Phytochemicals and Biological Activities of Barleria (Acanthaceae)
Abstract
:1. Introduction
2. Phytochemical Evaluation of Barleria
2.1. Phytochemicals Isolated from Barleria
2.1.1. Iridoids
2.1.2. Phenolic Compounds (Acids/Glycosides/Lignans/Neolignans)
2.1.3. Flavonoids
2.1.4. Terpenoids
2.1.5. Phytosterols (Terpernoids)
2.1.6. Phenylethanoid Glycosides
3. Biological Activities of Extracts, Fractions, and Isolated Compounds from Barleria
3.1. Antioxidant Properties
3.2. Antibacterial Activity
3.3. Antifungal Activity
3.4. Anti-Inflammatory Activity
3.5. Anticancer Activity
3.6. Antidiabetic Activity
3.7. Antiulcer Activity
3.8. Hepatoprotective Activity
3.9. Analgesic Activity
3.10. Antiamoebic Activity
3.11. Antihelminthic Activity
3.12. Antiarthritic Activity
3.13. Antihypertensive Activity
3.14. Antiviral Activity
3.15. Inhibition of Acetylcholinesterase Activity
3.16. Toxicology/Safety of Extracts of Barleria
4. Synthesis of Silver Nanoparticles from Plant Extracts of Species within Barleria
5. Advantages and Challenges
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mayeng, I. Relationship between the sources of traditional and western medicine. In Indigenous Knowledge and Its Uses in Southern Africa; Normann, H., Synman, I., Cohen, M., Eds.; The Human Sciences Research Council Publishers: Pretoria, South Africa, 1996; pp. 45–50. [Google Scholar]
- Balandrin, M.; Kinghorn, A.; Farnsworth, N. Plant-derived natural products in drug discovery and development: An overview. ACS Symp. Ser. 1993. [Google Scholar] [CrossRef] [Green Version]
- Jackson, M. A Global History of Medicine; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Walsh, J.J. Medieval Medicine, 1st ed.; BoD-Books on Demand: Norderstedt, Germany, 2018. [Google Scholar]
- Kerdel-Vegas, F. Medical Paradoxes: Contradictions in Modern Medicine; Troubador Publishing Ltd.: Kibworth, UK, 2019. [Google Scholar]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [Green Version]
- Lewis, K.; Ausubel, F.M. Prospects for plant derived antibacterials. Nat. Biotechnol. 2006, 24, 1504–1507. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Agarkar, G.; Rathod, D. Multiple applications of endophytic Colletotrichum species occurring in medicinal plants. In Novel Plant Bioresources: Applications in Food, Medicine and Cosmetics; Gurib-Fakin, A., Ed.; Wiley: Chichester, UK, 2014; pp. 227–236. [Google Scholar] [CrossRef]
- Umashankar, D.D. Plant secondary metabolites as potential usage in regenerative medicine. J. Phytopharmacol. 2020, 9, 270–273. [Google Scholar] [CrossRef]
- Rabe, T.; Van Staden, J. Antibacterial activity of South African plants used for medicinal purposes. J. Ethnopharmacol. 1997, 56, 81–87. [Google Scholar] [CrossRef]
- Buwa, L.V.; Van Staden, J. Antibacterial and antifungal activity of traditional medicinal plants used against venereal diseases in South Africa. J. Ethnopharmacol. 2006, 103, 139–142. [Google Scholar] [CrossRef]
- Singh, A.; Mishra, A.; Chaudhary, R.; Kumar, V. Role of herbal plants in prevention and treatment of parasitic diseases. J. Sci. Res. 2020, 64, 50–58. [Google Scholar] [CrossRef]
- Van Wyk, B.E.; Wink, M. Medicinal Plants Of the World; Briza Publications: Pretoria, South Africa, 2004; p. 480. [Google Scholar]
- Hoareau, L.; Edgar, D.J. Medicinal plants: Are-emerging health aid. Plant Biotechnol. 1999, 2, 57–70. [Google Scholar] [CrossRef]
- Shaila, M.; Begum, N. Ancient farming methods of seed storage and pest management practices in India—A Review. Plant Arch. 2021, 21, 499–509. [Google Scholar]
- Vickers, A.; Zollman, C.; Lee, R. Herbal medicine. West. J. Med. 2001, 175, 125–128. [Google Scholar] [CrossRef]
- Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: Science and market. Drug Discov. 2010, 15, 40–56. [Google Scholar] [CrossRef] [PubMed]
- Wood, M. The Book of Herbal Wisdom: Using Plants as Medicines; North Atlantic Books: Berkeley, CA, USA, 2017. [Google Scholar]
- Sparg, S.G.; Van Staden, J.; Jäger, A.K. Pharmacological and phytochemical screening of two Hyacinthaceae species: Scilla natalensis and Ledebouria ovatifolia. J. Ethnopharmacol. 2002, 80, 95–101. [Google Scholar] [CrossRef]
- Gamaniel, K.S.; Jsselmuiden, C.I. Ethical challenges posed by herbal traditional medicines research. In Proceedings of the 8th Global Forum for Health Research, Mexico City, Mexico, 16–20 November 2004. [Google Scholar]
- Muhammad, B.Y.; Awaisu, A. The need for enhancement of research, development, and commercialization of natural medicinal products in Nigeria: Lessons from the Malaysian experience. Afr. J. Tradit. Complement. Altern. Med. 2008, 5, 120–130. [Google Scholar]
- Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life Sci. 2005, 78, 431–441. [Google Scholar] [CrossRef]
- Rates, S.M.K. Plants as source of drugs. Toxicon 2001, 39, 603–613. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981-2002. J. Nat. Prod. 2003, 66, 1022–1037. [Google Scholar] [CrossRef] [PubMed]
- Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 2001, 109, 69–75. [Google Scholar] [CrossRef]
- Cragg, C.M.; Newman, D.J.; Snader, M. Natural products in drug discovery and development. J. Nat. Prod. 1997, 60, 52–60. [Google Scholar] [CrossRef]
- Vidhya, R.; Udayakumar, R. Gas chromatography-Mass spectrometry (GC-MS) analysis of ethanolic extracts of Aerva lanata (L.). Int. J. Biochem. Res. 2015, 7, 192–203. [Google Scholar] [CrossRef]
- Khan, I.; Jan, S.A.; Shinwari, Z.K.; Ali, M.; Khan, Y.; Kumar, T. Ethnobotany and medicinal uses of folklore medicinal plants belonging to family Acanthaceae: An updated review. J. Biol. Med. 2017, 1, 34–38. [Google Scholar]
- Fongod, A.G.N.; Modjenpa, N.B.; Veranso, M.C. Ethnobotany of Acanthaceae in the Mount Cameroon region. J. Med. Plant Res. 2013, 7, 2859–2866. [Google Scholar] [CrossRef]
- Koekemoer, M.; Steyn, H.M.; Bester, S.P. Guide to Plant Families of Southern Africa, Strelitzia 31; South African National Biodiversity Institute: Pretoria, South Africa, 2014. [Google Scholar]
- Kar, A.; Pandit, S.; Mukherjee, K.; Bahadur, S.; Mukherjee, P.K. Safety assessment of selected medicinal food plants used in Ayurveda through CYP450 enzyme inhibition study. J. Sci. Food Agric. 2017, 97, 333–340. [Google Scholar] [CrossRef]
- Makholela, T.; Van der Bank, H.; Balkwill, K. A preliminary study of allozyme variation in three rare and restricted endemic Barleria greenii (Acanthaceae) populations. Biochem. Syst. Ecol. 2003, 31, 141–154. [Google Scholar] [CrossRef]
- Balkwill, M.J.; Balkwill, K. A preliminary analysis of distribution patterns in a large, pantropical genus, Barleria L. (Acanthaceae). J. Biogeogr. 1998, 25, 95–110. [Google Scholar] [CrossRef]
- Pooley, E. A Field Guide to Wild Flowers KwaZulu-Natal and the Eastern Region, 1st ed.; Natal Flora Publication Trust: Durban, South Africa, 2005. [Google Scholar]
- Grant, W.F. A cytogenetic study in the Acanthaceae. Brittonia 1955, 8, 121–149. [Google Scholar] [CrossRef]
- Balkwill, M.J.; Balkwill, K. Delimitation and infra-generic classification of Barleria (Acanthaceae). Kew Bull. 1997, 52, 535–573. [Google Scholar] [CrossRef]
- Kumar, H.; Agrawal, R.; Kumar, V. Barleria cristata: Perspective towards phytopharmacological aspects. J. Pharm. Pharmacol. 2018, 70, 475–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darbyshire, I.; Tripp, E.A.; Chase, F.M. A taxonomic revision of Acanthaceae tribe Barlerieae in Angola and Namibia. Part 1. Kew Bull. 2019, 74, 1–85. [Google Scholar] [CrossRef] [Green Version]
- Mabberley, D.J. Mabberley’s Plant-Book: A Portable Dictionary of Plants, their Classification and Uses, 3rd ed.; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Darbyshire, I. Barleria . In Flora of Tropical East Africa. Acanthaceae (Part 2); Beentje, H.J., Ed.; Royal Botanic Gardens: Kew, UK, 2010; pp. 325–442. [Google Scholar]
- Darbyshire, I.; Vollesen, K.; Ensermu, K. Acanthaceae, part 2. In Flora Zambesiaca; Timberlake, J.R., Martins, E.S., Eds.; Royal Botanic Gardens: Richmond, UK, 2015; p. 304. [Google Scholar]
- Kumari, R.; Kumar, S.; Kumar, A.; Goel, K.K.; Dubey, R.C. Antibacterial, antioxidant and immuno-modulatory properties in extracts of Barleria lupulina Lindl. BMC Complement. Altern. Med. 2017, 17, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Hakimi, A.S.; Faridah, Q.Z.; Abdulwahab, A.S.; Latiff, A. Pollen and seed morphology of Barleria L.(Barlerieae: Ruellioideae: Acanthaceae) of Yemen. S. Afr. J. Bot. 2018, 116, 185–191. [Google Scholar] [CrossRef]
- Singh, Y.; Baijnath, H.; Condy, G. Barleria elegans. In Flowering Plants of Africa; Grobler, A., Condy, G., Eds.; South African National Biodiversity Institute: Pretoria, South Africa, 2015; pp. 136–142. [Google Scholar]
- Champluvier, D. New and overlooked Acanthaceae taxa from D.R. Congo, Rwanda and Burundi: (1) the genus Barleria. Plant Ecol. Evol. 2011, 144, 82–95. [Google Scholar] [CrossRef]
- Hughes, M.; Moller, M.; Edwards, T.J.; Bellstedt, D.U.; De Villiers, M. The impact of pollination syndrome and habitat on gene flow: A comparative study of two Streptocarpus (Gesneriaceae) species. Am. J. Bot. 2007, 94, 1688–1695. [Google Scholar] [CrossRef]
- Bremekamp, C.E.B. On the opening mechanism of the Acanthaceous fruit. S. Afr. J. Sci. 1926, 23, 488–491. [Google Scholar]
- Martínez-Berdeja, A.; Ezcurra, E.; Torres, M. Morphological variability in propagules of a desert annual as a function of rainfall patterns at different temporal and spatial scales. Funct. Ecol. 2015, 29, 1260–1267. [Google Scholar] [CrossRef]
- Obermeijer, A.A. A revision of the South African species of Barleria. Ann. Transvaal Mus. 1933, 15, 123–180. [Google Scholar]
- Bhogaonkar, P.Y.; Lande, S.K. Anatomical Characterization of Barleria prionitis Linn.: A well-known medicinal herb. Biol. Forum Int. J. 2012, 4, 1–5. [Google Scholar]
- Tripp, E.A.; Fekadu, M. Comparative leaf and stem anatomy in selected species of Ruellieae (Acanthaceae) representative of all major lineages. Kew Bull. 2014, 69, 1–8. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, S. Gastroprotective activity of methanol leaves extract of Barleria prionitis Linn. on ethanol and indomethacin induced ulcer in rats. Br. J. Pharm. Res. 2013, 3, 817–829. [Google Scholar] [CrossRef]
- Tamboli, F.A.; More, H.N. Evaluation of antiulcer and antioxidant activity of Barleria gibsoni Dalz. leaves. Pharmacogn. Res. 2016, 8, 226–230. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Banerjee, S.; Jha, G.K.; Bose, S. Barleria prionitis L.: An illustrative traditional, phytochemical and pharmacological: A review. J. Nat. Prod. 2021, 11, 258–274. [Google Scholar] [CrossRef]
- Banerjee, S.; Banerjee, S.; Jha, G.K.; Bose, S. Conspectus of phytoconstituents and pharmacological activities of Barleria lupulina Lindl.: A Review. Curr. Tradit. Med. 2021, 7, 325–334. [Google Scholar] [CrossRef]
- Sudheer, W.N.; Praveen, N. Phytochemical, pharmacological and tissue culture studies of some important species of the genus Barleria L. (Acanthaceae)—A review. Plant Sci. Today 2021, 8, 491–500. [Google Scholar] [CrossRef]
- Jain, C.; Khatana, S.; Vijayvergia, R. Bioactivity of secondary metabolites of various plants: A review. Int. J. Pharm. Sci. Res. 2019, 10, 494–498. [Google Scholar] [CrossRef]
- Yosook, C.; Panpisutchai, Y.; Chaichana, S.; Santisuk, T.; Reutrakul, V. Evaluation of anti-HSV-2 activities of Barleria lupulina and Clinacanthus nutans. J. Ethnopharmacol. 1999, 67, 179–187. [Google Scholar] [CrossRef]
- Wang, B.U.; Wu, M.; Perchellet, E.M.; Mcilvain, C.J.; Sperfslage, B.J.; Huang, X.; Tamura, M.; Stephany, H.A.; Hua, D.H.; Perchellet, J.P. Asynthetic triptycene bisquinone which blocks nucleoside transport and induces DNA fragmentation, retains its cytotoxic efficacy in daunorubicin-resistant HL-60 cell lines. Int. J. Oncol. 2001, 19, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Jassim, S.A.A.; Naji, A.M. Novel antiviral agents: A medicinal plant perspective. J. Appl. Microbiol. 2003, 95, 412–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suba, V.; Murugesan, T.; Arunachalam, G.; Mandal, S.C.; Saha, B.P. Anti-diabetic potential of Barleria lupulina extract in rats. Phytomedicine 2004, 11, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Suba, V.; Murugesan, T.; Pal, M.; Mandal, S.C.; Saha, B.P. Antiulcer activity of methanol fraction of Barleria lupulina Lindl. in animal models. Phytother. Res. 2004, 18, 925–929. [Google Scholar] [CrossRef] [PubMed]
- Suba, V.; Murugesan, T.; Kumaravelrajan, R.; Mandal, S.C.; Saha, B.P. Antiinflammatory, analgesic and antiperoxidative efficacy of Barleria lupulina Lindl. extract. Phytother. Res. 2005, 19, 695–699. [Google Scholar] [CrossRef]
- Chomnawang, M.T.; Surassmo, S.; Nukoolkarn, V.S.; Gritsanapan, W. Antimicrobial effects of Thai medicinal plants against acne-inducing bacteria. J. Ethnopharmacol. 2005, 101, 330–333. [Google Scholar] [CrossRef]
- Shukla, S.; Gunjegaokar, S.M. Pharmacognostical and pharmacological profiling of Barleria prionitis Linn. J. Biol. Sci. Med. 2018, 4, 41–50. [Google Scholar]
- Amoo, S.O.; Finnie, J.F.; Van Staden, J. In vitro pharmacological evaluation of three Barleria species. J. Ethnopharmacol. 2009, 121, 274–277. [Google Scholar] [CrossRef] [PubMed]
- Ata, A.; Kalhari, K.S.; Samarasekara, R. Chemical constituents of Barleria prionitis and their enzyme inhibitory and free radical scavenging activities. Phytochem. Lett. 2009, 2, 37–40. [Google Scholar] [CrossRef]
- Jeyasankar, A.; Chinnamani, T. Effect of fractions of Barleria buxifolia and their biological activity against economically important lepidopteron pests. Int. J. Nat. Sci. 2017, 5, 43–49. [Google Scholar]
- Chetan, C.; Suraj, M.; Maheshwari, C.; Rahul, A.; Priyanka, P. Screening of antioxidant activity and phenolic content of whole plant of Barleria prionitis Linn. Int. J. Res. Ayurveda Pharm. 2011, 2, 1313–1319. [Google Scholar]
- Chowdhury, N.; Al-Hasan, A.; Tareq, F.S.; Ahsan, M.; Azam, A.Z. 4-Hydroxy-trans-cinnamate derivatives and triterpene from Barleria cristata. Dhaka Univ. J. Pharm. Sci. 2014, 12, 143–145. [Google Scholar] [CrossRef]
- Jäger, A.K.; Hutchings, A.; Van Staden, J. Screening of Zulu medicinal plants for prostaglandin-synthesis inhibitors. J. Ethnopharmacol. 1996, 52, 95–100. [Google Scholar] [CrossRef]
- Karim, A.; Noor, A.T.; Malik, A.; Qadir, M.I.; Choudhary, M.I. Barlerisides A and B, new potent superoxide scavenging phenolic glycosides from Barleria acanthoides. J. Enzym. Inhib. Med. Chem. 2009, 24, 1332–1335. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.; Noor, A.T.; Malik, A. Structure of barlericin, the neolignan diglycoside from Barleria acanthoides. J. Asian Nat. Prod. Res. 2010, 12, 714–718. [Google Scholar] [CrossRef]
- Salib, J.Y.; Nabila, H.S.; Helana, N.M.; Emad, F.E. Antibacterial activity of Barleria cristata bark extracts. J. Appl. Sci. Res. 2013, 9, 2156–2159. [Google Scholar]
- Hemalatha, K.; Hareeka, N.; Sunitha, D. Chemical constituents isolated from leaves of Barleria cristata Linn. Int. J. Pharma Bio Sci. 2012, 3, 609–615. [Google Scholar]
- Ei-Mawla, A.; Ahmed, A.S.; Ibraheim, Z.Z.; Ernst, L. Phenylethanoid glycosides from Barleria cristata L. callus cultures. Bull. Pharm. Sci. Assiut Univ. 2005, 28, 199–204. [Google Scholar] [CrossRef]
- Gololo, S.S.; Bassey, K.; Olivier, M.T.; Agyei, N.M.; Shai, L.J.; Masoko, P.; Gamedze, M.; Mogale, M.A. Isolation of an Iridoid glycoside compound from the leaves of Barleria dinteri collected from Zebediela sub-region in Limpopo province, South Africa. J. Pharm. Sci. 2017, 9, 1368. [Google Scholar]
- Damtoft, S.; Jensen, S.R.; Nielsen, B.J. Structural revision of barlerin and acetyl barlerin. Tetrahedron Lett. 1982, 23, 4155–4156. [Google Scholar] [CrossRef]
- Byrne, L.T.; Sasse, J.M.; Skelton, B.W.; Suksamrarn, A.P.I.C.H.A.R.T.; White, A.H. The minor iridoid glucosides of Barleria lupulina: Isolation, crystal structure and plant growth-inhibiting properties of 6-O-acetylshanzhiside methyl ester. Aust. J. Chem. 1987, 40, 785–794. [Google Scholar] [CrossRef]
- Tuntiwachwuttikul, P.; Pancharoen, O.; Taylor, W.C. Iridoid glucosides of Barleria lupulina. Phytochemistry 1998, 49, 163–166. [Google Scholar] [CrossRef]
- Kanchanapoom, T.; Kasai, R.; Yamasaki, K. Iridoid glucosides from Barleria lupulina. Phytochemistry 2001, 58, 337–341. [Google Scholar] [CrossRef] [Green Version]
- Lans, C.; Harper, T.; Georges, K.; Bridgewater, E. Medicinal and ethnoveterinary remedies of hunters in Trinidad. BMC Complement. Altern. Med. 2001, 1, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Suksamrarn, S.; Wongkrajang, K.; Kirtikara, K.; Suksamrarn, A. Iridoid glucosides from the flowers of Barleria lupulina. Planta Med. 2003, 69, 877–879. [Google Scholar] [CrossRef] [PubMed]
- Widyowati, R.; Tezuka, Y.; Miyahara, T.; Awale, S.; Kadota, S. Alkaline phosphatase (ALP) enhancing iridoid glucosides from the Indonesian medicinal plant Barleria lupulina. Nat. Prod. Commun. 2010, 5, 1934578X1000501101. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.A.; Ramalingam, S.; Jebamalairaj, A.; Subban, R.; Sundaram, K.M. Biochemical fingerprint and pharmacological applications of Barleria noctiflora Lf leaves. J. Complement. Integr. Med. 2016, 13, 365–376. [Google Scholar] [CrossRef]
- Kosmulalage, K.S.; Zahid, S.; Udenigwe, C.C.; Akhtar, S.; Ata, A.; Samarasekera, R. Glutathione S-transferase, acetylcholinesterase inhibitory and antibacterial activities of chemical constituents of Barleria prionitis. Z. Naturforsch. B. 2007, 62, 580–586. [Google Scholar] [CrossRef]
- Chen, J.L.; Blanc, P.; Stoddart, C.A.; Bogan, M.; Rozhon, E.J.; Parkinson, N.; Ye, Z.; Cooper, R.; Balick, M.; Nanakorn, W.; et al. New iridoids from the medicinal plant Barleria prionitis with potent activity against respiratory syncytial virus. J. Nat. Prod. 1998, 61, 1295–1297. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.A.M.I.N.I.; Gupta, R.S. Antifertility activity of β-sitosterol isolated from Barleria prionitis (L.) roots in male albino rats. Int. J. Pharm. Pharm. Sci. 2016, 8, 88–96. [Google Scholar]
- Mabry, T.; Markham, K.R.; Thomas, M.B. The Systematic Identification of Flavonoids; Springer Science & Business Media: Heidelberg, Germany, 1970; p. 55. [Google Scholar] [CrossRef]
- Taneja, S.C.; Tiwari, H.P. Structure of two new iridoids from B. prionitis. Tetrahedron Lett. 1975, 24, 1995–1998. [Google Scholar] [CrossRef]
- Daniel, M. Medicinal Plants: Chemistry and Properties; Science Publishers: Hauppauge, NY, USA, 2006. [Google Scholar]
- Gupta, H.M.; Saxena, V.K. A new acylated luteolin-7-O-β-Dglucoside from the roots of Barleria prionitis (Linn.). Natl. Acad. Sci. Lett. 1984, 7, 187–189. [Google Scholar]
- Daniel, M.; Sabnis, S.D. Chemosystematics of some Indian members of the Acanthaceae. Proc. Plant Sci. 1987, 97, 315–323. [Google Scholar] [CrossRef]
- Kanchanapoom, T.; Noiarsa, P.; Ruchirawat, S.; Kasai, R.; Otsuka, H. Phenylethanoid and iridoid glycosides from the Thai medicinal plant, Barleria strigosa. Chem. Pharm. Bull. 2004, 52, 612–614. [Google Scholar] [CrossRef] [Green Version]
- Harraz, F.M.; El-Halawany, A.M.; El Gayed, S.H.; Abdel-Sattar, E. Iridoid glycosides from Barleria trispinosa. Nat. Prod. Res. 2009, 23, 903–908. [Google Scholar] [CrossRef]
- Didna, B.; Debnath, S.; Harigaya, Y. Naturally occurring iridoids. A review, Part 1. Chem. Pharm. Bull. 2007, 55, 159–222. [Google Scholar] [CrossRef] [Green Version]
- Tundis, R.; Loizzo, M.R.; Menichini, F.; Statti, G.A.; Menichini, F. Biological and pharmacological activities of iridoids: Recent developments. Mini Rev. Med. Chem. 2008, 8, 399–420. [Google Scholar] [CrossRef] [PubMed]
- Amoo, S.O.; Ndhlala, A.R.; Finnie, J.F.; Van Staden, J. Antifungal, acetylcholinesterase inhibition, antioxidant and phytochemical properties of three Barleria species. S. Afr. J. Bot. 2011, 77, 435–445. [Google Scholar] [CrossRef] [Green Version]
- Salim, V.; Yu, F.; Altarejos, J.; De Luca, V. Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid-7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis. Plant J. 2013, 76, 754–765. [Google Scholar] [CrossRef] [PubMed]
- Marcucci, M.C.; Ferreres, F.; Garcla-Viguera, C.; Bankova, V.S.; De Castro, S.L.; Dantas, A.P.; Valente, P.H.M.; Paulino, N. Phenolic compounds from Brazilian propolis with pharmacological activities. J. Ethnopharmacol. 2001, 74, 105–112. [Google Scholar] [CrossRef]
- Polya, G. Biochemical Targets of Plant Bioactive Compounds: A Pharmacological Reference Guide to Sites of Action and Biological Effects; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- Hosseinimehr, S.J.; Pourmorad, F.; Shahabimajd, N.; Shahrbrandy, K.; Hosseinzadeh, R. In vitro antioxidant activity of Polygonium hyranicum, Centaurea depressa, Sambusus ebulus, Mentha spicata and Phytolacca americana. Pak. J. Biol. Sci. 2007, 10, 637–640. [Google Scholar] [CrossRef] [Green Version]
- Saibabu, V.; Fatima, Z.; Khan, L.A.; Hameed, S. Therapeutic potential of dietary phenolic acids. Adv. Pharmacol. Sci. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, S.M.; Chakraborty, D.; Dey, S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal. Behav. 2010, 5, 359–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halliwell, B. Antioxidants in human health and disease. Annu. Rev. Nutr. 1996, 16, 33–50. [Google Scholar] [CrossRef]
- Bernini, R.; Gualandi, G.; Crestini, C.; Barontini, M.; Bel, M.C.; Ore, S.; Willför, P.; Eklund, P.; Saladino, R. A novel and efficient synthesis of highly oxidized lignans by a methyltrioxorhenium/hydrogen peroxide catalytic system. Studies on their apoptogenic and antioxidant activity. Bioorg. Med. Chem. 2009, 17, 5676–5682. [Google Scholar] [CrossRef] [PubMed]
- Teponno, R.B.; Kusari, S.; Spiteller, M. Recent advances in research on lignans and neolignans. Nat. Prod. Rep. 2016, 33, 1044–1092. [Google Scholar] [CrossRef] [Green Version]
- Larson, R.A. The antioxidants of higher plants. Phytochemistry 1988, 27, 969–978. [Google Scholar] [CrossRef]
- Jucá, M.M.; Filho, F.M.S.C.; De Almeida, J.C.; Mesquita, D.D.S.; Barrig’a, J.R.D.M.; Dias, K.C.F.; Barbosa, T.M.; Vasconcelos, L.C.; Leal, L.K.A.M.; Ribeiro, J.E.; et al. Flavonoids: Biological activities and therapeutic potential. Nat. Prod. Res. 2020, 34, 692–705. [Google Scholar] [CrossRef] [PubMed]
- Burda, S.; Oleszek, W. Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem. 2001, 49, 2774–2779. [Google Scholar] [CrossRef]
- Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002, 96, 67–202. [Google Scholar] [CrossRef]
- Tunalier, Z.; Kosar, M.; Küpeli, E.; Çalis, I.; Baser, K.H.C. Antioxidant, anti-inflammatory, anti-nociceptive activities and composition of Lythrum salicaria L. extracts. J. Ethnopharmacol. 2007, 110, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Pattanayak, S.P.; Sunita, P. Wound healing, anti-microbial and antioxidant potential of Dendrophthoe falcata (L.f) Ettingsh. J. Ethnopharmacol. 2008, 120, 241–247. [Google Scholar] [CrossRef]
- Wu, P.; Ma, G.; Li, N.; Deng, Q.; Yin, Y.; Huang, R. Investigation of in vitro and in vivo antioxidant activities of flavonoids rich extract from the berries of Rhodomyrtus tomentosa (Ait.) Hassk. Food Chem. 2015, 173, 194–202. [Google Scholar] [CrossRef]
- Aust, O.; Sies, H.; Stahl, W.; Polidori, M.C. Analysis of lipophilic antioxidants in human serum and tissues: Tocopherols and carotenoids. J. Chromatogr. A 2001, 936, 83–93. [Google Scholar] [CrossRef]
- Cushnie, T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents. 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Zwenger, S.; Basu, C. Plant terpenoids: Applications and future potentials. Biotechnol. Mol. Biol. 2008, 3, 001–007. [Google Scholar]
- Prakash, V. Terpenoids as cytotoxic compounds: A perspective. Pharmacogn. Rev. 2018, 12, 166–176. [Google Scholar] [CrossRef]
- Yu, F.; Utsumi, R. Diversity, regulation, and genetic manipulation of plant mono-and sesquiterpenoid biosynthesis. Cell. Mol. Life Sci. 2009, 66, 3043–3052. [Google Scholar] [CrossRef] [PubMed]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Thoppil, R.J.; Bishayee, A. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer. World J. Hepatol. 2011, 3, 228–249. [Google Scholar] [CrossRef] [PubMed]
- Moreau, R.A.; Nyström, L.; Whitaker, B.D.; Winkler-Moser, J.K.; Baer, D.J.; Gebauer, S.K.; Hicks, K.B. Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog. Lipid Res. 2018, 70, 35–61. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lin, K.; Li, Y. Highlights to phytosterols accumulation and equilibrium in plants: Biosynthetic pathway and feedback regulation. Plant Physiol. Biochem. 2020, 155, 637–649. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, M.A.Z.; Roehrs, M.; de Pereira, C.M.P.; Freitag, R.A.; de Bairros, A.V. Analysis of phytosterols in plants and derived products by gas chromatography—A short critical review. Austin Chromatogr. 2014, 1, 01–04. [Google Scholar]
- Lee, S.R.; Clardy, J.; Senger, D.R.; Cao, S.; Kim, K.H. Iridoid and phenylethanoid glycosides from the aerial part of Barleria lupulina. Rev. Bras. De Farmacogn. 2016, 26, 281–284. [Google Scholar] [CrossRef]
- Sena Filho, J.G.; Nimmo, S.L.; Xavier, H.S.; Barbosa-Filho, J.M.; Cichewicz, R.H. Phenylethanoid and lignan glycosides from polar extracts of Lantana, a genus of verbenaceous plants widely used in traditional herbal therapies. J. Nat. Prod. 2009, 72, 1344–1347. [Google Scholar] [CrossRef]
- Jensen, S.R. Systematic implications of the distribution of iridoids and other chemical compounds in the Loganiaceae and other families of the Asteridae. Ann. Mo. Bot. Gard. 1992, 284–302. [Google Scholar] [CrossRef]
- Jimenez, C.; Riguera, R. Phenylethanoid glycosides in plants: Structure and biological activity. Nat. Prod. Rep. 1994, 11, 591–606. [Google Scholar] [CrossRef]
- Xue, Z.; Yang, B. Phenylethanoid glycosides: Research advances in their phytochemistry, pharmacological activity and pharmacokinetics. Molecules 2016, 21, 991. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, A.; Oktay, M.; Bulaloulu, V. The antioxidant activity of the leaves of Cydonia vulgaris. Turk. J. Med. Sci. 2001, 31, 23–27. [Google Scholar]
- Ames, B.N.; Shigenaga, M.K.; Hagen, T.M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 1993, 90, 7915–7922. [Google Scholar] [CrossRef] [Green Version]
- McCord, J.M. The evolution of free radicals and oxidative stress. Am. J. Med. 2000, 108, 652–659. [Google Scholar] [CrossRef]
- Sa’nchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric. 1998, 76, 270–276. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbial. 2012, 3, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Jacob, R.A. The integrated antioxidant system. Nutr. Res. 1995, 15, 755–766. [Google Scholar] [CrossRef]
- Willcox, J.K.; Ash, S.L.; Catignani, G.L. Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 2004, 44, 275–295. [Google Scholar] [CrossRef] [PubMed]
- Stepien, P.; Klobus, G. Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiol. Plant. 2005, 125, 31–40. [Google Scholar] [CrossRef]
- Choi, C.W.; Kim, S.C.; Hwang, S.S.; Choi, B.K.; Ahn, H.J.; Lee, M.Y.; Park, S.H.; Kim, S.K. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci. 2002, 163, 1161–1168. [Google Scholar] [CrossRef]
- McCall, M.R.; Frei, B. Can antioxidant vitamins materially reduce oxidative damage in humans? Free Radic. Biol. Med. 1999, 26, 1034–1053. [Google Scholar] [CrossRef]
- Jaiswal, S.K.; Dubey, M.K.; Das, S.; Verma, A.R.; Rao, C.V. A comparative study on total phenolic content, reducing power and free radical scavenging activity of aerial parts of Barleria prionitis. Int. J. Phytomedicine 2010, 2. [Google Scholar] [CrossRef]
- Ramchoun, M.; Harnafi, H.; Alem, C.; Benlys, M.; Elrhaffari, L.; Amrani, S. Study on antioxidant and hypolipidemic effects of polyphenol rich extract from Thymus vulgaris and Lavendula multifida. Pharmacogn. Res. 2009, 1, 106–112. [Google Scholar]
- Amoo, S.O.; Van Staden, J. Pharmacological properties and in vitro shoot production of Barleria argillicola–A critically endangered South African species. S. Afr. J. Bot. 2013, 85, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Sujatha, A.P.; Doss, A.; Muthukumarasamy, S.; Mohan, V.R. Study of antioxidant activity of Barleria courtrallica. Res. J. Life Sci. Bioinform. Pharm. Chem. Sci. 2018, 4, 513–521. [Google Scholar]
- Amutha, K.; Doss, D.V.A. Identification and antimicrobial activity of saponin fraction from the leaves of Barleria cristata L. Int. J. Pharm. Sci. Res. 2012, 3, 4040–4044. [Google Scholar]
- Narmadha, R.; Devaki, K. In vitro antioxidant activity and in vitro aglucosidase and a-amylase inhibitory activity of Barleria Cristata L. Res. J. Pharm. Biol. Chem. Sci. 2012, 3, 780–788. [Google Scholar]
- Pathy, M.; Sharma, T.; Bhatnagar, S. Barleria cristata: A comparative analysis of phytochemical, cytotoxic and antioxidant activities of leaf and bark extracts. Eur. J. Pharm. Med. Res. 2015, 5, 586–593. [Google Scholar]
- Vasanth, S.; Bupesh, G.; Vijayakumar, T.S.; Balachandar, V.; Gunasekaran, D.R. Evaluation of in vitro antidiabetic and antioxidant potential of Barleria cristata leaves extracts. Asian J. Pharm. Clin. Res. 2018, 11, 287–290. [Google Scholar] [CrossRef] [Green Version]
- Gololo, S.S.; Mogale, M.A.; Agyei, N.M.; Shai, L.J. Phytochemical, antioxidant and antibacterial screening of the leaves of Barleria dinteri (Oberm), Grewia flava (DC) and Jatropha lagarinthoides (Sond). J. Chem. Pharm. Res. 2016, 8, 56–60. [Google Scholar]
- Sawarkar, H.A.; Khadabadi, S.S.; Wandhare, M.D.; Farooqui, I.A.; Deokate, U.A. The antioxidant activity of the leaves of Barleria grandiflora dalz.(acanthaceae). Ethnobot. Leaflets. 2009, 13, 443–449. [Google Scholar]
- Sriram, S.; Sasikumar, C.G. Therapeutic Effect of Barleria montana Wight & Nees Leaf Extract Inflammation and Ulcer in Albino Wistar Rats. Ph.D. Thesis, Bharathidasan Universit, Tamil Nadu, India, 2017. [Google Scholar]
- Banu, S.; Arunachalam, G.; Jayaveera, K.N.; Ashoka Babu, V.L.; Premakumari, K.B. Estimation of total phenolic content and in vitro antioxidant activity of Barleria Montana. Der Pharm. Lett. 2011, 3, 178. [Google Scholar]
- Mathew, J.; Arora, K.M.; Mazumdar, A.; Kumar, G.; Karthik, L.; Rao, K.V.B. Evaluation of phytochemical composition and antioxidant activity of aqueous extract of Barleria mysorensis and Furcraea foetida leaves. Res. J. Pharm. Technol. 2012, 5, 1503–1508. [Google Scholar]
- Yadav, S.A.; Raj, A.J.; Sathishkumar, R. In vitro antioxidant activity of Barleria noctiflora L. f. Asian Pac. J. Trop. Biomed. 2012, 2, S716–S722. [Google Scholar] [CrossRef]
- Manjula, M.S.; Ganthi, A.S. In-vitro antioxidant and anti-inflammatory potential of ethanol extracts (root and aerial parts) of Barleria noctiflora. Ann. Plant Sci. 2018, 7, 1997–2001. [Google Scholar] [CrossRef] [Green Version]
- Arumugam, S.; Natesan, S.; Ganesan, S.; Kanagarajan, S. In vitro screening of various extract of Barleria noctiflora for their antioxidant and free radical scavenging activity. Int. J. Pharm. Phytopharmacol. Res. 2015, 5, 41–49. [Google Scholar]
- Kapoor, A.; Shukla, S.; Kaur, R.; Kumar, R.; Lehra, K.S.; Kapoor, S. Preliminary Phytochemical Screening and antioxidant activity of whole plant of Barleria prionitis linn. Int. J. Adv. Pharm. Biol. Chem. 2014, 3, 410–419. [Google Scholar]
- Ranade, R.; Jain, A.; Joshi, N. Estimation of phenolic compounds by RP-HPLC and antioxidant activity in leaf and stem extracts of Barleria prionitis L. Int. J. Pharm. Sci. Res. 2016, 7, 2445. [Google Scholar]
- Sharma, P.; Sharma, G.N.; Shrivastava, B.; Jadhav, H.R. Evaluation of antioxidant potential of Barleria prionitis leaf and stem. Am. J. Phytomed. Clin. Ther. 2014, 2, 177–186. [Google Scholar]
- Kumar, U.; Ahmed, F.; Khanojia, P.; Kukreja, K.; Kumari, S.; Bhat, R.A. Exploration of antioxidant and antibacterial activity of Barleria prionitis linn. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 585–591. [Google Scholar]
- Sawarkar, H.A.; Kashyap, P.P.; Kaur, C.D. RBC Haemolysis prevention and antioxidant activity of Barleria prionitis. Chiang Mai J. Sci. 2018, 45, 888–896. [Google Scholar]
- Shukla, R. Study of phytochemical investigation and in vitro antioxidant potential of hydroalcoholic extract of Barleria prionitis. Int. J. Pharm. Sci. Drug Res. 2019, 7, 73–78. [Google Scholar]
- Deepak, M.; Sulaiman, C.; Balachandran, I.; Chandran, K.P.S. Identification of medicinally active flavonoids, phenolic compounds and terpenoids from traditional healing plant Barleria strigosa and its antioxidant activity. Asian J. Green Chem. 2021, 5, 12–22. [Google Scholar]
- Prapalert, W.; Santiarworn, D.; Liawruangrath, S.; Liawruangrath, B.; Pyne, S.G. Two phenylethanoid glycosides, Parvifloroside A and B, isolated from Barleria strigosa. Chiang Mai J. Sci. 2017, 44, 168–175. [Google Scholar]
- Van Vuuren, S.; Muhlarhi, T. Do South African medicinal plants used traditionally to treat infections respond differently to resistant microbial strains? S. Afr. J. Bot. 2017, 112, 186–192. [Google Scholar] [CrossRef]
- Elbashiti, T.A.; Elmanama, A.A.; Masad, A.A. The antibacterial and synergistic effects of some Palestinian plant extracts on Escherichia coli and Staphylococcus aureus. Funct. Plant Biol. 2011, 5, 57–62. [Google Scholar]
- Ncube, B.; Finnie, J.; Van Staden, J. In vitro antimicrobial synergism within plant extract combinations from three South African medicinal bulbs. J. Ethnopharmacol. 2012, 139, 81–89. [Google Scholar] [CrossRef]
- Islam, R.; Rahman, M.S.; Rahman, S.M. GC-MS analysis and antibacterial activity of Cuscuta reflexa against bacterial pathogens. Asian Pac. J. Trop. Dis. 2015, 5, 399–403. [Google Scholar] [CrossRef]
- Srivastava, P.; Upreti, D.K.; Dhole, T.N.; Srivastava, A.K.; Nayak, M.T. Antimicrobial property of extracts of Indian lichen against human pathogenic bacteria. Interdiscip. Perspect. Infect. Dis. 2013, 2013, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aneja, K.R.; Joshi, R.; Sharma, C. Potency of Barleria prionitis L. bark extracts against oral diseases causing strains of bacteria and fungi of clinical origin. N. Y. Acad. Sci. 2010, 3, 5–12. [Google Scholar]
- Bency, A.; Lohidas, J.; Murugan, M. Phytochemical studies and antibacterial activity of Barleria acuminata Nees (Acanthaceae). J. Pharmacogn. Phytochem. 2018, 7, 1909–1911. [Google Scholar]
- Sulthana, B.S.; Honey, E.; Anasuya, B.; Gangarayudu, H.; Reddy, M.J.; Girish, C. Investigation of anti-bacterial activity of different extracts of Barleria cristata leaves. Int. J. Health Sci. 2017, 7, 90–95. [Google Scholar]
- Myint, S.; Moe, Z.M.; Khaing, M.M. Morphological characters of Barleria cristata L. and Barleria prionitis L. and their antimicrobial activities. J. Myanmar. Acad. Arts. Sci. 2020, 18, 183–191. [Google Scholar]
- Sawarkar, H.A.; Kashyap, P.P.; Pandey, A.K.; Singh, M.K.; Kaur, C.D. Antimicrobial and cytotoxic activities of Barleria prionitis and Barleria grandiflora: A comparative study. Bangladesh J. Pharmacol. 2016, 11, 802–809. [Google Scholar] [CrossRef]
- Kumari, R.; Dubey, R.C. Phytochemical analysis and antibacterial and cytotoxic properties of Barleria lupulina Lindl. extracts. J. Plant Pathol. Microbiol. 2016, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Moin, S.; Babu, S.S.; Mahalakshmipriya, A. In vitro callus production and antibacterial activity of Barleria lupulina lindl. Asia Pac. J. Mol. Biol. Biotechnol. 2012, 20, 59–64. [Google Scholar]
- Sarmad, M.; Mahalakshmipriya, A.; Senthil, K. Chemical composition and in-vitro antimicrobial activity of Barleria lupulina essential oil. J. Herbs Spices Med. Plants. 2012, 18, 101–109. [Google Scholar] [CrossRef]
- Natarajan, D.; Gomathi, M.; Yuvarajan, R. Phytochemical and antibacterial evaluation of Barleria montana Nees. (MOUNTAIN Barleria). Asian J. Pharm. Clin. Res. 2012, 5, 44–46. [Google Scholar]
- Tulliballi, S.; Seru, G. Phytochemical investigation and evaluation of hepatoprotective and antimicrobial activities on the aerial parts of Barleria montana (Acanthaceae). Rasayan J. Chem. 2013, 6, 102–106. [Google Scholar] [CrossRef]
- Sridharan, S.; Chinnagounder, S. Evaluation of antimicrobial activity and GC-MS profiling of Barleria montana. J. Pharm. Res. 2012, 5, 2921–2925. [Google Scholar]
- Gangopadhyaym, A.; Malakar, J.; Ghosh, A.; Pramanik, G.; Karmakar, S. Comparative antibacterial study of Barleria prionitis Linn. leaf extracts. Int. J. Pharm. Biol. Arch. 2012, 3, 391–393. [Google Scholar]
- Diwan, P.D.; Gadhikar, Y.A. Assessment of phytochemical composition and antibacterial activity of different extracts of Barleria prionitis leaves against oral microflora to improve dental hygiene. Asian J. Pharm. Clin. Res. 2012, 5, 182–184. [Google Scholar]
- Amit, K.; Shiwani, S.; Rajesh, K.; Rajinder, K.; Singh, L.K.; Shilpa, K. Pharmacognostical, preliminary phytochemical screening and antimicrobial studies of leaves of Barleria prionitis Linn. Int. J. Pharmacogn. Phytochem. Res. 2014, 6, 369–378. [Google Scholar]
- Patel, B.K.; Chandel, B.S.; Chauhan, H.C.; Patel, K.B.; Parth, F.M.; Patel, M.V.; Patel, S.I.; Pandya, R.P.; Shah, J.D. Evaluation of antibacterial activities of Barleria Prionitis Linn. Afr. J. Microbiol. Res. 2015, 9, 1840–1848. [Google Scholar] [CrossRef] [Green Version]
- Kumari, P.; Yadav, P.; Arya, A.; Kumar, S. In vitro callus production and anti-bacterial activity of Barleria prionitis linn. against dental caries pathogens. Int. J. Bot. Res. 2013, 3, 1–6. [Google Scholar]
- Chavan, C.B.; Shinde, U.V.; Hogade, M.; Bhinge, S. Screening of in-vitro antibacterial assay of Barleria proinitis LINN. J. Herb. Med. Toxicol. 2010, 4, 197–200. [Google Scholar]
- Manapradit, N.; Poeaim, S.; Charoenying, P. Cytotoxicity and antimicrobial activities of leaf extracts from Barleria strigosa. Int. J. Agric. Technol. 2015, 11, 551–561. [Google Scholar]
- Jankowska, M.; Lemańska, M.; Trocha, H.; Gesing, M.; Smiatacz, T. Opportunistic infections in HIV-positive patients hospitalized in the Clinic of Infectious Diseases AMG. Przegl. Epidemiol. 2001, 55, 125–128. [Google Scholar]
- Awasthi, K.; Das, A.; Prasad, T. Detection of Multidrug-Resistant Fungal Infections in Cancer Patients. In Molecular Markers in Mycology; Singh, B., Gupta, V., Eds.; Springer: Cham, Switzerland, 2017; pp. 335–352. [Google Scholar] [CrossRef]
- Denning, D.W. Minimizing fungal disease deaths will allow the UNAIDS target of reducing annual AIDS deaths below 500 000 by 2020 to be realized. Philos. Trans. Biol. Sci. 2016, 371, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hamza, O.J.; van den Bout-van, C.J.; Matee, M.I.; Moshi, M.J.; Mikx, F.H.; Selemani, H.O.; Mbwambo, Z.H.; Van der Ven, A.J.; Verweij, P.E. Antifungal activity of some Tanzanian plants used traditionally for the treatment of fungal infections. J. Ethnopharmacol. 2006, 108, 124–132. [Google Scholar] [CrossRef]
- Doddanna, S.J.; Patel, S.; Sundarrao, M.A.; Veerabhadrappa, R.S. Antimicrobial activity of plant extracts on Candida albicans: An in vitro study. Indian J. Dent. Res. 2013, 24, 401–405. [Google Scholar] [CrossRef]
- Chellathai, D. Evaluation of antibacterial and antifungal activity of Barleria cristata—An in vitro study. World. J. Pharm. Res. 2015, 2, 1253–1258. [Google Scholar]
- Kumari, S.; Jain, P.; Sharma, B.; Kadyan, P.; Dabur, R. In vitro antifungal activity and probable fungicidal mechanism of aqueous extract of Barleria grandiflora. Appl. Biochem. Biotechnol. 2015, 175, 3571–3584. [Google Scholar] [CrossRef] [PubMed]
- Sawarkar, H.A.; Kashyap, P.P.; Kaur, C.D.; Pandey, A.K.; Biswas, D.K.; Singh, M.K.; Dhongade, H.K. Antimicrobial and TNF-α Inhibitory Activity of Barleria prionitis and Barleria grandiflora: A Comparative Study. Indian J. Pharm. Sci. 2016, 50, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Panchal, P.; Singh, K. Antimicrobial activity of Barleria prionitis on pathogenic strains. Int. J. Curr. Pharm. Res. 2015, 7, 73–75. [Google Scholar]
- Ghule, B.V.; Yeole, P.G. In vitro and in vivo immunomodulatory activities of iridoids fraction from Barleria prionitis Linn. J. Ethnopharmacol. 2012, 141, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Pathak, V.M.; Navneet. Screening of antimicrobial potential of Barleria prionitis Linn aerial parts against common respiratory tract pathogens. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 542–549. [Google Scholar] [CrossRef] [Green Version]
- Iwalewa, E.O.; McGaw, L.J.; Naidoo, V.; Eloff, J.N. Inflammation: The foundation of diseases and disorders. A review of phytomedicines of South African origin used to treat pain and inflammatory conditions. Afr. J. Biotechnol. 2007, 6, 2868–2885. [Google Scholar] [CrossRef] [Green Version]
- Fawole, O.A.; Amoo, S.O.; Ndhlala, A.R.; Light, M.E.; Finnie, J.F.; Van Staden, J. Anti-inflammatory, anticholinesterase, antioxidant and phytochemical properties of medicinal plants used for pain-related ailments in South Africa. J. Ethnopharmacol. 2010, 127, 235–241. [Google Scholar] [CrossRef]
- Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef]
- Zschocke, S.; Van Staden, J. Cryptocarya species—substitute plants for Ocotea bullata? A pharmacological investigation in terms of cyclooxygenase-1 and -2 inhibition. J. Ethnopharmacol. 2000, 71, 473–478. [Google Scholar] [CrossRef]
- Singh, B.; Bani, S.; Gupta, D.K.; Chandan, B.K.; Kaul, A. Anti-inflammatory activity of ‘TAF’ an active fraction from the plant Barleria prionitis Linn. J. Ethnopharmacol. 2003, 85, 187–193. [Google Scholar] [CrossRef]
- Gambhire, M.N.; Wankhede, S.S.; Juvekar, A.R. Antiinflammatory activity of aqueous extract of Barleria cristata leaves. J. Young Pharmacist . 2009, 1, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Gambhire, M.; Juvekar, M.; Juvekar, A.; Wankhede, S.; Sakat, S. Evaluation of anti-inflammatory and radical scavenging activity of an aqueous extract of Barleria cristata leaves. Planta Med. 2009, 75, PJ166. [Google Scholar] [CrossRef]
- Senger, D.R.; Hoang, M.V.; Kim, K.H.; Li, C.; Cao, S. Anti-inflammatory activity of Barleria lupulina: Identification of active compounds that activate the Nrf2 cell defense pathway, organize cortical actin, reduce stress fibers, and improve cell junctions in microvascular endothelial cells. J. Ethnopharmacol. 2016, 193, 397–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanikiat, P.; Panthong, A.; Sujayanon, P.; Yoosook, C.; Rossi, A.G.; Reutrakul, V. The anti-inflammatory effects and the inhibition of neutrophil responsiveness by Barleria lupulina and Clinacanthus nutans extracts. J. Ethnopharmacol. 2008, 116, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, S.; Venkatramani, M.; Janakiraman, K.; Pemiah, B. Barleria montana Wight and Nees- A promising natural anti-inflammatory agent against formalin induced inflammation. Int. J. Pharm. Pharm. Sci. 2015, 7, 80–84. [Google Scholar]
- Khadse, C.D.; Kakde, R.B. Anti-inflammatory activity of aqueous extract fractions of Barleria prionitis L. roots. Asian J. Plant Sci. Res. 2011, 1, 63–68. [Google Scholar]
- Ghule, B.V.; Kotagale, N.R.; Patil, K.S. Inhibition of the pro-inflammatory mediators in rat neutrophils by shanzhiside methyl ester and its acetyl derivative isolated from Barleria prionitis. J. Ethnopharmacol. 2020, 249, 112374. [Google Scholar] [CrossRef]
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Halawany, A.M.; Abdallah, H.M.; Hamed, A.R.; Khalil, H.E.; Almohammadi, A.M. Phenolics from Barleria cristata var. Alba as carcinogenesis blockers against menadione cytotoxicity through induction and protection of quinone reductase. BMC Complement. Altern. Med. 2018, 18, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Manglani, N.; Vaishnava, S.; Dhamodaran, P.; Sawarkar, H. In vitro and in vivo anticancer activity of leaf extract of Barleria grandiflora. Int. J. Pharm. Pharm. Res. 2014, 6, 70–72. [Google Scholar]
- Tamboli, F.A.; More, H.N. Inhibitory Effects of successive solvent extracts of Barleria gibsoni Dalz. on the proliferation of MDA MB 4355 (Human Breast Cancer) and Hep G2 (Liver Cancer Cell line). Asian J. Pharm. Res. 2015, 5, 183–185. [Google Scholar] [CrossRef]
- Kumari, R.; Kumar, S. Cytotoxicity and mitochondrial-mediated apoptosis induced by ethanolic leaf extract of Barleria lupulina Lindl. in human leukemia cells via reactive oxygen species generation. Preprints 2020, 2020050019. [Google Scholar] [CrossRef]
- Panchal, P.; Meena, S.; Singh, K.; Sharma, N. Anticancer and antimicrobial potential of Barleria prionitis leaves ethanol extract. Int. J. Pharm. Pharm. Sci. 2018, 10, 100. [Google Scholar] [CrossRef]
- Akhtar, F.M.; Ali, M.R. Study of the anti-diabetic effect of a compound medicinal plant prescription in normal and diabetic rabbit. J. Pak. Med. Assoc. 1980, 34, 239–244. [Google Scholar]
- Larner, J. Insulin and oral hypoglycemic drug, Glucogan. In The Pharmacological Basis of Therapeutics, 7th ed.; Gilman, A.G., Goodman, L.S., Rall, I.W., Murad, F., Eds.; Macmillan: New York, NY, USA, 1985; pp. 1490–1516. [Google Scholar]
- Singh, R.; Rajasree, P.H.; Sankar, C. Screening for anti-diabetic activity of the ethanolic extract of Barleria cristata seeds. Int. J. Pharm. Biol. 2012, 3, 2044–2047. [Google Scholar]
- Reema, D.; Pradeep, B. A study of the antidiabetic activity of Barleria prionitis Linn. Indian J. Pharmacol. 2010, 42, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Ezzat, S.M.; Abdel-Sattar, E.; Harraz, F.M.; Ghareib, S.A. Antihyperglycemic and antihyperlipidemic effects of the methanol extracts of Cleome ramosissima Parl., Barleria bispinosa (Forssk.) Vahl. and Tribulus macropterus Boiss. Bull. Fac. Pharm. Cairo Univ. 2014, 52, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Shyam, T.; Ganapaty, S. Evaluation of antidiabetic activity of methanolic extracts from the aerial parts of Barleria montana in streptozotocin induced diabetic rats. J. Pharmacogn. Phytochem. 2013, 2, 187–192. [Google Scholar]
- Arumugam, S.; Natesan, S.K. Hypoglycemic effects of Barleria noctiflora fractions on high fat fed with low dose Streptozotocin induced type-2 diabetes in rats. Int. J. Pharm. Pharm. Sci. 2016, 8, 193–200. [Google Scholar]
- Manjula, M.S.; Ganthi, A.S. In-vitro anti-diabetic activity of root and aerial parts of Barleria noctiflora Lf (Acanthaceae). Ann. Plant Sci. 2018, 7, 1073–1075. [Google Scholar]
- Arumugam, S.; Natesan, S.K.; Ganesan, S.; Kanagarajan, S. Wound healing activity of ethyl acetate fraction of Barleria noctiflora in experimentally induced diabetic rats. J. Pharm. Res. 2016, 15, 6–9. [Google Scholar] [CrossRef]
- Geetha, M.; Wahi, A.K. Antidiabetic activity of Barleria prionitis Linn. J. Nat. Remedies 2001, 1, 64–66. [Google Scholar]
- Alkofahi, A.; Atta, A.H. Pharmacological screening of the anti-ulcerogenic effects of some Jordanian medicinal plants in rats. J. Ethnopharmacol. 1999, 67, 341–345. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. Arabian medicinal plants possessed gastroprotective effects-plant based review (part 1). IOSR J. Pharm. 2018, 8, 77–95. [Google Scholar]
- Peskar, B.M.; Maricic, N.E.N.A.D. Role of prostaglandins in gastroprotection. Dig. Dis. Sci. 1998, 43, 23S–29S. [Google Scholar] [PubMed]
- Khadeerunnisa, S.; Kumar, S.N.; Rajaram, C.; Manohar, R.; Reddy, K.R. Evaluation of antiulcer activity of methanolic extract of Barleria buxifolia in experimental rats. Res. J. Pharm. Technol. 2020, 13, 533–537. [Google Scholar] [CrossRef]
- Jaiswal, S.K.; Dubey, M.K.; Das, S.; Rao, C.V. Gastroprotective effect of the iridoid fraction from Barleria prionitis leaves on experimentally-induced gastric ulceration. Chin. J. Nat. Med. 2014, 12, 738–744. [Google Scholar] [CrossRef]
- Choudhary, M.; Kumar, V.; Singh, S. Gastro protective potential of chloroform leaves extract of Barleria prionitis Linn.: From traditional use to scientific approach. Adv. Chem. Biochem. Sci. 2014, 1, 1–11. [Google Scholar]
- Lee, C.H.; Park, S.W.; Kim, Y.S.; Kang, S.S.; Kim, J.A.; Lee, S.H.; Lee, S.M. Protective mechanism of glycyrrhizin on acute liver injury induced by carbon tetrachloride in mice. Biol. Pharm. Bull. 2007, 30, 1898–1904. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, R.R. Possible mechanism of hepatoprotective activity of Azadirachta indica leaf extract: Part II. J. Ethnopharmacol. 2003, 89, 217–219. [Google Scholar] [CrossRef]
- Jain, M.; Kapadia, R.; Jadeja, R.N.; Thounaojam, M.C.; Devkar, R.V.; Mishra, S.H. Protective role of standardized Feronia limonia stem bark methanolic extract against carbon tetrachloride induced hepatotoxicity. Ann. Hepatol. 2012, 11, 935–943. [Google Scholar] [CrossRef]
- Recknagel, R.O. A new direction in the study of carbon tetrachloride hepatotoxicity. Life Sci. 1983, 33, 401–408. [Google Scholar] [CrossRef]
- Wendel, A.; Feuerstein, S.; Konz, K.H. Acute paracetamol intoxication of starved mice leads to lipid peroxidation in vivo. Biochem. Pharmacol. 1979, 28, 2051–2055. [Google Scholar] [CrossRef]
- Dianzani, M.U.; Muzia, G.; Biocca, M.E.; Canuto, R.A. Lipid peroxidation in fatty liver induced by caffeine in rats. Int. J. Tissue React. 1991, 13, 79–85. [Google Scholar] [PubMed]
- Subramaniam, S.; Khan, H.B.H.; Elumalai, N.; Lakshmi, S.Y.S. Hepatoprotective effect of ethanolic extract of whole plant of Andrographis paniculata against CCl4—Induced hepatotoxicity in rats. Comp. Clin. Pathol. 2015, 24, 1245–1251. [Google Scholar] [CrossRef]
- Balaji, P.; Kishore, G.; Verma, Y. In-vivo hepatoprotective activity of Barleria cristata L. ethanolic leaf extracts against CCl4 induced hepatic injury in wistar rats. Pharm. Glob. 2013, 4, 1–6. [Google Scholar]
- Singh, B.; Chandan, B.K.; Prabhakar, A.; Taneja, S.C.; Singh, J.; Qazi, G.N. Chemistry and hepatoprotective activity of an active fraction from Barleria prionitis Linn. in experimental animals. Phytother. Res. 2005, 19, 391–404. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, S.S.; Rajaram, C.; Kumar, S.N.; Manohar, R.; Reddy, K.R. Evaluation of hepatoprotective activity of the methanolic extract of Barleria Cuspidata against CCl4 induced liver damage in experimental rats. Res. J. Pharm. Technol. 2020, 13, 538542. [Google Scholar] [CrossRef]
- Lakshman Kumar, D.; Sravani, M.; Venkatesh, P.; Hepcy Kala Rani, D.; Purushothaman, M.; Sucharitha, P.A.M. Hepatoprotective activity of aqueous ethanolic extract of aerial parts of Barleria gibsoni on pct-induced hepatotoxicity in rats. World J. Pharm. Res. 2015, 4, 1973–1980. [Google Scholar]
- Banu, S.; Arunachalam, G.; Jayaveera, K.N.; Babu, V.A.; Kumar, V. Hepatoprotective activity of methanolic extract of Barleria montana leaves in ethanol treated rats. Asian Pac. J. Trop. Dis. 2012, 2, S748–S752. [Google Scholar] [CrossRef]
- Gilron, I.; Coderre, T.J. Emerging drugs in neuropathic pain. Expert Opin. Emerg. Drugs 2007, 1, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Manchikanti, L.; Boswell, M.V.; Hirsch, J.A. Lessons learned in the abuse of pain-relief medication: A focus on healthcare costs. Expert review of neurotherapeutics. Expert Rev. Neurother. 2013, 13, 527–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Begum, A.; Venkatesh, S.; Bolleddu, R.; Alvala, R.; Jaya, D. Mechanistic evaluation of antinociceptive effects of bioactive guided fractions of Barleria prionitis. Int. J. Pharm. Sci. Nanotechnol. 2017, 10, 3715–3718. [Google Scholar] [CrossRef]
- Martinez-Palomo, A. The pathogenesis of amoebiasis. Parasitol. Today 1987, 3, 111–118. [Google Scholar] [CrossRef]
- Samie, A.; ElBakri, A.; AbuOdeh, R. Amoebiasis in the tropics: Epidemiology and Pathogenesis In Current Topics in Tropical Medicine; Rodríguez-Morales, A., Ed.; InTech: Rijeka, Croatia, 2012; pp. 201–226. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, K.; Chandra, M.; Nag, D.; Paliwal, J.K.; Gupta, R.C.; Saxena, R.C. Evaluation of metronidazole toxicity: A prospective study. Int. J. Clin. Pharmacol. Res. 1999, 19, 83–88. [Google Scholar]
- Hanna, R.M.; Dahniya, M.H.; Badr, S.S.; El-Betagy, A. Percutaneous catheter drainage in drug-resistant amoebic liver abscess. Trop. Med. Int. Health 2000, 5, 578–581. [Google Scholar] [CrossRef]
- Upcroft, P.; Upcroft, J.A. Drug targets and mechanisms of resistance in the anaerobic protozoa. Clin. Microbiol. Rev. 2001, 14, 150–164. [Google Scholar] [CrossRef] [Green Version]
- Bansal, D.; Sehgal, R.; Chawla, Y.; Mahajan, R.C.; Malla, N. In vitro activity of antiamoebic drugs against clinical isolates of Entamoeba histolytica and Entamoeba dispar. Ann. Clin. Microbiol. Antimicrob. 2004, 3, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toumi, S.; Hammouda, M.; Essid, A.; Medimagh, L.; Slamia, L.B.; Laouani-Kechrid, C. Metronidazole-induced reversible cerebellar lesions and peripheral neuropathy. Med. Mal. Infect. 2009, 39, 906–908. [Google Scholar] [CrossRef]
- Sawangjaroen, N.; Phongpaichit, S.; Subhadhirasakul, S.; Visutthi, M.; Srisuwan, N.; Thammapalerd, N. The anti-amoebic activity of some medicinal plants used by AIDS patients in southern Thailand. Parasitol. Res. 2006, 98, 588–592. [Google Scholar] [CrossRef]
- Hotez, P.J.; Brindley, P.J.; Bethony, J.M.; King, C.H.; Pearce, E.J.; Jacobson, J. Helminth infections: The great neglected tropical diseases. J. Clin. Investig. 2008, 118, 1311–1321. [Google Scholar] [CrossRef] [Green Version]
- Idika, I.K.; Okonkwo, E.A.; Onah, D.N.; Ezeh, I.O.; Iheagwam, C.N.; Nwosu, C.O. Efficacy of levamisole and ivermectin in the control of bovine parasitic gastroenteritis in the sub-humid savanna zone of southeastern Nigeria. Parasitol. Res. 2012, 111, 1683–1687. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, K.D. Essentials of Medical Pharmacology, 6th ed.; Jaypee Brothers Medical Publishers Ltd.: New Delhi, India, 2008. [Google Scholar]
- Chander, P.A.; Sri, H.Y.; Sravanthi, N.B.; Susmitha, U.V. In vitro anthelmintic activity of Barleria buxifolia on Indian adult earthworms and estimation of total flavonoid content. Asian Pac. J. Trop. Dis. 2014, 4, 233–235. [Google Scholar] [CrossRef]
- Chavan, C.B.; Hogade, M.G.; Bhinge, S.D.; Kumbhar, M.; Tamboli, A. In vitro anthelmintic activity of fruit extract of Barleria prionitis Linn. against Pheretima posthuma. Int. J. Pharm. Pharm. Sci. 2010, 2, 49–50. [Google Scholar]
- Tamboli, F.A.; More, H.N. Anthelmintic activity of leaves extract of Barleria gibsoni Dalz. against Pheretima posthuma. J. Pharmacogn. Phytochem. 2016, 5, 250. [Google Scholar]
- Kaur, R.; Kaur, G.; Goyal, S.; Kapoor, A.; Kaur, T. Preliminary phytochemical screening and in vitro anthelmintic activity of whole plant extracts of Barleria prionitis Linn. against earth worms: Pheretima posthuma. World J. Pharm. Pharm. Sci. 2015, 4, 1340–1347. [Google Scholar]
- Paval, J.; Kaitheri, S.K.; Potu, B.K.; Govindan, S.; Kumar, R.S.; Narayanan, S.N.; Moorkoth, S. Anti-arthritic potential of the plant Justicia gendarussa Burm F. Clinics 2009, 64, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Banji, D.; Pinnapureddy, J.; Banji, O.J.F.; Kumar, A.R.; Reddy, K.N. Evaluation of the concomitant use of methotrexate and curcumin on Freund’s complete adjuvant-induced arthritis and haematological indices in rats. Indian J. Pharmacol. 2011, 43, 546–550. [Google Scholar] [CrossRef] [Green Version]
- Patil, M.V.K.; Kandhare, A.D.; Bhise, S.D. Anti-arthritic and anti-inflammatory activity of Xanthium srtumarium L. ethanolic extract in Freund's complete adjuvant induced arthritis. Biomed. Aging Pathol. 2012, 2, 6–15. [Google Scholar] [CrossRef]
- Murugananthan, G.; Kumar, S.G.; Sathya, C.P.; Mohan, S. Antiarthritic and anti-inflammatory constituents from medicinal plants. J. Appl. Pharm. Sci. 2013, 3, 161–164. [Google Scholar]
- Campbell, S.M. Rheumatoid arthritis: Current strategies. J. Hosp. Med. 1988, 34, 29–32. [Google Scholar]
- Nandi, P.; Kingsley, G.H.; Scott, D.L. Disease-modifying antirheumatic drugs other than methotrexate in rheumatoid arthritis and seronegative arthritis. Curr. Opin. Rheumatol. 2008, 20, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.; Kumar, V.; Gupta, P.K.; Singh, S. Anti-arthritic activity of Barleria prionitis Linn. leaves in acute and chronic models in Sprague Dawley rats. Bull. Fac. Pharm. Cairo Univ. 2014, 52, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Mazumder, P.M.; Mondal, A.; Sasmal, D.; Arulmozhi, S.; Rathinavelusamy, P. Evaluation of antiarthritic and immunomodulatory activity of Barleria lupulina. Asian Pac. J. Trop. Biomed. 2012, 2, 1400–1406. [Google Scholar] [CrossRef]
- Basini, J.; Sathrapalli, S. November. In Vivo anti-arthritic activity of ethanolic extract of Barleria montana Nees leaves against chemical induced arthritis. In Conference on Drug Design and Discovery Technologies; Royal Society of Chemistry: London, UK, 2019; Volume 355, p. 143. [Google Scholar] [CrossRef]
- Sivakumar, G.; Sivakumar, G.A. Evaluation of Anti-arthritic activity of Methanolic extract of Barleria prionitis on CFA induced rats. Asian J. Pharm. Technol. 2019, 9, 159–164. [Google Scholar] [CrossRef]
- WHO. Global Atlas on Cardiovascular Disease Prevention and Control. World Health Organization in Collaboration with the World Heart Federation and the World Stroke Organization; WHO Press: Geneva, Switzerland, 2013. [Google Scholar]
- Singh, P.; Mishra, A.; Singh, P. Hypertension and herbal plant for its treatment: A review. Indian J. Res. Pharm. Biotechnol. 2015, 3, 2320–3471. [Google Scholar]
- Marya, B.H.; Bothara, S.B. Investigation of antihypertensive activity of leaves of Barleria prionitis in doca salt induced hypertensive rats. Int. J. Pharm. Sci. Rev. Res. 2013, 18, 17–19. [Google Scholar]
- Drexler, M. What You Need to Know About Infectious Disease; The National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Neiderud, C.J. How urbanization affects the epidemiology of emerging infectious diseases. Infect. Ecol. Epidemiol. 2015, 5, 27060. [Google Scholar] [CrossRef] [PubMed]
- Irwin, K.K.; Renzette, N.; Kowalik, T.F.; Jensen, J.D. Antiviral drug resistance as an adaptive process. Virus Evol. 2016, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Rosini, M.; Andrisano, V.; Bartolini, M.; Bolognesi, M.L.; Hrelia, P.; Minarini, A.; Tarozzi, A.; Melchiorre, C. Rational approach to discover multipotent anti-Alzheimer drugs. J. Med. Chem. 2005, 48, 360–363. [Google Scholar] [CrossRef]
- Khan, A.S. Flowering Plants: Structure and Industrial Products; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Ahmad, W.; Ahmad, B.; Ahmad, M.; Iqbal, Z.; Nisar, M.; Ahmad, M. In vitro inhibition of acetylcholinesterase, butyrylcholinesterase and lipoxygenase by crude extract of Myricaria elegans Proc. R. Soc. Biol. Sci. 2003, 11, 1046–1049. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.; Proença, C.; Serralheiro, M.L.M.; Araújo, M.E.M. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J. Ethnopharmacol. 2006, 108, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Narmadha, R.; Devaki, K. Toxicological evaluation and oral glucose tolerance test of ethanolic leaf extract of Barleria cristata L. in wistar albino rats. Int. J. Basic Clin. Pharmacol. 2013, 2, 742–746. [Google Scholar] [CrossRef]
- Albrecht, M.A.; Evans, C.W.; Raston, C.L. Green chemistry and the health implications of nanoparticles. Green Chem. 2006, 8, 417–432. [Google Scholar] [CrossRef]
- Mittal, J.; Batra, A.; Singh, A.; Sharma, M.M. Phytofabrication of nanoparticles through plants as nanofactories. Adv. Nat. Sci. Nanosci. Nanotechnol. 2014, 5, 1–10. [Google Scholar] [CrossRef]
- Sigamoney, M.; Shaik, S.; Govender, P.; Krishna, S.B.N. African leafy vegetables as bio-factories for silver nanoparticles: A case study on Amaranthus dubius C Mart. Ex Thell. S. Afr. J. Bot. 2016, 103, 230–240. [Google Scholar] [CrossRef]
- Devi, S.R.; Selvan, S.A.C. Greener synthesis and characterization of silver nanoparticles using Murraya koenigii leaf extract and its antibacterial activity. Int. J. Pharma Bio Sci. 2017, 8, 292–298. [Google Scholar] [CrossRef]
- Khatoon, N.; Mazumder, J.A.; Sardar, M. Biotechnological applications of green synthesized silver nanoparticles. J Nanosci. Curr. Res. 2017, 2, 1–8. [Google Scholar] [CrossRef]
- Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011, 13, 2638–2650. [Google Scholar] [CrossRef]
- Safavi, K. Evaluation of using nanomaterial in tissue culture media and biological activity. In Proceedings of the 2nd International Conference on Ecological, Environmental and Biological, Sciences, Bali, Indonesia, 13–14 October 2012. [Google Scholar]
- Vanaja, M.; Annadurai, G. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl. Nanosci. 2012, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.; Nehl, C.L.; Hafner, J.H. Biomedical applications of plasmon resonant metal nanoparticles. Future Med. 2006, 1, 201–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Cho, M.H. Antimicrobial effects of silver nanoparticles. Nanomedicine 2007, 3, 95–101. [Google Scholar] [CrossRef]
- Huh, A.J.; Kwon, Y.J. Nanoantibiotics: A new paradigm for treating infectious diseases using nanomaterials in the antibiotic resistant era. J. Control. Release 2011, 156, 128–145. [Google Scholar] [CrossRef]
- Sousa, C.; Botelho, C.; Oliveira, R. Nanotechnology applied to medical biofilms control. In Science against Microbial Pathogens: Communicating Current Research and Technological Advances; Formatex Research Center: Badajoz, Spain, 2011. [Google Scholar]
- Bhatt, P.; Tandel, K.; Sheter, V.; Rathi, K.R. Burden of extensively drug-resistant and pandrug-resistant gram-negative bacteria at a tertiary-care centre. New Microbes New Infect. 2015, 8, 166–170. [Google Scholar] [CrossRef] [Green Version]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.C.; Holt, K.; Kouri, J.B.; Ramirez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353. [Google Scholar] [CrossRef] [Green Version]
- Savithramma, N.; Rao, M.L.; Rukmini, K.; Devi, P.S. Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants. Int. J. ChemTech Res. 2011, 3, 1394–1402. [Google Scholar]
- Lee, H.J.; Lee, G.; Jang, N.R.; Yun, J.H.; Song, J.Y.; Kim, B.S. Biological synthesis of copper nanoparticles using plant extract. Nanotechnology 2011, 1, 371–374. [Google Scholar]
- Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z.K.; Hassan, D.; Maaza, M. Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif. Cells Nanomed. Biotechnol. 2018, 46, 838–852. [Google Scholar] [CrossRef] [Green Version]
- Chinnasamy, C.; Tamilselvan, P.; Karthik, V.; Karthik, B. Optimization and characterization studies on green synthesis of silver nanoparticles using response surface methodology. Adv. Nat. Appl. Sci. 2017, 11, 214–221. [Google Scholar]
- Maddila, S.; Hemalatha, K.P.J. Phytochemical screening and in vitro antimicrobial properties of crude leaf extracts of Wrightia tinctoria R.Br. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 707–720. [Google Scholar] [CrossRef] [Green Version]
- Salunke, G.R.; Ghosh, S.; Kumar, R.S.; Khade, S.; Vashisth, P.; Kale, T.; Chopade, S.; Pruthi, V.; Kundu, G.; Bellare, J.R.; et al. Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. Int. J. Nanomed. 2014, 9, 2635–2653. [Google Scholar] [CrossRef] [Green Version]
- Daima, H.K.; Kachhwaha, S.; Kothari, S.L. Synthesis of plant mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activities. Dig. J. Nanomater. Biostructures 2009, 4, 723–727. [Google Scholar]
- Govindarajan, M.; Benelli, G. Facile biosynthesis of silver nanoparticles using Barleria cristata: Mosquitocidal potential and biotoxicity on three non-target aquatic organisms. Parasitol. Res. 2016, 115, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Gomathi, M.; Rajkumar, P.V.; Prakasam, A. Study of dislocation density (defects such as Ag vacancies and interstitials) of silver nanoparticles, green-synthesized using Barleria cristata leaf extract and the impact of defects on the antibacterial activity. Results Phys. 2018, 10, 858–864. [Google Scholar] [CrossRef]
- Cittrarasu, V.; Balasubramanian, B.; Kaliannan, D.; Park, S.; Maluventhan, V.; Kaul, T.; Liu, W.C.; Arumugam, M. Biological mediated Ag nanoparticles from Barleria longiflora for antimicrobial activity and photocatalytic degradation using methylene blue. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2424–2430. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Chacko, M.J.; Harke, A.N.; Gurav, S.P.; Joshi, K.A.; Dhepe, A.; Kulkarni, A.S.; Shinde, V.S.; Parihar, V.S.; Asok, A.; et al. Barleria prionitis leaf mediated synthesis of silver and gold nanocatalysts. J. Nanomed. Nanotechnol. 2016, 7, 1–7. [Google Scholar] [CrossRef]
Plant Species | Plant Part | Chemical Group | Chemical Compounds/Phytoconstituents | Reference |
---|---|---|---|---|
B. acanthoides | Whole | Phenolic glycosides | Barlerisides A | [72] |
Barlerisides B | ||||
Phenylethanoid glycoside | Verbascoside (acteoside) | |||
Phenolic acid | p-hydroxycinnamic acid | |||
Neolignan diglycoside | Barlericin | [73] | ||
B. cristata | Whole | Phenolic acid | 4-hydroxy-trans-cinnamate | [70] |
Terpenoid | oleanolic acid | |||
Bark | Flavonoid | 6-O-α-L-rhamnopyranoside-3,7,3′-O-trimethylated-8-hydroxyquercetin | [74] | |
6-O-α-L-rhamnopyranoside quercetagetin | ||||
3-O-Methylquercetin | ||||
Gossypetin 8-methyl ether | ||||
Quercetagetin | ||||
Tamarixetin | ||||
Gossypetin | ||||
Quercetin | ||||
Leaves | Phenolic acids | p-Coumaric acid | [75] | |
Lipid | α -Tocopherol | |||
Flavonoid | Luteolin | |||
Flavonoid | 7-O-Methylluteolin | |||
Iridoid glycosides | Barlerin | |||
Shanzhiside methyl ester | ||||
Phenylethanoid glycosides | Desrhamnosyl acteoside | [76] | ||
Poliumoside | ||||
Acteoside (verbascoside) | ||||
B. dinteri | Leaves | Iridoid glycosides | Barlerin | [77] |
B. lupulina | Aerial | 8-O-acetylipolamiidic acid | [78,79,80,81,82,83,84] | |
8-O-acetyl-6-O-(p-methoxy-cis-cinnamoyl)shanzhiside | ||||
8-O-acetyl-6-O-(p-methoxy-transcinnamoyl) shanzhiside | ||||
6-O-p-methoxy-cis-cinnamoyl-8-O-acetylshanzhiside methyl ester | ||||
6-O-p-methoxy-trans-cinnamoyl-8-O-acetylshanzhiside methyl ester | ||||
6-O-p-cis-coumaroyl-8-O-acetylshanzhiside methyl ester | ||||
6-O-p-trans-coumaroyl-8-O-acetylshanzhiside methyl ester | ||||
Ipolamiide | ||||
Ipolamiidoside | ||||
Shanzhiside | ||||
Shanzhiside methyl ester | ||||
8-O-acetylshanzhiside | ||||
Barlerin | ||||
6-O-acetylshanzhiside methyl ester | ||||
Acetylbarlerin | ||||
Mussaenosidic acid | ||||
Phlorigidoside | ||||
Iridoid diglucoside | Lupulinoside | |||
Phenylethanoid glycosides | Forsythoside | |||
Poliumoside | ||||
Lignan glucosides | (+)-lyoniresinol 3 α-O- β-glucopyranoside | |||
Glycoside lipid molecule | 1-octen-3-yl- β -primeveroside | |||
Glycoside | Benzyl β -primeveroside | |||
B. noctiflora | Leaves | Phenylethanoid glycoside | Barlerinoside | [85] |
B. prionitis | Aerial | Terpenoid | Balarenone | [86] |
Phenylethanoid glycoside | Barlerinoside | [67] | ||
Phenylethanoid glycoside | Verbascoside | [87] | ||
Iridoid glycosides | Barlerin | [65,67] | ||
Acetylbarlerin | ||||
Shanzhiside methyl ester | [87] | |||
6-O-trans-p-coumaroyl-8-O-acetylshanzhiside methyl ester | ||||
6-O-cis-coumaroyl-8-O-acetylshanzhiside methyl ester | ||||
7-methoxydiderroside | [67] | |||
Lupulinoside | ||||
Terpenoid | Pipataline | 87] | ||
Lupeol | ||||
Phytosterols | 13,14-seco-stigmasta-5,14-diene-3-β –ol | |||
Roots | β-sitosterol | [88] | ||
Aerial | Flavonoid | Apigenin 7-O-β-D-glucoside | [78,86,89,90] | |
Leaves | 6-hydroxyflavone | [91] | ||
Scutellarin | ||||
Aerial | Luteolin-7-O-β-D-glucoside | [92] | ||
Leaves | Phenolic acid | Melilotic acid | [93] | |
Syringic acid | [91] | |||
Vanillic acid | ||||
p-hydroxybenzoic acid | ||||
B. strigose Whole | Phenylethanoid glycoside | 4-hydroxyphenylethyl 4-O-β-D-glucopyranosyl-(1→3)-O-α-L-rhamnopyranoside | [94] | |
Phenylethanoid glycoside | Verbascoside | |||
Iridoid glycoside | 10-O-trans-coumaroyl-eranthemoside | |||
Decaffeoylverbascoside | ||||
Lyoniresinol 3 α -O-β -D-glucoside | ||||
7-O-acetyl-8-epi-loganic acid | ||||
(3R)-1-octen-3-ol-3-O-β-D-xylosyl-(1→6)-β-D-glucoside | ||||
Phenylethanoid glycosides | Isoverbascoside | |||
Decaffeoylverbascoside | ||||
Flavonoid | Apigenin 7-O-α-Lrhamnosyl-(1→6)-O-β-D-glucoside | |||
B. trispinosa | Aerial | Iridoid glycosides | 6-α-L-rhamnopyranosyl-8-O-acetylshanzihiside methyl ester | [95] |
Acetyl barlerin | ||||
Barlerin | ||||
Shanzhiside methyl ester |
Plant Species | Plant Part | Extract/Compound | Antioxidant Activity/Models/Assays | Reference |
---|---|---|---|---|
B. acanthoides | Whole | Barleriside A, barleriside B | Superoxide scavenging activity, Xanthine oxidase activity | [72] |
B. albostellata | Leaves, stems | Methanol | DPPH assay; FRAP assay; β-Carotene-linoleic acid model system | [98] |
B. argillicola | Whole | Methanol | β-Carotene–linoleic acid model system; DPPH assay | [142] |
B. courtrallica | Leaves | Ethanol | DPPH assay, hydroxyl radical scavenging activity, superoxide radical scavenging activity, ABTS assay and reducing power methods. | [143] |
B. cristata | Leaves | Ethanol | DPPH assay, Superoxide anion and nitric oxide radical scavenging activity, hydrogen peroxide scavenging activity | [144] |
Leaves | Ethanol | DPPH assay, ABTS assay, TPTZ assay | [145] | |
Leaves | Acetone and methanol | DPPH assay; Nitric-oxide Reducing Assay, FRAP | [146] | |
Leaves | Ethanol | DPPH assay, FRAP | [147] | |
B. dinteri | Leaves | Acetone and methanol | DPPH assay | [148] |
B. gibsoni | Leaves | Ethanol | DPPH assay; Nitric oxide radical scavenging activity | [53] |
B. grandiflora | Leaves | Water and ethanol | FTC method, TBA method | [149] |
B. greenii | Leaves, stems, roots | Methanol | DPPH assay; FRAP assay; β-Carotene-linoleic acid model system | [98] |
B. lupulina | Leaves, stems | Methanol | DPPH assay | [42] |
B. montana | Leaves | Ethanol | DPPH, Reducing power assay, Nitric oxide scavenging activity | [150] |
Leaves | Methanol | DPPH assay, Hydrogen peroxide method | [151] | |
B. mysorensis | Leaves | Water | DPPH assay | [152] |
B. noctiflora | Leaf, roots | Methanol | DPPH assay, Ferrous reducing power, Fe2+ reducing power, Fe2+ chelating activity assay, Nitric oxide scavenging activity, ABTS assay, Superoxide anion scavenging activity, Hydrogen peroxide radical scavenging activity | [153] |
Whole | Ethanol | DPPH assay | [154] | |
Aerial | Ethanol and Water | DPPH assay, ABTS assay, Scavenging of hydrogen peroxide (H2O2), Lipid Peroxidation Inhibitory Activity, Hydroxyl radical scavenging activity p-NDA method, Superoxide radical scavenging activity by alkaline DMSO method | [155] | |
B. prionitis | Leaves, stems, roots | Methanol | DPPH assay; FRAP assay; β-Carotene-linoleic acid model system | [98] |
Aerial | Ethanol | β carotene bleaching assay, DPPH assay and hydroxyl radical scavenging activity | [140] | |
Aerial | Shanzhiside methyl ester, 6-O-trans-p-coumaroyl-8-O-acetylshanzhiside methyl ester, barlerin, acetylbarlerin, 7-methoxydiderroside, lupulinoside | DPPH assay | [67] | |
Whole | Ethyl acetate | DPPH assay | [156] | |
Leaves, stems | Acetone | FRAP assay, DPPH assay, ABTS Assay | [157] | |
Leaves, stems | Methanol | DPPH, Reducing power assay | [158] | |
Bark, leaves | Methanol | DPPH assay | [159] | |
Leaves | Ethanol | FTC method, TBA method, Scavenging of hydrogen peroxide radicals, DPPH assay | [160] | |
Whole | Ethanol | DPPH, ABTS Assay, Hydroxyl radical scavenging activity, Reducing power assay, Nitrous oxide Reducing Assay | [69] | |
Flower | Ethanol and water | DPPH assay | [161] | |
B. strigosa | Roots | Ethanol and water | ABTS assay, Nitric oxide quenching assay, Ferric reducing assay, DPPH, | [162] |
Leaves | Methanol | DPPH assay | [163] |
Plant Species | Plant Part | Extract | Antibacterial Activity | Agent Dosage (μg/mL) | Reference |
---|---|---|---|---|---|
B. acuminata | Leaves | Ethanol | B. cereus, B. subtilis, E. faecalis, S. aureus, S. epidermidis, E. coli, K. pneumonia, P. mirabilis, S. typhi, S. dysentriae. | 50,000 | [170] |
B. albostellata | Leaves, stem | Petroleum ether, dichloromethane | B. subtillis, S. aureus, E. coli, K. pneumoniae | 50,000 | [66] |
B. argillicola | Whole | Methanol | E. coli, P. aeruginosa, S. aureus | 20,000 | [142] |
B. cristata | Bark | Ethanol | S. aureus, B. subtillis, S. mutans | 10,000 | [74] |
Leaves | Methanol | K. pneumonia, S. aureus, E. coli, S. paratyphi | 5000 | [144] | |
Methanol and water | S. pyogenes, E. coli | 300 | [171] | ||
Petroleum ether, chloroform and water | X. oryzae, B. subtilis, E. coli, P. aeruginosa, P. fluorescences. | - | [172] | ||
B. dinteri | Leaves | n-hexane, dichloromethane, acetone and methanol | E. coli, E. faecaelis, S. aureus, P. aeruginosa. | 10,000 | [148] |
B. grandiflora | Aerial | Ethanol | S. aureus; S. mutans | 5000 | [173] |
B. greenii | Stems, roots | Dichloromethane | B. subtillis, S. aureus, E. coli, K. pneumoniae | 30,000 | [66] |
B. lupulina | Whole | Methanol | Propionibacterium acnes | - | [64] |
leaves | Methanol | S. aureus, E. coli; P. aeruginosa, K. pneumoniae, S. typhi | 200,000 | [42] | |
Leaves, stems | Ethanol | S. aureus, E. coli, P. aeruginosa, K. pneumonia, S. typhi | 20,000 | [174] | |
Leaves | Methanol | S. aureus, B. pumilus | 1250 | [175] | |
Leaves | Essential oil | B. pumilus, S. aureus | - | [176] | |
B. montana | Leaves | Acetone | E. coli; S. typhi; P. aeruginosa; K. pneumoniae; P. vulgaris; B. subtilis; S. pneumoniae; S. aureus; E.coli | 200 | [177] |
Aerial | Methanol | B. subtilis; B. cereus; B. pumilis; S. aureus; E. coli; P. aeuriginosa; P. vulgaris; S. marceseans | 200,000 | [178] | |
Leaves | Water, ethanol, methanol, chloroform | E. aerogenes; E. coli; S. pneumoniae; B.subtilis; P. vulgaris | 100 | [179] | |
B. prionitis | Leaves, stems | Dichloromethane | B. subtilis, S. aureus, E. coli, K. pneumoniae | 50,000 | [66] |
Bark | Methanol | S. mutants, S. aureus, Pseudomonas sp., Bacillus sp. | 50,000 | [169] | |
Leaves | Chloroform | S. typhi; B. subtilis; V. cholera; M. luteus; Providencia sp.; L. sporogenus, Citrobacter sp. | 50,000 | [180] | |
Leaves | Water, petroleum ether, chloroform, acetone | L. rhamnosus | 200,000 | [181] | |
Leaves | Ethanol | S. typhi; B. subtilis; S. aureus; V. cholera; E. coli | 10,000 | [182] | |
Leaves, stem | Ethyl acetate | B. pumilus; B. subtilis; S. pyogenes; B. cereus; S. marcescens, C. acidovorans; P. aeruginosa | 100,000 | [183] | |
Leaves | Methanol | S. mutants; S. aureus; L. acidophilus; Pseudomonas sp. | 10,000 | [184] | |
Leaves | Petroleum ether, chloroform, water | B. subtilis; E. coli; P. fluorescens; X. oryzae | - | [172] | |
Leaves | Ethanol | S. aureus; B. subtilis; P. vulgaris; K. pneumonia; E. coli; P. aeruginosa | 10,000 | [185] | |
Aerial | Ethanol | B. cereus; P. aeruginosa | - | [86] | |
B. strigosa | Leaves | Butanol | B. subtilis; S. aureus; M. luteus | 2000 | [186] |
Plant Species | Plant Part | Extract | Antifungal Activity | Agent Dosage (μg/mL) | Reference |
---|---|---|---|---|---|
B. albostellata | Leaves and stems | Petroleum ether, dichloromethane | C. albicans | 20,000 | [98] |
B. cristata | Leaves | Saponin fraction | C. albicans; A. flavous; Penicillium sp.; A. niger; Trichophyton sp. | 1000 | [192] |
Saponin fraction | A. flavous; A. niger | 5000 | [144] | ||
Petroleum ether, chloroform, water | A. flavous; C. albicans | - | [172] | ||
B. grandiflora | Leaves | Water | A. fumigatus | 625 | [193] |
Aerial | Ethanol | C. albicans | 5000 | [173] | |
Leaves | Ethanol | C. albicans | 1600 | [194] | |
B. greenii | Leaves, stems and roots | Dichloromethane | C. albicans | 20,000 | [98] |
B. montana | Aerial | Methanol | A. niger; R. stolonifera; S. cerevisiae; P. chrysogenum | 200,000 | [178] |
B. prionitis | Bark | Methanol | S. cerevisiae; C. albicans | 50,000 | [169] |
Roots and stems | Petroleum ether, dichloromethane | C. albicans | 20,000 | [98] | |
Leaves, stems and roots | Ethanol | A. fumigatus; C. vaginitis; C. neoformans; C. albicans; B. dermatitidis | 20,000 | [195] | |
Aerial | Ethanol | C. albicans | 5000 | [173] | |
Leaves | Ethanol | C. albicans | 1600 | [194] | |
Aerial | Methanol | C. albicans | 200 | [196] | |
Methanol | C. albicans, A. niger | 200,000 | [197] |
Plant Species | Plant Part | Extract | Anti-Inflammatory Activity/Assays/Model | Agent Dosage | Reference |
---|---|---|---|---|---|
B. albostellata | Leaves and stems | Petroleum ether, dichloromethane, ethanol | COX-1, COX-2 | 0.25 μg/μL | [66] |
B. cristata | Leaves | Water | CIO in rat paws, prostaglandins inhibitory activity, and acetic acid induced capillary permeability in mice. | 500 mg/kg | [203] |
Methanol | Inhibited oedema produced by histamine and serotonin in rats. Reduction in the increased peritoneal vascular permeability in mice | 500 mg/kg | [204] | ||
B. greenii | Stems and roots | Petroleum ether, dichloromethane, ethanol | COX-1, COX-2 | 0.25 μg/μL | [66] |
B. lupulina | Aerial | Water | Activated the Nrf2 cell defense pathway in human dermal microvascular endothelial cells | - | [205] |
Aerial | Methanol | Acute and sub-acute inflammation models of albino rats. | 300 mg/kg | [63] | |
Whole | Methanol, acetone | CIO in rat paws and ethyl phenylpropiolate-induced ear oedema in rats. | 50–200 mg/kg | [206] | |
B. montana | Leaves | Ethanol | Formalin induced inflammation in male albino wistar rats. | 300 mg/kg | [207] |
B. prionitis | Leaves, stems and roots | Petroleum ether, dichloromethane, ethanol | COX-1, COX-2 assays | 0.25 μg/μL | [66] |
Whole | Methanol-aqueous fractions (TAF) | CIO in adrenalectomised rats, activity in acute inflammation induced by carrageenan, histamine and dextran in rats | 100 mg/kg | [202] | |
Roots | Water fractions | CIO in rat paw model | 400 mg/kg | [208] | |
Aerial | Shanzhiside methylester, 8-O-acetyl shanzhiside methyl ester, iridoid glycosides, monoterpenoidal fraction | Stimulated rat neutrophils by inhibiting MPO, elastase and MMP-9 enzymes | 10 μg/mL | [209] |
Plant Species | Plant Part | Extract/Compounds | Assays/Cell Lines | Agent Dosage | Reference |
---|---|---|---|---|---|
B. cristata | Aerial | Isoverbascoside | NQO1 assay, murine hepatoma cell line Hepa-1c1c7 | 3.125 μM | [211] |
Leaves and bark | Methanol | Brine shrimp lethality assay, brine shrimp cysts | 200 μg/mL | [146] | |
B. gibsoni | Leaves | Petroleum ether, chloroform | SRB assay, MDA, MB 4355 (Human breast cancer) and Hep G2 (Liver cancer cell line) | 50 µg/mL | [213] |
B. grandiflora | Leaves | Alcoholic | A-549 (human lung cancer) cells, DLA tumour cells and Vero (African green monkey kidney) normal cells | 300 μg/mL | [212] |
Ethanol | MTT assay; Human gingival fibroblast cell lines, human dermal fibroblast cell lines | 1000 μg/mL | [173] | ||
B. lupulina | Leaves | Ethanol | MTT assay; cancerous THP-1 cell lines | 100 μg/mL | [214] |
Ethanol | MTT assay; HepG2 cells | 1000 μg/mL | [174] | ||
B. prionitis | Leaves | Ethanol | MTT assay; Human gingival fibroblast cell lines, human dermal fibroblast cell lines, | 1000 μg/mL | [173] |
Ethanol | SRB assay, breast (MCF-7), colon (DLD-1), lung (A549), breast metastatic (MDMAMB-468), lung metastatic (NCIH358) and colon metastatic (SW620) | 100 μg/mL | [215] | ||
B. strigosa | Leaves | Butanol | MTT colorimetric assay, Human hepatocellular carcinoma (HepG2), human breast adenocarcinoma (MCF7), human oral epidermoid carcinoma (KB), human colon adenocarcinoma (HT29), murine lymphocytic leukemia (P388), human cervical carcinoma (HeLa) as well as two normal cell lines including African green monkey kidney (Vero) and mouse subcutaneous connective tissue (L929) | 2000 μg/mL | [186] |
Plant Species | Plant Part | Extract | Antdiabetic Activity/Assays/Models | Agent Dosage | Reference |
---|---|---|---|---|---|
B. bispinosa | Aerial | Methanol | Male Wister rats, Streptozotocin induced diabetic rats | 500 mg/kg | [220] |
B. cristata | Seeds | Ethanol | Wistar rats, alloxan-induced diabetic rats | 200 mg/kg | [218] |
Leaves and roots | Ethanol and petroleum ether | Inhibition of alpha-amylase enzyme assay, Inhibition of alpha-glucosidase enzyme assay | - | [147] | |
B. lupulina | Aerial | Methanol | Male Wister rats, Streptozotocin-diabetic rats | 300 mg/kg | [61] |
B. montana | Aerial | Methanol | Wistar albino rats; Streptozotocin induced diabetic rats | 400 mg/kg | [221] |
B. noctiflora | Aerial | Ethyl acetate | Wister rats, Streptozotocin induced type-2 diabetes in rats | 400 mg/kg | [222] |
Whole | Ethanol | In-vitro anti-diabetic activity was determined by inhibition of α-glucosidase and inhibition of α-amylase studies | 500 μg/mL | [223] | |
Aerial | Ethyl acetate | Wister rats, Streptozotocin induced diabetic rats | - | [224] | |
B. prionitis | Leaves and roots | Ethanol | Adult Albino rats, alloxan-induced diabetic rats | 200 mg/kg | [219] |
Leaves, stems and roots | Alcohol | Albino rats, alloxan-induced hyperglycemic rats | 200 mg/kg | [225] |
Plant Species | Plant Part | Extract | Antiulcer Activity/Gastric Cytoprotective Activity/Models | Agent Dosage | Reference |
---|---|---|---|---|---|
B. buxifolia | Whole | Methanol | Wistar rats, PL and aspirin induced ulcers | 400 mg/kg | [229] |
B. gibsoni | Leaves | Ethanol | Wistar rats, PL-induced ulcer models | 500 mg/kg | [53] |
B. lupulina | Aerial | Methanol | Albino (Wistar) rats, PL ulceration in rats, stress-induced ulceration, drug-induced gastric ulcer in rats, duodenal ulcers in rats. | 200 mg/kg | [62] |
B. prionitis | Leaves | Methanol | Wistar rats; ethanol induced gastric mucosal lesions, indomethacin induced ulcer models | 500 mg/kg | [52] |
Ethanol | Male Sprague–Dawley rats and female Swiss albino mice; PL- induced ulcers, aspirin- induced ulcers, CRS-induced ulcers, ethanol-induced ulcer | 200 mg/kg | [228] | ||
Methanol | Ethanol and Indomethacin Induced ulcer models | 500 mg/kg | [230] | ||
Chloroform | Rodent experimental models (indomethacin and pylorus ligation) | 250 mg/kg | [52] |
Plant Species | Plant Part | Extract | Hepatoprotective Activity/ASSAYS/Models | Agent Dosage (mg/kg) | Reference |
---|---|---|---|---|---|
B. cristata | Leaves | Ethanol | Wistar albino rats, CCl4 induced hepatic damage in rats | 200 | [238] |
B. cuspidata | Leaves | Methanol | Wistar albino rats, CCl4 induced hepatotoxicity in rats | 400 | [241] |
B. gibsoni | Aerial | Aqueous alcoholic | Wistar albino rats; inducing agent Paracetamol in Carboxy methyl cellulose | 400 | [242] |
B. montana | Leaves | Methanol | Wistar albino rats; ethanol-induced rat hepatic injury | 500 | [243] |
Aerial | Methanol | CCl4 induced hepatotoxicity on rats | 800 | [178] | |
B. prionitis | Leaves and stems | Fractions from ethanol-aqueous | Charles Foster rats, Swiss albino mice; acute and chronic animal test models, CCl4 toxicity, cetaminophen (APAP) toxicity, D-GalN induced hepatotoxicity | 200 | [240] |
Plant Species | Plant Part | Extract | Anthelmintic Activity/Assays/Models | Agent Dosage (mg/mL) | Reference |
---|---|---|---|---|---|
B. buxifolia | Leaves | Ethanol | IAW P. posthuma | 100 | [258] |
B. gibsoni | Leaves | Water, ethanol | IAW P. posthuma | 15 | [260] |
B. prionitis | Whole | Water, ethanol | IAW P. posthuma | 100 | [259] |
Water, ethanol | IAW P. posthuma | 100 | [261] |
Plant Species | Plant Part | Extract | Antiarthritic Activity/Assays/Models | Agent Dosage (mg/kg) | Reference |
---|---|---|---|---|---|
B. lupulina | Leaves | Methanol | Albino male mice, female Sprague Dawley rats, formalin-induced arthritis, adjuvant induced arthritis, collagen type II-induced arthritis, monosodium iodoacetate induced osteoarthritis | 600 | [269] |
B. montana | Leaves | Ethanol | Male Albino Wistar rats, Complete Freund’s in vivo method in induced rats | 400 | [270] |
Leaves | Ethyl acetate fraction | Sprague Dawley rats, formaldehyde induced arthritis; FCA-induced arthritis rat model | 250 | [268] | |
B. prionitis | Whole | Methanol | Complete Freund’s induced rat model | 400 | [271] |
Plant Species | Plant Part | Extract/Compound | Inhibition of Acetylcholinesterase/ | Agent Dosage | Reference |
---|---|---|---|---|---|
B. albostellata | Leaves, stems and roots | Methanol | Microtitre plate assays based on the colorimetric method; and using the positive control galanthamine | 625 μg/mL | [98] |
B. greenii | Leaves, stems and roots | Methanol | Microtitre plate assays based on the colorimetric method; and using the positive control galanthamine | 625 μg/mL | [98] |
B. prionitis | Leaves, stems and roots | Methanol | Microtitre plate assays based on the colorimetric method; and using the positive control galanthamine | 625 μg/mL | [98] |
Aerial | 8-amino-7-hydroxypipataline | Modified Ellman’s assay, photometric method | - | [86] | |
6-O-trans-p-coumaroyl-8-O-actylshanzhiside methyl ester, barlerin, acetylbarlerin, 7-methoydiderroside, lupulinoside | Ellman’s assay | - | [67] |
Plant Species | Plant Part | Extract | Nanoparticles Synthesised | Reported Activity/Phytochemicals Present | Agent Dosage | Reference |
---|---|---|---|---|---|---|
B. cristata | Leaves | Water | Ag * | Mosquitocidal potential | 300 μg/mL | [305] |
Ag | Antibacterial activity against E. coli and S. aureus | - | [306] | |||
B. longiflora | Leaves | Water | Ag | Antimicrobial activity, inhibition of Enterococcus sp., Streptococcus sp., B. megaterium, P. putida, P. aeruginosa and S. aureus and potential application in photocatalytic dye degradation processes | 10 μg/mL | [307] |
B. prionitis | Leaves | Water | Ag | Polyphenols, starch, reducing sugars, ascorbic acid and citric acid using GC-MS analysis | - | [308] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gangaram, S.; Naidoo, Y.; Dewir, Y.H.; El-Hendawy, S. Phytochemicals and Biological Activities of Barleria (Acanthaceae). Plants 2022, 11, 82. https://doi.org/10.3390/plants11010082
Gangaram S, Naidoo Y, Dewir YH, El-Hendawy S. Phytochemicals and Biological Activities of Barleria (Acanthaceae). Plants. 2022; 11(1):82. https://doi.org/10.3390/plants11010082
Chicago/Turabian StyleGangaram, Serisha, Yougasphree Naidoo, Yaser Hassan Dewir, and Salah El-Hendawy. 2022. "Phytochemicals and Biological Activities of Barleria (Acanthaceae)" Plants 11, no. 1: 82. https://doi.org/10.3390/plants11010082
APA StyleGangaram, S., Naidoo, Y., Dewir, Y. H., & El-Hendawy, S. (2022). Phytochemicals and Biological Activities of Barleria (Acanthaceae). Plants, 11(1), 82. https://doi.org/10.3390/plants11010082