Impact of an Extremely Dry Period on Tree Defoliation and Tree Mortality in Serbia
Abstract
:1. Introduction
2. Results
2.1. Forest Decline and Die-Back of Individual Trees in Serbia
2.2. Extreme Climate Events and Forest Decline
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Study Area and Data Preparation
5.2. Defoliation
- I.
- The first group included trees with no defoliation (class 0) and slight defoliation (class 1) at the beginning of condition monitoring and during most of the years for which defoliation moved to higher classes of defoliation in the last few years, namely, classes 2 (moderate), 3 (severe), and 4 (dead).
- II.
- The second group included trees that died suddenly and moved from class 0 or class 1 to class 4.
- III.
- The third group included trees with higher classes of defoliation that occurred after the first year of monitoring, and which several years later led to their death.
5.3. Climate Characteristics
5.4. Drought Index Quantification
5.5. Tree Mortality
5.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bennett, A.; McDowell, N.; Allen, C.; Anderson-Teixeira, K. Larger trees suffer most during drought in forests worldwide. Nat. Plants 2015, 1, 15139. [Google Scholar] [CrossRef] [PubMed]
- Barbeta, A.; Mejia-Chang, M.; Ogaya, R.; Voltas, J.; Dawson, T.; Penuelas, J. The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Glob. Change Biol. 2015, 21, 1213–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boczoń, A.; Kowalska, A.; Dudzińska, M.; Wróbel, M. Drought in Polish forests in 2015. Pol. J. Environ. Stud. 2016, 25, 1857–1862. [Google Scholar] [CrossRef]
- Wilhite, D.A. Drought and Water Crises: Science, Technology, and Management Issues; Taylor and Francis: Boca Raton, FL, USA, 2005; 406p. [Google Scholar]
- Dai, A. Drought under global warming: A review. WIREs Clim. Change 2011, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Spinoni, J.; Naumann, G.; Vogt, J.; Barbosa, P. Meteorological Droughts in Europe: Events and Impacts—Past Trends and Future Projections; EUR 27748 EN; Publications Office of the European Union: Luxembour, 2016. [Google Scholar] [CrossRef]
- Bradford, R.B. Drought Events in Europe. In Drought and Drought Mitigation in Europe. Adv. Nat. Technol. Hazard. Res. 2000, 14, 7–20. [Google Scholar] [CrossRef]
- Fink, A.H.; Brucher, T.; Kruger, A.; Leckebusch, G.; Pinto, J.; Ulbrich, U. The 2003 European summer heatwaves and drought–synoptic diagnosis and impacts. Weather 2004, 59, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Gil-Pelegrín, E.; Peguero-Pina, J.J.; Camarero, J.J.; Fernández-Cancio, A.; Navarro-Cerrillo, R. Drought and forest decline in the Iberian Peninsula: A simple explanation for a complex phenomenon? In Droughts: Causes, Effects and Predictions; Sánchez, J.M., Ed.; Nova Science Publishers: New York, NY, USA, 2008; pp. 27–68. [Google Scholar]
- Jentsch, A.; Beierkuhnlein, C. Research frontiers in climate change: Effects of extreme meteorological events on ecosystems. Comptes Rendus Geosci. 2008, 340, 621–628. [Google Scholar] [CrossRef]
- Bissolli, P.; Ziese, M.; Pietzsch, S.; Finger, P.; Friedrich, K.; Nitsche, H.; Obregón, A. Drought Conditions in Europe in the Spring of 2012; Report; Deutscher Wetterdienst (DWD): Offenbach, Germany, 2012; pp. 1–30. [Google Scholar]
- Spinoni, J.; Antofie, T.; Barbosa, P.; Bihari, Z.; Lakatos, M.; Szalai, S.; Szentimrey, T.; Vogt, J. An overview of drought events in the Carpathian Region in 1961–2010. Adv. Sci. Res. 2013, 10, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Stahl, K.; Kohn, I.; Blauhut, V.; Urquijo, J.; De Stefano, L.; Acácio, V.; Dias, S.; Stagge, J.; Tallaksen, L.; Kampragou, E.; et al. Impacts of European drought events: Insights from an international database of text-based reports. Nat. Hazard. Earth Sys. 2016, 16, 801–819. [Google Scholar] [CrossRef] [Green Version]
- De la Cruz, A.; Gil, P.; Fernández-Cancio, A.; Minaya, M.; Navarro-Cerrillo, R.; Sánchez-Salguero, R.; Grau, J.M. Defoliation triggered by climate induced effects in Spanish ICP Forests monitoring plots. For. Ecol. Manag. 2014, 331, 245–255. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Carnicer, J.; Coll, M.; Ninyerola, M.; Pons, X.; Sánchez, G.; Peñuelas, J. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl. Acad. Sci. USA 2011, 108, 1474–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Vilalta, J.; Lloret, F.; Breshears, D.D. Drought-induced forest decline: Causes, scope and implication. Biol. Lett. 2012, 8, 689–691. [Google Scholar] [CrossRef]
- Sánchez-Salguero, R.; Camarero, J.J.; Carrer, M.; Gutiérrez, E.; Alla, A.Q.; Andreu-Hayles, L.; Hevia, A.; Koutavas, A.; Martínez-Sancho, E.; Nola, P.; et al. Climate extremes and predicted warming threaten Mediterranean Holocene firs forests refugia. Proc. Natl. Acad. Sci. USA 2017, 114, E10142–E10150. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Shao, M.; Jia, X.; Wei, X. Relationship of climatic and forest factors to drought-and heat-induced tree mortality. PLoS ONE 2017, 12, e0169770. [Google Scholar] [CrossRef]
- Neumann, M.; Mues, V.; Moreno, A.; Hasenauer, H.; Seidl, R. Climate variability drives recent tree mortality in Europe. Glob. Change Biol. 2017, 23, 4788–4797. [Google Scholar] [CrossRef]
- Choat, B.; Brodribb, T.J.; Brodersen, C.R.; Duursma, R.A.; López, R.; Medlyn, B.E. Triggers of tree mortality under drought. Nature 2018, 558, 531–539. [Google Scholar] [CrossRef]
- Hartmann, H.; Schuldt, B.; Sanders, T.G.M.; Macinnis-Ng, C.; Boehmer, H.J.; Allen, C.D.; Bolte, A.; Crowther, T.W.; Hansen, M.C.; Medlyn, B.E.; et al. Monitoring global tree mortality patterns and trends. Report from the VW symposium ‘Crossing scales and disciplines to identify global trends of tree mortality as indicators of forest health’. New Phytol. 2018, 217, 984–987. [Google Scholar] [CrossRef] [Green Version]
- Senf, C.; Pflugmacher, D.; Zhiqiang, Y.; Sebald, J.; Knorn, J.; Neumann, M.; Hostert, P.; Seidl, R. Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat. Commun. 2018, 9, 4978. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Anderegg, L.D.L.; Kerr, K.L.; Trugman, A.T. Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Change Biol. 2019, 25, 3793–3802. [Google Scholar] [CrossRef] [PubMed]
- Caudullo, G.; Barredo, J.I. A georeferenced dataset of drought and heat-induced tree mortality in Europe. One Ecosyst. 2019, 4, e37753. [Google Scholar] [CrossRef]
- DeSoto, L.; Cailleret, M.; Sterck, F.; Jansen, S.; Kramer, K.; Robert, E.M.R.; Aakala, T.; Amoroso, M.M.; Bigler, C.; Camarero, J.J.; et al. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun. 2020, 11, 545. [Google Scholar] [CrossRef] [PubMed]
- Senf, C.; Buras, A.; Zang, C.S.; Rammig, A.; Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 2020, 11, 6200. [Google Scholar] [CrossRef] [PubMed]
- Republic Hydrometeorological Service of Serbia (RHSS) Annual Climate Characteristics for the Territory of Serbia, Republic Hydrometeorological Service of Serbia, Belgrade. Available online: http://www.hidmet.gov.rs/eng/meteorologija/klimatologija_produkti.php (accessed on 31 March 2022).
- Pollastrini, M.; Feducci, M.; Bonal, D.; Fotelli, M.; Gessler, A.; Grossiord, G.; Guyot, V.; Jactel, H.; Nguyen, D.; Radoglou, K.; et al. Physiological significance of forest tree defoliation: Results from a survey in a mixed forest in Tuscany (central Italy). For. Ecol. Manag. 2016, 361, 170–178. [Google Scholar] [CrossRef]
- Sousa-Silva, R.; Verheyen, K.; Ponette, Q.; Bay, E.; Sioen, G.; Titeux, H.; Van de Peer, T.; Van Meerbeek, K.; Muys, B. Tree diversity mitigates defoliation after a drought-induced tipping point. Glob. Change Biol. 2018, 24, 4304–4315. [Google Scholar] [CrossRef]
- Gottardini, E.; Cristofolini, F.; Cristofori, A.; Pollastrini, M.; Camin, F.; Ferretti, M. A multi-proxy approach reveals common and species-specific features associated with tree defoliation in broadleaved species. For. Ecol. Manag. 2020, 467, 118151. [Google Scholar] [CrossRef]
- Ferretti, M.; Bacaro, G.; Brunialti, G.; Calderisi, M.; Croisé, L.; Frati, L.; Nicolas, M. Tree canopy defoliation can reveal growth decline in mid-latitude temperate forests. Ecol. Indic. 2021, 127, 107749. [Google Scholar] [CrossRef]
- Bussoti, F.; Pollastrini, M. Traditional and novel indicators of climate change impacts on European forest trees. Forests 2017, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Seidling, W. Signals of summer drought in crown condition data from the German Level I network. Eur. J. For. Res. 2007, 126, 529–544. [Google Scholar] [CrossRef]
- Fabiánek, P.; Hellebrandová, K.; Čapek, M. Monitoring of defoliation in forest standsof the Czech Republic and its comparison with results of defoliation monitoring in other European countries. J. For. Sci. 2012, 58, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Eickenscheidt, N.; Augustin, N.H.; Wellbrock, N. Spatio-temporal modelling of forest monitoring data: Modelling German tree defoliation data collected between 1989 and 2015 for trend estimation and survey grid examination using GAMMs. iForest 2019, 12, 338–348. [Google Scholar] [CrossRef]
- Etzold, S.; Ziemińska, K.; Rohner, B.; Bottero, A.; Bose, A.; Ruehr, N.K.; Zingg, A.; Rigling, A. One Century of Forest Monitoring Data in Switzerland Reveals Species- and Site-Specific Trends of Climate-Induced Tree Mortality. Front. Plant Sci. 2019, 10, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDowell, N.; Allen, C.D.; Anderson-Teixeira, K.; Brando, P.; Brienen, R.; Chambers, J.; Christoffersen, B.; Davies, S.; Doughty, C.; Duqueet, A.; et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 2018, 219, 851–869. [Google Scholar] [CrossRef] [Green Version]
- ICP Forests—International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests. Available online: http://icp-forests.net/ (accessed on 31 January 2022).
- Eichhorn, J.; Roskams, P.; Potočić, N.; Timmermann, V.; Ferretti, M.; Mues, V.; Szepesi, A.; Durrant, D.; Seletković, I.; Schröck, H.-W.; et al. Part IV Visual Assessment of Crown Condition and Damaging Agents. In ICP Forests Manual; Version 2020-3; Thünen Institute of Forest Ecosystems: Eberswalde, Germany, 2020; pp. 5–54. Available online: https://storage.ning.com/topology/rest/1.0/file/get/9995547265?profile=original (accessed on 31 January 2022).
- Dobbertin, M.; Brang, P. Crown defoliation improves tree mortality models. For. Ecol. Manag. 2001, 141, 271–284. [Google Scholar] [CrossRef]
- Ferretti, M.; Nicolas, M.; Bacaro, G.; Brunialti, G.; Calderisi, M.; Croisé, L.; Frati, L.; Lanier, M.; Maccherini, S.; Santi, E.; et al. Plot-scale modelling to detect size, extent, and correlates of changes in tree defoliation in French high forests. For. Ecol. Manag. 2014, 311, 56–69. [Google Scholar] [CrossRef]
- Lorenz, M.; Fischer, R.; Becher, G.; Mues, V.; Granke, O.; Braslavskaya, T.; Bobrinsky, A.; Clarke, N.; Lachmanová, Z.; Lukina, N.; et al. Work Report, Institute for World Forestry. Forest Condition in Europe. Technical Report of ICP Forests. 2009. Available online: https://www.icp-forests.org/pdf/TR2009.pdf (accessed on 31 January 2022).
- Nicolas, M.; Jolivet, C.; Jonard, M. How monitoring networks contribute to the understanding and to the management of soil and forest ecosystems? Rev. For. Fr. 2014, 66, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Innes, J.L. Forest health surveys—A critique. Environ Pollut. 1988, 54, 1–15. [Google Scholar] [CrossRef]
- Johnson, J.; Jacob, M. Monitoring the effects of air pollution on forest condition in Europe: Is crown defoliation an adequate indicator? iForest 2010, 3, 86–88. [Google Scholar] [CrossRef] [Green Version]
- Cherubini, P.; Battipaglia, G.; Innes, J.L. Tree Vitality and Forest Health: Can Tree-Ring Stable Isotopes Be Used as Indicators? Curr. For. Rep. 2021, 7, 69–80. [Google Scholar] [CrossRef]
- De Vries, W.; Klap, J.M.; Erisman, J.W. Effects of environmental stress on forest crown condition in Europe. Part I: Hypotheses and approach to the study. Water Air Soil Pollut. 2000, 119, 317–333. [Google Scholar] [CrossRef]
- De Marco, A.; Proietti, C.; Cionni, I.; Fischer, R.; Screpanti, A.; Vitale, M. Future impacts of nitrogen deposition and climate change scenarios on forest crown defoliation. Environ. Pollut. 2014, 194, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Ognjenović, M.; Seletković, I.; Potočić, N.; Marušić, M.; Tadić, M.P.; Jonard, M.; Rautio, P.; Timmermann, V.; Lovreškov, L.; Ugarković, D. Defoliation Change of European Beech (Fagus sylvatica L.) Depends on Previous Year Drought. Plants 2022, 11, 730. [Google Scholar] [CrossRef] [PubMed]
- Jančić, G. Sušenje šuma—Uzroci sušenja i mere sanacije. Revija Šume 2013, 120, 10–11. Available online: https://srbijasume.rs/ssume/wp-content/uploads/2021/02/Sume_120.pdf (accessed on 31 January 2022).
- Češljar, G.; Nevenić, R.; Bilibajkić, S.; Stefanović, T.; Gagić Serdar, R.; Đorđević, I.; Poduška, Z. Viability of trees on bio-indicator plots Level 1 in Republic of Serbia in 2013. Sustain. For. 2013, 67/68, 69–78. [Google Scholar]
- Češljar, G.; Gagić Serdar, R.; Đorđević, I.; Poduška, Z.; Stefanović, T.; Bilibajkić, S.; Nevenić, R. Analysis of types of damages at the sample plots of Level 1 in 2013 at the territory of the Republic of Serbia. Sustain. For. 2014, 69/70, 63–71. [Google Scholar] [CrossRef]
- Češljar, G.; Đorđević, I.; Brašanac-Bosanac, L.; Eremija, S.; Mitrović, S.; Ćirković-Mitrović, T.; Lučić, A. Determination of forest decline due to the action of dominant stress factor through monitoring of defoliation—Case study of Maljen, Serbia. Agric. For. 2021, 67, 211–226. [Google Scholar] [CrossRef]
- Drekić, M.; Poljaković-Pajnik, L.; Orlović, S.; Kovačević, B.; Vasić, V.; Pilipović, A. Results of multiannual monitoring of tree crown condition. Poplar 2014, 193/194, 23–35. [Google Scholar]
- Republic Hydrometeorological Service of Serbia (RHSS). Meteorological Yearbook—Climatological Data. Republic Hydrometeorological Service of Serbia, Belgrade. Available online: http://www.hidmet.gov.rs/latin/meteorologija/klimatologija_godisnjaci.php (accessed on 31 March 2022).
- Rakićević, T. Klimatsko rejoniranje SR Srbije. In Zbornik Radova Geografskog Instituta “Jovan Cvijić”; SANU: Beograd, Srbija, 1980; Knjiga 27; pp. 29–42. [Google Scholar]
- Augusto, L.; Davies, T.J.; Delzon, S.; De Schrijver, A. The enigma of the rise of angiosperms: Can we untie the knot? Ecol. Lett. 2014, 17, 1326–1338. [Google Scholar] [CrossRef]
- Hentschel, R.; Rosner, S.; Kayler, Z.E.; Andreassen, K.; Børja, I.; Solberg, S.; Tveito, O.E.; Priesack, E.P.; Gess-ler, A. Norway spruce physiological and anatomical predisposition to dieback. For. Ecol. Manag. 2014, 322, 27–36. [Google Scholar] [CrossRef]
- Hacket-Pain, A.J.; Cavin, L.; Friend, A.D.; Jump, A.S. Consistent limitation of growth by high temperature and low precipitation from range core to southern edge of European beech indicates widespread vulnerability to changing climate. Eur. J. For. Res. 2016, 135, 897–909. [Google Scholar] [CrossRef] [Green Version]
- Devi, N.M.; Kukarskih, V.V.; Galimova, A.A.; Mazepa, V.S.; Grigoriev, A.A. Climate change evidence in tree growth and stand productivity at the upper treeline ecotone in the Polar Ural Mountains. For. Ecosyst. 2020, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Republic Hydrometeorological Service of Serbia (RHSS). Basic Climate Characteristics for the Territory of Serbia. Republic Hydrometeorological Service of Serbia, Belgrade. Available online: https://www.hidmet.gov.rs/eng/meteorologija/klimatologija_srbije.php (accessed on 1 May 2022).
- Gazol, A.; Camarero, J.J. Compound climate events increase tree drought mortality across European forests. Sci. Total Environ. 2022, 816, 151604. [Google Scholar] [CrossRef] [PubMed]
- Popović, T.; Radulović, E.; Jovanović, M. Koliko nam se menja klima, kakva će biti naša buduća klima? EnE05—Konf. Zivotn. Sred. Ka Evropi. Beogr. 2005, 212–218. Available online: http://www.sepa.gov.rs/download/5_web.pdf (accessed on 10 January 2022).
- Vukovic, A.; Vujadinovic, M.; Rendulic, S.; Djurdjevic, V.; Ruml, M.; Babic, V.; Popovic, D. Global warming impact on climate change in Serbia for the period 1961–2100. Therm. Sci. 2018, 22, 2267–2280. [Google Scholar] [CrossRef]
- Stojanović, D.B.; Orlović, S.; Zlatković, M.; Kostić, S.; Vasić, V.; Miletić, B.; Kesić, L.; Matović, B.; Božanić, D.; Pavlović, L.; et al. Climate change within Serbian forests: Current state and future perspectives. Poplar 2021, 208, 39–56. [Google Scholar] [CrossRef]
- Stanković, Z.; Govedar, Z.; Kapović, M.; Hrkić, Z. Climate Change Impact on Forest Vegetation in Republic of Srpska. In Proceedings of the International Scientific Conference “Forest Ecosystems and Climate Changes”, Belgrade, Serbia, 9–10 March 2010; Institute of Forestry: Belgrade, Serbia, 2010; Volume 1, pp. 21–25. Available online: http://www.forest.org.rs/pdf/konferencije/PROCEEDINGS-Vol1-FOREST-ECOSYSTEMSAND-CLIMATE-CHANGES.pdf (accessed on 10 January 2022).
- Brašanac-Bosanac, L.; Filipović, D.; Ćirković-Mitrović, T. Measurements for the adaptation of forest ecosystems on negative impacts of climate change in Serbia. Fresen. Environ. Bull. Ger. 2011, 20, 2653–2660. [Google Scholar]
- Ćirković-Mitrović, T.; Popović, V.; Brašanac-Bosanac, L.; Rakonjac, L.; Lučić, A. The impact of climate elements on the diameter increment of Austrian pine (Pinus nigra Arn.) in Serbia. Arch. Biol. Sci. 2013, 65, 161–170. [Google Scholar] [CrossRef]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef]
- Barriopedro, D.; Fischer, E.M.; Luterbacher, J.; Trigo, R.M.; García-Herrera, R. The hot summer of 2010: Redrawing the temperature record map of Europe. Science 2011, 332, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Hanel, M.; Rakovec, O.; Markonis, Y.; Máca, P.; Samaniego, L.; Kyselý, J.; Kumar, R. Revisiting the recent European droughts from a long-term perspective. Sci. Rep. 2018, 8, 9499. [Google Scholar] [CrossRef] [PubMed]
- Hari, V.; Rakovec, O.; Markonis, Y.; Hanel, M.; Kumar, R. Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming. Sci. Rep. 2020, 10, 12207. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; He, B.; Guo, L.; Huang, L.; Chen, D. Similarities and differences in the mechanisms causing the European summer heatwaves in 2003, 2010, and 2018. Earth’s Future 2020, 7, e2019EF001386. [Google Scholar] [CrossRef] [Green Version]
- Büntgen, U.; Urban, O.; Krusic, P.J.; Rybníček, M.; Kolář, T.; Kyncl, T.; Ač, A.; Koňasová, E.; Čáslavský, J.; Esper, J.; et al. Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 2021, 14, 190–196. [Google Scholar] [CrossRef]
- European Environment Agency—EEA. Available online: https://www.eea.europa.eu/data-and-maps/figures/main-drought-events-in-europe (accessed on 10 January 2022).
- Spinonia, J.; Naumannb, G.; Vogta, J.V.; Barbosaa, P. The biggest drought events in Europe from 1950 to 2012. J. Hydrol Reg. Stud. 2015, 3, 509–524. [Google Scholar] [CrossRef]
- Standardized Precipitation Evapotranspiration Index (SPEI) Database. Available online: http://sac.csic.es/spei/database.html (accessed on 31 January 2022).
- Global Integrated Drought Monitoring and Prediction System (GIDMaPS). Available online: http://drought.eng.uci.edu/ (accessed on 31 January 2022).
- Senf, C.; Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 2020, 4, 63–70. [Google Scholar] [CrossRef]
- Technical Report of ICP Forests 2013: Forest Condition in Europe. Available online: https://www.icp-forests.org/pdf/TR2013.pdf (accessed on 31 January 2022).
- Intergovernmental Panel on Climate Change. Climate Change—IPCC 2014, Synthesis Report, Summary for Policymakers. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/AR5_SYR_FINAL_SPM.pdf (accessed on 31 January 2022).
- Ferretti, M.; Fischer, R.; Mues, V.; Granke, O.; Lorenz, M.; Seidling, W.; Nicolas, M. 2020: Part II: Basic Design Principles for the ICP Forests Monitoring Networks. Version 2020-2. In Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests; UNECE ICP Forests Programme Co-Ordinating Centre, Ed.; Thünen Institute of Forest Ecosystems: Eberswalde, Germany, 2020; pp. 33 + Annex. Available online: http://icp-forests.net/page/icp-forests-manual (accessed on 31 March 2022).
- Neuman, W.L. Social Research Methods: Qualitative and Quantitative Approaches, 6th ed.; Part one; Pearson Inc.: London, UK, 2006; pp. 1–79. [Google Scholar]
- Köppen, W.P. Klassification der Klimate nach Temperatur, Niederschlag und Jahreslauf. Petermanns Geog. Mitt. 1918, 64, 243–248. [Google Scholar]
- Koppen, W.P.; Koppen, W. Das geographisca system der klimate. In Handbuch der Klimatologie; Koppen, W., Geiger, G.C., Eds.; Gebr. Borntraeger: Berlin, Germany, 1936; pp. 1–44. [Google Scholar]
- Mihajlović, J. Application of Recent Climate Classifications for the Climate Regionalization of Serbia. PhD Thesis, University of Belgrade, Faculty of Geography, Belgrade, Serbia, 2018; pp. 1–368. Available online: https://nardus.mpn.gov.rs/handle/123456789/10657 (accessed on 30 April 2022).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Koppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. Proceedings of the Eighth Conference on Applied Climatology. Boston MA. Am. Meteorol. Soc. 1993, 17, 179–184. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index—SPEI. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Tirivarombo, S.; Osupile, D.; Eliasson, P. Drought Monitoring and Analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Phys. Chem. Earth Parts A/B/C 2018, 106, 1–10. [Google Scholar] [CrossRef]
- Tefera, A.S.; Ayoade, J.O.; Bello, N.J. Comparative analyses of SPI and SPEI as drought assessment tools in Tigray Region, Northern Ethiopia. SN Appl. Sci. 2019, 1, 1265. [Google Scholar] [CrossRef] [Green Version]
- Pei, Z.; Fang, S.; Wang, L.; Yang, W. Comparative analysis of drought indicated by the SPI and SPEI at various timescales in Inner Mongolia, China. Water 2020, 12, 1925. [Google Scholar] [CrossRef]
- Sheil, D.; Burslem, D.F.R.P.; Alder, D. The interpretation and misinterpretation of mortality rate measures. J. Ecol. 1995, 83, 331–333. [Google Scholar] [CrossRef]
- Lewis, S.L.; Phillips, O.L.; Sheil, D.; Vinceti, B.; Baker, T.R.; Brown, S.; Graham, A.W.; Higuchi, N.; Hilbert, D.W.; Laurance, W.F.; et al. Tropical forest tree mortality, recruiting and turnover rates: Calculation, interpretation and comparison when census intervals vary. J. Ecol. 2004, 92, 929–944. [Google Scholar] [CrossRef]
Period of Observation | Sample Size | M | MAD | MIN | MAX | Average Rank in KWt | Test Statistic | p-Value |
---|---|---|---|---|---|---|---|---|
2004–2008 | 34 | 0.000 | 0.000 | 0.000 | 0.018 | 41.294 | 10.7105 | 0.0047 |
2009–2013 | 34 | 0.000 | 0.000 | 0.000 | 0.028 | 51.235 | ||
2014-2018 | 34 | 0.003 | 0.003 | 0.000 | 0.492 | 61.971 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Češljar, G.; Jovanović, F.; Brašanac-Bosanac, L.; Đorđević, I.; Mitrović, S.; Eremija, S.; Ćirković-Mitrović, T.; Lučić, A. Impact of an Extremely Dry Period on Tree Defoliation and Tree Mortality in Serbia. Plants 2022, 11, 1286. https://doi.org/10.3390/plants11101286
Češljar G, Jovanović F, Brašanac-Bosanac L, Đorđević I, Mitrović S, Eremija S, Ćirković-Mitrović T, Lučić A. Impact of an Extremely Dry Period on Tree Defoliation and Tree Mortality in Serbia. Plants. 2022; 11(10):1286. https://doi.org/10.3390/plants11101286
Chicago/Turabian StyleČešljar, Goran, Filip Jovanović, Ljiljana Brašanac-Bosanac, Ilija Đorđević, Suzana Mitrović, Saša Eremija, Tatjana Ćirković-Mitrović, and Aleksandar Lučić. 2022. "Impact of an Extremely Dry Period on Tree Defoliation and Tree Mortality in Serbia" Plants 11, no. 10: 1286. https://doi.org/10.3390/plants11101286
APA StyleČešljar, G., Jovanović, F., Brašanac-Bosanac, L., Đorđević, I., Mitrović, S., Eremija, S., Ćirković-Mitrović, T., & Lučić, A. (2022). Impact of an Extremely Dry Period on Tree Defoliation and Tree Mortality in Serbia. Plants, 11(10), 1286. https://doi.org/10.3390/plants11101286