A. Impact of In Vitro Gastrointestinal Digestion on the Bioaccessibility of Phytochemical Compounds from Eight Fruit Juices. Molecules 2021, 26, 1187. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols—A non-systematic review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Public Health. Thai Food Based Dietary Guidelines; Ministry of Public Health, Nutrition Division, Department of Health: Bangkok, Thailand, 2001.
- Zhang, Y.; Meenu, M.; Yu, H.; Xu, B. An Investigation on Phenolic and Antioxidant Capacity of Under-utilized Food Legumes Consumed in China. Foods 2020, 9, 438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez Madrera, R.; Campa Negrillo, A.; Suárez Valles, B.; Ferreira Fernández, J.J. Phenolic Content and Antioxidant Activity in Seeds of Common Bean (Phaseolus vulgaris L.). Foods 2021, 10, 864. [Google Scholar] [CrossRef] [PubMed]
- Liggins, J.; Bluck, L.J.C.; Runswick, S.; Atkinson, C.; Coward, W.A.; Bingham, S.A. Daidzein and genistein contents of vegetables. Br. J. Nutr. 2000, 84, 717–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fliniaux, O.; Corbin, C.; Ramsay, A.; Renouard, S.; Beejmohun, V.; Doussot, J.; Hano, C. Microwave-assisted extraction of herbacetin diglucoside from flax (Linum usitatissimum L.) seed cakes and its quantification using an RP-HPLC-UV system. Molecules 2014, 19, 3025–3037. [Google Scholar] [CrossRef] [Green Version]
- Ioku, K.; Aoyama, Y.; Tokuno, A.; Terao, J.; Nakatani, N.; Takei, Y. Various cooking methods and the flavonoid content in onion. J. Nutr. Sci. Vitaminol. (Tokyo) 2001, 47, 78–83. [Google Scholar] [CrossRef] [PubMed]
- VPalermo, M.; Pellegrini, N.; Fogliano, V. The effect of cooking on the phytochemical content of vegetables. J. Sci. Food Agric. 2014, 94, 1057–1070. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, D.; Wu, Y.; Wang, D.; Wei, Y.; Wu, J.; Ji, B. Stability and absorption of anthocyanins from blueberries subjected to a simulated digestion process. Int. J. Food Sci. Nutr. 2014, 65, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Renouard, S.; Hano, C.; Corbin, C.; Fliniaux, O.; Lopez, T.; Montguillon, J.; Barakzoy, E.; Mesnard, F.; Lamblin, F.; Lainé, E. Cellulase-assisted release of secoisolariciresinol from extracts of flax (Linum usitatissimum) hulls and whole seeds. Food Chem. 2010, 122, 679–687. [Google Scholar] [CrossRef]
- Lainé, E.; Hano, C.; Lamblin, F. Lignans. Chemoprevention of Cancer and DNA Damage by Dietary Factors; Wiley-VCH: Weinheim, Germany, 2009. [Google Scholar]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G.; Catherine, A.R.-E.; Nicholas, J.M.; George, P. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.; Tungmunnithum, D.; Bose, S.; Drouet, S.; Garros, L.; Giglioli-Guivarc’h, N.; Abbasi, B.H.; Hano, C. Differential Production of Phenylpropanoid Metabolites in Callus Cultures of Ocimum basilicum L. With Distinct in Vitro Antioxidant Activities and in Vivo Protective Effects against UV stress. J. Agric. Food Chem. 2019, 67, 1847–1859. [Google Scholar] [CrossRef] [PubMed]
- Hano, C.; Corbin, C.; Drouet, S.; Quéro, A.; Rombaut, N.; Savoire, R.; Molinié, R.; Thomasset, B.; Mesnard, F.; Lainé, E. The lignan (+)-secoisolariciresinol extracted from flax hulls is an effective protectant of linseed oil and its emulsion against oxidative damage. Eur. J. Lipid Sci. Technol. 2017, 119, 1600219. [Google Scholar] [CrossRef]
- Drouet, S.; Abbasi, B.H.; Falguieres, A.; Ahmad, W.; Ferroud, C.; Doussot, J.; Vanier, J.R.; Lainé, E.; Hano, C. Single Laboratory Validation of a Quantitative Core Shell-Based LC Separation for the Evaluation of Silymarin Variability and Associated Antioxidant Activity of Pakistani Ecotypes of Milk Thistle (Silybum marianum L.). Molecules 2018, 23, 904. [Google Scholar] [CrossRef] [Green Version]
- Steels, E.L.; Learmonth, R.P.; Watson, K. Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology 1994, 140, 569–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolak, N.; Kowalska, E.; Kozik, A.; Rapala-Kozik, M. Thiamine increases the resistance of baker’s yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes. FEMS Yeast Res. 2014, 14, 1249–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tungmunnithum, D.; Abid, M.; Elamrani, A.; Drouet, S.; Addi, M.; Hano, C. Almond Skin Extracts and Chlorogenic Acid Delay Chronological Aging and Enhanced Oxidative Stress Response in Yeast. Life 2020, 10, 80. [Google Scholar] [CrossRef] [PubMed]
- Hano, C.; Tungmunnithum, D. Plant Polyphenols, More than Just Simple Natural Antioxidants: Oxidative Stress, Aging and Age-Related Diseases. Medicines 2020, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Lacza, Z.; Pankotai, E.; Csordás, A.; Gero, D.; Kiss, L.; Horváth, E.M.; Kollai, M.; Busija, D.W.; Szabó, C. Mitochondrial NO and reactive nitrogen species production: Does mtNOS exist? Nitric Oxide 2006, 14, 162–168. [Google Scholar] [CrossRef]
- Merksamer, P.I.; Liu, Y.; He, W.; Hirschey, M.D.; Chen, D.; Verdin, E. The sirtuins, oxidative stress and aging: An emerging link. Aging (Albany. NY) 2013, 5, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernatoniene, J.; Kazlauskaite, J.A.; Kopustinskiene, D.M. Pleiotropic Effects of Isoflavones in Inflammation and Chronic Degenerative Diseases. Int. J. Mol. Sci. 2021, 22, 5656. [Google Scholar] [CrossRef]
- Grillo, M.A.; Colombatto, S. Advanced glycation end-products (AGEs): Involvement in aging and in neurodegenerative diseases. Amino Acids 2008, 35, 29–36. [Google Scholar] [CrossRef]
- Whitmore, T.C. Leguminosae. In Tree Flora of Malaya, A Manual for Foresters; Whitmore, T.C., Ed.; Longman Malaysia: Kuala Lumpur, Malaysia, 1972; pp. 270–275. [Google Scholar]
- Santisuk, T.; Chayamarit, K.; Balslev, H. Leguminosae-Papilionoideae. In Flora of Thailand; Santisuk, T., Chayamarit, K., Balslev, H., Eds.; Forest Herbarium, Royal Forest Department: Bangkok, Thailand, 2018. [Google Scholar]
- Li, S.; Xu, L.; Chen, D.; Zhu, X.; Huan, P.; Wei, Z.; Sa, R.; Zhang, D.; Bao, B.; Delin, W.; et al. Fabaceae (LEGUMINOSAE). In Flora of China; Wu, Z., Raven, P.H., Eds.; Missouri Botanical Garden Press: St. Louis, MO, USA, 2010. [Google Scholar]
- Thiers, B.; Thiers, B.H.; Cokic, B.B.B. Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff; New York Botanical Garden’s Virtual Herbarium: New York, NY, USA, 2009. [Google Scholar]
- World Health Organization. Quality Control Methods for Medicinal Plant Materials; World Health Organization: Geneva, Switzerland, 1998; ISBN 9241545100. [Google Scholar]
- Aylanc, V.; Tomás, A.; Russo-Almeida, P.; Falcão, S.I.; Vilas-Boas, M. Assessment of Bioactive Compounds under Simulated Gastrointestinal Digestion of Bee Pollen and Bee Bread: Bioaccessibility and Antioxidant Activity. Antioxidants 2021, 10, 651. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Drouet, S.; Lorenzo, J.M.; Hano, C. Green Extraction of Antioxidant Flavonoids from Pigeon Pea (Cajanus cajan (L.) Millsp) Seeds using Ultrasound-Assisted Methodology. Molecules 2021, 26, 7557. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Elamrani, A.; Abid, M.; Drouet, S.; Kiani, R.; Garros, L.; Kabra, A.; Addi, M.; Hano, C. A Quick, Green and Simple Ultrasound-Assisted Extraction for the Valorization of Antioxidant Phenolic Acids from Moroccan Almond Cold-Pressed Oil Residues. Appl. Sci. 2020, 10, 3313. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Drouet, S.; Kabra, A.; Hano, C. Enrichment in Antioxidant Flavonoids of Stamen Extracts from Nymphaea lotus L. Using Ultrasonic-Assisted Extraction and Macroporous Resin Adsorption. Antioxidants 2020, 9, 576. [Google Scholar] [CrossRef] [PubMed]
- Wrolstad, R.E. Color and pigment analyses in fruit products. Agric. Exp. Stn. 1993, 5, 4–20. [Google Scholar]
- Nakamura, Y.; Kaihara, A.; Yoshii, K.; Tsumura, Y.; Ishimitsu, S.; Tonogai, Y. Content and composition of isoflavonoids in mature or immature beans and bean sprouts consumed in Japan. J. Health Sci. 2001, 47, 394–406. [Google Scholar] [CrossRef] [Green Version]
- Tiji, S.; Bouhrim, M.; Addi, M.; Drouet, S.; Lorenzo, J.M.; Hano, C.; Bnouham, M.; Mimouni, M. Linking the phytochemicals and the α-glucosidase and α-amylase enzyme inhibitory effects of Nigella sativa seed extracts. Foods 2021, 10, 1818. [Google Scholar] [CrossRef] [PubMed]
Plant Species | TPC (mg GAE/100 g DW) | TFC (mg QAE/100 g DW) | MAC (mg CAE/100 g DW) | ||||||
---|---|---|---|---|---|---|---|---|---|
Uncooked | Cooked | In Vitro Digestion | Uncooked | Cooked | In Vitro Digestion | Uncooked | Cooked | In Vitro Digestion | |
P. sativum | 558.2 ± 44.3 a | 520.5 ± 67.3 ab | 452.5 ± 8.7 b | 348.3 ± 24.2 a | 210.1 ± 26.1 b | 246.9 ± 36.2 b | 8.8 ± 2.0 a | 4.0 ± 2.7 ab | 1.7 ± 1.0 b |
C. cajan | 201.4 ± 23.6 a | 172.4 ± 9.6 a | 187.6 ± 8.5 a | 61.7 ± 2.3 a | 46.5 ± 8.4 a | 52.7 ± 14.8 a | 5.3 ± 0.5 a | 2.2 ± 1.6 b | 2.8 ± 1.5 ab |
V. unguiculata | 337.6 ± 14.6 a | 120.1 ± 20.5 c | 200.7± 12.1 b | 444.5 ± 16.8 a | 78.8 ± 13.5 c | 175.3 ± 9.8 b | 19.0 ± 1.5 a | 16.1 ± 3.9 a | 3.8 ± 1.3 b |
V. mungo | 547.2 ± 14.1 a | 158.8 ± 77.8 c | 460.9 ± 5.6 b | 872.1 ± 25.7 a | 211.5 ± 23.4 c | 525.5 ± 27.8 b | 27.9 ± 1.2 a | 14.9 ± 4.8 b | 5.8 ± 2.6 c |
P. vulgaris | 440.2 ± 12.7 b | 184.3 ± 31.5 c | 496.0 ± 8.5 a | 355.2 ± 24.4 a | 161.6 ± 25.1 c | 294.1 ± 20.0 b | 17.3 ± 2.8 a | 9.7 ± 3.6 b | 1.1 ± 0.4 c |
G. max | 483.4 ± 13.3 a | 268.1 ± 86.7 b | 480.3 ± 14.9 a | 235.6 ± 22.0 b | 105.6 ± 24.4 c | 386.7 ± 18.9 a | 11.6 ± 1.0 a | 5.2 ± 1.8 b | 1.9 ± 0.6 c |
V. angularis | 697.7 ± 36.7 a | 415.0 ± 17.9 c | 500.7 ± 21.9 b | 1076.2 ± 38.9 a | 456.8 ± 39.1 b | 475.3 ± 29.8 b | 21.2 ± 0.4 a | 18.7 ± 1.6 b | 8.8 ± 2.3 c |
A. hypogaea | 670.8 ± 6.2 a | 184.4 ± 80.1 c | 422.0 ± 15.1 b | 161.3 ± 12.5 a | 126.2 ± 16.6 a | 132.7 ± 18.3 a | 7.0 ± 0.5 a | 4.3 ± 1.9 ab | 1.9 ± 0.3 b |
V. radiata | 160.4 ± 12.3 a | 107.8 ± 23.4 b | 120.5 ± 8.0 b | 66.5 ± 3.1 a | 46.2 ± 7.4 b | 43.2 ± 7.1 b | 3.4 ± 0.9 a | 1.9 ± 0.4 b | 0.4 ± 0.1 c |
V. unguiculata subsp. sesquipedalis | 717.3 ± 37.1 a | 511.6 ± 16.5 c | 576.9 ± 13.5 b | 1510.7 ± 76.1 a | 396.0 ± 20.7 c | 885.0 ± 22.4 b | 41.6 ± 7.2 a | 23.7 ± 3.9 b | 10.4 ± 1.8 c |
Plant Species | TPC | TFC | MAC | |||
---|---|---|---|---|---|---|
Cooking | Digestion | Cooking | Digestion | Cooking | Digestion | |
P. sativum | 93.2% | 81.1% | 60.3% | 70.9% | 45.7% | 19.4% |
C. cajan | 85.6% | 93.1% | 75.5% | 85.5% | 43.2% | 54.2% |
V. unguiculata | 35.6% | 59.5% | 17.7% | 39.5% | 84.8% | 20.2% |
V. mungo | 29.0% | 84.2% | 24.3% | 60.3% | 53.6% | 21.0% |
P. vulgaris | 41.9% | 112.7% | 45.5% | 82.8% | 56.2% | 6.6% |
G. max | 55.5% | 99.4% | 44.8% | 164.2% | 45.5% | 17.0% |
V. angularis | 59.5% | 71.8% | 42.4% | 44.2% | 88.4% | 41.6% |
A. hypogaea | 27.5% | 62.9% | 78.3% | 82.3% | 63.2% | 27.5% |
V. radiata | 67.2% | 75.2% | 69.5% | 65.1% | 55.9% | 13.1% |
V. unguiculata subsp. sesquipedalis | 71.3% | 80.4% | 26.2% | 58.6% | 57.1% | 25.0% |
Plant Species | Dadzein (µg/100 g DW) | Genistein (µg/100 g DW) | ||||
---|---|---|---|---|---|---|
Uncooked | Cooked | In vitro Digestion | Uncooked | Cooked | In Vitro Digestion | |
P. sativum | 28.6 ± 1.2 a | 13.3 ± 2.1 b | 24.6 ± 2.8 a | 0.3 ± 0.8 a | nd b | 0.3 ± 0.1 a |
C. cajan | 13.5 ± 0.3 a | 6.7 ± 1.7 b | 13.0 ± 1.8 a | 1.2 ± 0.3 a | 0.9 ± 0.3 a | 0.8 ± 0.3 a |
V. unguiculata | 22.9 ± 1.5 a | 14.5 ± 2.4 b | 20.1 ± 3.2 a | 8.1 ± 0.5 a | 6.4 ± 1.1 a | 7.8 ± 1.6 a |
V. mungo | 31.2 ± 2.9 a | 14.5 ± 2.1 b | 26.5 ± 2.1 a | 53.2 ± 0.8 a | 27.4 ± 2.1 c | 44.8 ± 1.7 b |
P. vulgaris | 7.3 ± 1.2 a | 3.5 ± 2.2 b | 6.8 ± 0.9 ab | 129.2 ± 6.2 a | 68.1 ± 4.5 c | 98.3 ± 6.1 b |
G. max | 26,029.9 ± 233.3 a | 11,527.2 ± 312.1 c | 24,136.7 ± 214.5 b | 82,514.7 ± 267.3 a | 39,843.4 ± 217.8 c | 68,175.3 ± 325.4 b |
V. angularis | 6.5 ± 0.6 a | 2.5 ± 1.8 b | 5.7 ± 1.7 ab | 2.5 ± 1.0 a | 1.1 ± 1.0 a | 2.0 ± 1.1 a |
A. hypogaea | 56.7 ± 6.1 a | 24.3 ± 11.2 b | 48.5 ± 12.3 ab | 80.7 ± 0.9 a | 18.6 ± 3.3 b | 72.3 ± 11.5 a |
V. radiata | 49.1 ± 3.0 a | 27.8 ± 9.3 b | 42.5 ± 7.3 ab | 298.2 ± 2.4 a | 156.2 ± 16.5 c | 221.0 ± 26.7 b |
V. unguiculata subsp. sesquipedalis | 54.3 ± 5.1 a | 12.1 ± 3.6 b | 45.7 ± 2.8 a | 16.7 ± 1.0 a | 7.6 ± 3.1 b | 9.7 ± 1.9 b |
Plant Species | Daidzein | Genistein | ||
---|---|---|---|---|
Cooking | Digestion | Cooking | Digestion | |
P. sativum | 46.5% | 86.2% | - | 106.9% |
C. cajan | 50.0% | 96.6% | 82.1% | 69.2% |
V. unguiculata | 63.5% | 87.9% | 78.6% | 97.0% |
V. mungo | 46.5% | 85.0% | 51.5% | 84.3% |
P. vulgaris | 48.4% | 94.8% | 52.7% | 76.1% |
G. max | 44.3% | 92.7% | 48.3% | 82.6% |
V. angularis | 39.6% | 88.6% | 43.9% | 79.4% |
A. hypogaea | 42.9% | 85.6% | 23.1% | 89.5% |
V. radiata | 56.8% | 86.6% | 52.4% | 74.1% |
V. unguiculata subsp. sesquipedalis | 22.4% | 84.3% | 45.6% | 58.1% |
Plant Species | DPPH (µmol TE/g DW) | ABTS (µmol TE/g DW) | FRAP (µmol TE/g DW) | CAA (% ROS/RNS Inhibition) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Uncooked | Cooked | In Vitro Digestion | Uncooked | Cooked | In Vitro Digestion | Uncooked | Cooked | In Vitro Digestion | Uncooked | Cooked | In Vitro Digestion | |
P. sativum | 69.8 ± 1.9 a | 54.7 ± 1.8 b | 42.2 ± 8.5 b | 61.6 ± 3.8 b | 89.2 ± 2.7 a | 48.9 ± 1.0 c | 243.3 ± 8.0 a | 96.5 ± 7.4 c | 182.8 ± 15.0 b | 83.2 ± 8.8 a | 47.8 ± 4.9 c | 57.2 ± 1.4 b |
C. cajan | 47.2 ± 0.4 a | 42.1 ± 3.7 a | 34.0 ± 1.8 b | 66.9 ± 0.8 a | 46.1 ± 1.6 b | 41.4 ± 1.5 b | 49.0 ± 6.9 a | 24.9 ± 8.1 b | 51.3 ± 2.7 a | 61.3 ± 3.8 a | 37.3 ± 4.6 b | 42.8 ± 3.2 b |
V. unguiculata | 38.9 ± 0.1 a | 32.3 ± 2.3 b | 24.9 ± 4.3 b | 56.2 ± 0.1 a | 39.1 ± 3.9 b | 22.4 ± 1.3 c | 173.4 ± 3.5 a | 54.7 ± 4.2 b | 58.9 ± 9.2 b | 76.5 ± 1.5 a | 48.5 ± 3.6 b | 57.2 ± 6.1 b |
V. mungo | 56.4 ± 1.5 a | 44.7 ± 2.1 b | 33.3 ± 1.3 c | 78.7 ± 3.0 a | 52.1 ± 4.8 b | 28.9 ± 2.6 c | 296.7 ± 4.7 a | 78.9 ± 5.9 c | 155.2 ± 7.8 b | 85.4 ± 6.4 a | 33.3 ± 1.3 c | 49.4 ± 8.5 b |
P. vulgaris | 51.8 ± 1.0 a | 45.9 ± 2.3 b | 31.5 ± 1.8 c | 72.8 ± 2.1 a | 53.7 ± 3.6 b | 29.5 ± 0.4 c | 179.6 ± 3.8 a | 64.2 ± 8.7 b | 56.3 ± 5.4 b | 79.2 ± 4.6 a | 41.0 ± 8.1 b | 52.2 ± 4.9 b |
G. max | 48.1 ± 1.3 a | 36.2 ± 4.3 b | 29.8 ± 3.7 b | 68.1 ± 2.6 a | 44.0 ± 1.8 b | 33.1 ± 0.6 c | 145.5 ± 5.2 a | 70.5 ± 8.3 c | 114.5 ± 14.3 b | 75.9 ± 5.9 a | 42.8 ± 2.4 c | 58.0 ± 5.2 b |
V. angularis | 84.1 ± 0.8 a | 62.1 ± 2.9 b | 66.3 ± 6.8 b | 114.5 ± 1.6 a | 98.7 ± 1.6 b | 71.5 ± 2.3 c | 320.0 ± 7.2 a | 130.7 ± 16.6 c | 280.5 ± 12.3 b | 87.8 ± 5.0 a | 48.9 ± 9.6 b | 55.6 ± 2.4 b |
A. hypogaea | 36.1 ± 1.1 a | 26.4 ± 3.6 b | 30.6 ± 4.2 ab | 52.6 ± 2.2 a | 44.3 ± 1.9 b | 45.5 ± 0.3 b | 294.1 ± 4.8 a | 118.5 ± 6.2 b | 69.0 ± 9.2 c | 83.5 ± 5.2 a | 35.2 ± 3.4 c | 62.2 ± 3.5 b |
V. radiata | 46.5 ± 1.4 a | 33.1 ± 4.9 b | 24.4 ± 4.8 b | 66.0 ± 2.9 a | 50.1 ± 0.4 b | 33.3 ± 0.1 c | 144.4 ± 4.3 a | 59.9 ± 9.1 c | 100.6 ± 10.7 b | 75.4 ± 6.1 a | 41.5 ± 7.3 b | 50.7 ± 11.4 ab |
V. unguiculata subsp. sesquipedalis | 72.7 ± 1.1 a | 52.0 ± 5.5 b | 30.9 ± 4.7 c | 99.7 ± 2.2 a | 66.7 ± 3.9 b | 39.9 ± 1.8 c | 326.8 ± 3.2 a | 97.1 ± 2.8 c | 187.2 ± 13.8 b | 87.3 ± 4.6 a | 44.5 ± 6.1 b | 57.3 ± 5.8 b |
Plant Species | Vesperlysine-Like AGEs (Inhibition %) | Pentosidine-Like AGEs (Inhibition %) | ||||
---|---|---|---|---|---|---|
Uncooked | Cooked | In Vitro Digestion | Uncooked | Cooked | In Vitro Digestion | |
P. sativum | 47.4 ± 5.8 a | 37.4 ± 4.6 a | 44.7 ± 5.7 a | 31.9 ± 3.3 a | 17.1 ± 1.4 b | 20.5 ± 2.4 b |
C. cajan | 26.4 ± 4.8 a | 21.0 ± 4.1 a | 24.1 ± 2.3 a | 20.0 ± 1.9 a | 16.2 ± 2.8 a | 17.8 ± 3.1 a |
V. unguiculata | 35.3 ± 1.5 a | 22.4 ± 3.9 b | 26.9 ± 3.8 ab | 35.3 ± 2.8 a | 15.3 ± 3.4 b | 14.3 ± 1.6 b |
V. mungo | 49.1 ± 6.9 a | 23.1 ± 4.5 c | 41.2 ± 4.2 b | 47.5 ± 2.9 a | 19.0 ± 3.1 b | 26.3 ± 1.9 b |
P. vulgaris | 46.2 ± 1.8 b | 26.5 ± 3.3 c | 52.7 ± 6.1 a | 42.6 ± 3.9 a | 18.7 ± 2.9 c | 35.2 ± 2.2 b |
G. max | 47.3 ± 5.2 a | 31.2 ± 2.8 b | 47.5 ± 3.7 a | 34.2 ± 2.3 b | 15.4 ± 4.3 c | 56.0 ± 3.8 a |
V. angularis | 49.9 ± 2.6 a | 33.3 ± 1.7 b | 35.5 ± 8.5 b | 51.2 ± 3.7 a | 23.8 ± 3.1 b | 22.4 ± 2.9 b |
A. hypogaea | 48.2 ± 3.1 a | 21.8 ± 3.1 c | 30.4 ± 5.2 b | 27.2 ± 3.4 a | 16.2 ± 2.6 b | 22.1 ± 2.5 ab |
V. radiata | 41.1 ± 2.0 a | 20.3 ± 4.3 c | 30.1 ± 3.5 b | 24.1 ± 3.7 a | 15.8 ± 4.6 ab | 15.7 ± 1.5 b |
V. unguiculata subsp. sesquipedalis | 50.6 ± 7.1 a | 36.6 ± 1.6 b | 40.6 ± 3.9 b | 50.8 ± 6.8 a | 21.4 ± 2.6 c | 29.7 ± 1.7 b |
Plant Species | α-Amylase (% Inhibition) | α-Glucosidase (% Inhibition) | Glucose Uptake (% Increase) | ||||||
---|---|---|---|---|---|---|---|---|---|
Uncooked | Cooked | In Vitro Digestion | Uncooked | Cooked | In Vitro Digestion | Uncooked | Cooked | In Vitro Digestion | |
P. sativum | 41.6 ± 1.4 a | 24.7 ± 2.0 c | 35.4 ± 1.9 b | 30.9 ± 2.3 a | 24.5 ± 1.8 b | 33.0 ± 1.3 a | 32.8 ± 1.5 a | 27.7 ± 3.8 a | 31.3 ± 3.1 a |
C. cajan | 24.7 ± 3.4 a | 16.8 ± 1.4 b | 17.7 ± 2.6 ab | 21.0 ± 2.2 a | 17.3 ± 2.4 a | 18.7 ± 1.5 a | 27.9 ± 1.7 a | 24.1 ± 2.6 ab | 24.2 ± 1.4 b |
V. unguiculata | 38.1 ± 3.4 a | 15.6 ± 1.3 b | 18.1 ± 1.9 b | 29.3 ± 1.3 a | 19.4 ± 1.3 b | 19.4 ± 0.7 b | 30.1 ± 2.4 a | 23.6 ± 2.9 b | 25.1 ± 3.1 ab |
V. mungo | 47.8 ± 2.8 a | 17.4 ± 0.9 c | 38.6 ± 2.3 b | 42.6 ± 3.3 a | 18.9 ± 2.1 c | 33.2 ± 1.8 b | 44.6 ± 1.8 a | 25.2 ± 3.3 c | 33.4 ± 1.4 b |
P. vulgaris | 32.5 ± 2.3 a | 16.2 ± 2.8 b | 27.6 ± 2.5 a | 31.1 ± 2.5 b | 20.4 ± 1.8 c | 37.0 ± 1.4 a | 39.5 ± 1.2 b | 26.8 ± 2.8 c | 51.3 ± 2.4 a |
G. max | 29.2 ± 2.4 a | 15.1 ± 0.6 b | 28.7 ± 1.6 a | 25.3 ± 2.4 b | 20.8 ± 0.9 c | 40.6 ± 3.6 a | 32.2 ± 2.0 b | 32.8 ± 1.8 b | 55.3 ± 4.6 a |
V. angularis | 50.8 ± 2.7 a | 24.6 ± 1.4 c | 39.3 ± 1.9 b | 44.5 ± 3.6 a | 25.2 ± 1.5 c | 34.2 ± 1.4 b | 48.4 ± 1.7 a | 30.7 ± 3.2 b | 33.6 ± 1.7 b |
A. hypogaea | 34.5 ± 2.6 a | 15.6 ± 1.5 c | 22.2 ± 2.6 b | 32.8 ± 1.2 a | 16.3 ± 0.9 c | 25.6 ± 0.7 b | 36.2 ± 2.4 a | 21.8 ± 1.9 b | 34.3 ± 3.2 a |
V. radiata | 28.2 ± 1.7 a | 16.2 ± 2.3 b | 15.5 ± 1.7 b | 24.7 ± 2.6 a | 16.5 ± 1.4 b | 23.3 ± 3.2 a | 28.1 ± 1.9 b | 21.5 ± 3.2 c | 35.4 ± 1.7 a |
V. unguiculata subsp. sesquipedalis | 58.7 ± 3.8 a | 25.2 ± 1.5 c | 38.8 ± 1.9 b | 44.6 ± 4.5 a | 26.8 ± 1.8 c | 35.0 ± 1.7 b | 43.9 ± 1.2 a | 31.2 ± 1.8 b | 36.2 ± 2.5 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tungmunnithum, D.; Drouet, S.; Lorenzo, J.M.; Hano, C. Effect of Traditional Cooking and In Vitro Gastrointestinal Digestion of the Ten Most Consumed Beans from the Fabaceae Family in Thailand on Their Phytochemicals, Antioxidant and Anti-Diabetic Potentials. Plants 2022, 11, 67. https://doi.org/10.3390/plants11010067
Tungmunnithum D, Drouet S, Lorenzo JM, Hano C. Effect of Traditional Cooking and In Vitro Gastrointestinal Digestion of the Ten Most Consumed Beans from the Fabaceae Family in Thailand on Their Phytochemicals, Antioxidant and Anti-Diabetic Potentials. Plants. 2022; 11(1):67. https://doi.org/10.3390/plants11010067
Chicago/Turabian StyleTungmunnithum, Duangjai, Samantha Drouet, Jose Manuel Lorenzo, and Christophe Hano. 2022. "Effect of Traditional Cooking and In Vitro Gastrointestinal Digestion of the Ten Most Consumed Beans from the Fabaceae Family in Thailand on Their Phytochemicals, Antioxidant and Anti-Diabetic Potentials" Plants 11, no. 1: 67. https://doi.org/10.3390/plants11010067
APA StyleTungmunnithum, D., Drouet, S., Lorenzo, J. M., & Hano, C. (2022). Effect of Traditional Cooking and In Vitro Gastrointestinal Digestion of the Ten Most Consumed Beans from the Fabaceae Family in Thailand on Their Phytochemicals, Antioxidant and Anti-Diabetic Potentials. Plants, 11(1), 67. https://doi.org/10.3390/plants11010067