Transcriptomic Characterization of Miscanthus sacchariflorus × M. lutarioriparius and Its Implications for Energy Crop Development in the Semiarid Mine Area
Abstract
:1. Introduction
2. Results
2.1. De Novo Assembly of Reference Sequence of Leaf Transcripts of M. sacchariflorus
2.2. Analysis of Gene Expression in Hybrid Population
2.3. Screening of Differential Genes and Gene Expression Analysis
2.4. GO Functional Annotation and Enrichment Analysis of Differential Genes
2.4.1. GO Functional Annotation and Enrichment Analysis of Differential Gene
2.4.2. Functions Annotation and Enrichment Analysis of KEGG Metabolic Pathway
3. Discussion
3.1. Genetic Basis at Transcriptional Level of Heterosis for Miscanthus
3.2. Metabolic Pathways in F1 Population and Parents in Response to Combined Stress
3.3. Relationship between Cell Wall Changes and Adaptability of Miscanthus in Loess Plateau
3.4. Relationship between Circadian Rhythm and Adaptability of Miscanthus in the Loess Plateau
4. Materials and Methods
4.1. Establishment of Hybrid Population and Collection of Samples
4.2. RNA-Seq Processing and Assembly of Reference Transcriptome of M. sacchariflorus
4.3. Expression Analysis of Hybrid Population
4.4. Analysis and Classification of Differential Genes
4.5. Function Annotation and Metabolic Pathway Enrichment Analysis of Differential Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sang, T.; Zhu, W. China’s bioenergy potential. GCB Bioenergy 2011, 3, 79–90. [Google Scholar] [CrossRef]
- Gelfand, I.; Sahajpal, R.; Zhang, X.; Izaurralde, R.C.; Gross, K.L.; Robertson, G.P. Sustainable bioenergy production from marginal lands in the US Midwest. Nature 2013, 493, 514–517. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Peng, C.; Chen, Z.; Liu, Y.; Yan, J.; Li, J.; Sang, T. Sustainable bioenergy production with little carbon debt in the loess plateau of china. Biotechnol. Biofuels 2016, 9, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Zheng, C.; Liang, L.; Yi, Z.; Xue, S. Quantitative assessment of the potential for soil improvement by planting Miscanthus on saline-alkaline soil and the underlying microbial mechanism. GCB Bioenergy 2021, 13, 1191–1205. [Google Scholar] [CrossRef]
- He, Y.; Jaiswal, D.; Liang, X.-Z.; Sun, C.; Long, S.P. Perennial biomass crops on marginal land improve both regional climate and agricultural productivity. GCB Bioenergy 2022, 14, 558–571. [Google Scholar] [CrossRef]
- Yan, J.; Chen, W.L.; Luo, F.; Ma, H.Z.; Meng, A.P.; Li, X.W.; Zhu, M.; Li, S.S.; Zhou, H.F.; Zhu, W.X.; et al. Variability and adaptability of Miscanthus species evaluated for energy crop domestication. GCB Bioenergy 2012, 4, 49–60. [Google Scholar] [CrossRef]
- Yan, J.; Zhu, C.Y.; Liu, W.; Luo, F.; Mi, J.; Ren, Y.J.; Li, J.Q.; Sang, T. High photosynthetic rate and water use efficiency of Miscanthus lutarioriparius characterize an energy crop in the semiarid temperate region. GCB Bioenergy 2015, 7, 207–218. [Google Scholar] [CrossRef]
- Zhao, X.H.; Kang, L.; Wang, Q.; Lin, C.; Liu, W.; Chen, W.; Sang, T.; Yan, J. Water Use Efficiency and Stress Tolerance of the Potential Energy Crop Miscanthus lutarioriparius Grown on the Loess Plateau of China. Plants 2021, 10, 544. [Google Scholar] [CrossRef]
- Yan, J.; Zhu, M.D.; Liu, W.; Xu, Q.; Zhu, C.Y.; Li, J.Q.; Sang, T. Genetic variation and bidirectional gene flow in the riparian plant Miscanthus lutarioriparius, across its endemic range: Implications for adaptive potential. GCB Bioenergy 2016, 8, 764–776. [Google Scholar] [CrossRef]
- Zong, J.Q.; Chen, J.B.; Nie, D.Y.; Li, S.; Liu, J.X. Preliminary evaluation on salinity tolerance of Miscanthus sinensis and M. sacchariflorus (Maxim.) Benth. of China. Acta Agrestia Sin. 2011, 19, 803–807. (In Chinese) [Google Scholar]
- Li, Q.; Li, J.P.; He, M. Study on the adaptability of Miscanthus sacchariflorus biological components to soil water stress. Pratacultural Sci. 2013, 30, 893–897. (In Chinese) [Google Scholar]
- Sun, P.; Chen, Y.Y. Physiological response of Triarrherca sacchariflora under heavy saline-alkali stress in coastal region. Period. Ocean. Univ. China 2015, 45, 115–120. (In Chinese) [Google Scholar]
- Suraj, K.; Tzu-Ya, W.; Taiken, N.; Antonio, V.; Ryan, S.J.; Sacks, E.J.; Yoshifumi, T.; Toshihiko, Y. Field performance of Saccharum × Miscanthus Intergeneric hybrids (Miscanes) under cool climatic conditions of northern japan. Bioenergy Res. 2020, 13, 132–146. [Google Scholar]
- Rusinowski, S.; Krzyżak, J.; Pogrzeba, M.; Clifton-Brown, J.; Jensen, E.; Mos, M.; Webster, R.; Sitko, K.; Pogrzebaa, M. New miscanthus hybrids cultivated at a polish metal-contaminated site demonstrate high stomatal regulation and reduced shoot pb and cd concentrations. Environ. Pollut. 2019, 252, 1377–1387. [Google Scholar] [CrossRef] [PubMed]
- Xin, A.; Jian-Xiong, J.; Zhi-Yong, C.; Jing-Ping, Q.; Zi-Li, Y. Heterosis, genetic and correlation analysis of main agronomic traits in F1 population derived from crossing between M. sacchariflorus and M. lutarioriparius. Acta Prataculturae Sin. 2017, 26, 111–122. (In Chinese) [Google Scholar]
- Xin, A.; Jian-Xiong, J.; Zhi-Yong, C.; Jing-Ping, Q.; Zi-Li, Y. Genetic and Correlation Analysis of Main Agronomic Traits in F1 Population Derived from Crossing between M. sacchariflorus and M. floridulus. Acta Prataculturae Sin. 2017, 25, 814–822. (In Chinese) [Google Scholar]
- De Vega, J.J.; Peel, N.; Purdy, S.J.; Hawkins, S.; Donnison, L.; Dyer, S.; Farrar, K. Differential expression of starch and sucrose metabolic genes linked to varying biomass yield in Miscanthus hybrids. Biotechnol Biofuels 2021, 14, 98. [Google Scholar] [CrossRef]
- Maddison, A.L.; Camargo-Rodriguez, A.; Scott, I.M.; Jones, C.M.; Elias, D.M.O.; Hawkins, S.; Massey, A.; Clifton-Brown, J.; McNamara, N.P.; Donnison, I.S.; et al. Predicting future biomass yield in Miscanthus using the carbohydrate metabolic profile as a biomarker. GCB Bioenergy 2017, 9, 1264–1278. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhao, Y.; Zhu, J.K. Thriving under Stress: How Plants Balance Growth and the Stress Response. Dev. Cell 2020, 55, 529–543. [Google Scholar] [CrossRef]
- Qian, W.; Lifang, K.; Cong, L.; Zhihong, S.; Chengcheng, T.; Wei, L.; Tao, S.; Juan, Y. Transcriptomic evaluation of miscanthus photosynthetic traits to salinity stress. Biomass Bioenergy 2019, 125, 123–130. [Google Scholar]
- da Costa, R.M.F.; Simister, R.; Roberts, L.A.; Timms-Taravella, E.; Cambler, A.B.; Corke, F.M.K.; Han, J.; Ward, R.J.; Buckeridge, M.S.; Gomez, L.D.; et al. Nutrient and drought stress: Implications for phenology and biomass quality in miscanthus. Ann. Bot. 2019, 124, 553–566. [Google Scholar] [CrossRef] [PubMed]
- Xing, S.L.; Tao, C.C.; Song, Z.H.; Liu, W.; Yan, J.; Kang, L.F.; Lin, C.; Sang, T. Coexpression network revealing the plasticity and robustness of population transcriptome during the initial stage of domesticating energy crop Miscanthus lutarioriparius. Plant Mol. Biol. 2018, 97, 489–506. [Google Scholar] [CrossRef] [PubMed]
- Zhihong, S.; Qin, X.; Cong, L.; Chengcheng, T.; Tao, S. Transcriptomic characterization of candidate genes responsive to salt tolerance of miscanthus energy crops. Global Change Biology. Bioenergy 2017, 9, 1222–1237. [Google Scholar]
- Li, S.; Xu, Z.; Guo, J.; Zhang, E.; Jiang, J.; Shi, W. Comparative heterosis analysis of cabbage based on transcriptome data of cabbage heads leaves. Acta Hortic. Sin. 2019, 46, 1079–1092. (In Chinese) [Google Scholar]
- Yang, H.; Wang, X.C.; Wei, Y.X.; Deng, Z.; Liu, H.; Chen, J.S.; Dai, L.J.; Xia, Z.H.; He, G.M.; Li, D.J. Transcriptomic analyses reveal mechanisms underlying growth heterosis and weakness of molecular rubber tree seedlings. BMC Plant Biol. 2018, 18, 10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.F.; Li, B.; Zhang, D.F.; Jia, G.Q.; Li, Z.Y.; Wang, S.C. Genome-wide transcriptional analysis of yield and heterosis-associated genes in maize (Zea Mays L). J. Integr. Agric. 2012, 11, 1245–1256. [Google Scholar] [CrossRef]
- Kamanga, R.; Mbega, E.; Ndakidemi, P. Drought tolerance mechanisms in plants: Physiological responses associated with water deficit stress in Solarium lycopersicum. Adv. Crop Sci. Technol. 2018, 6, 362. [Google Scholar] [CrossRef]
- Guo, R.; Shi, L.; Jiao, Y.; Li, M.; Zhong, X.; Gu, F.; Liu, Q.; Xia, X.; Li, H. Metabolic responses to drought stress in the tissues of drought-tolerant and drought-sensitive wheat genotype seedlings. AoB Plants 2018, 10, ply016. [Google Scholar] [CrossRef] [Green Version]
- Prinsi, B.; Negri, A.S.; Failla, O.; Scienza, A.; Luca, E. Root proteomic and metabolic analyses reveal specific responses to drought stress in differently tolerant grapevine rootstocks. BMC Plant Biol. 2018, 18, 126. [Google Scholar] [CrossRef]
- Kapoor, D.; Bhardwaj, S.; Landi, M.; Sharma, A.; Ramakrishnan, M.; Sharma, A. The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Appl. Sci. 2020, 10, 5692. [Google Scholar] [CrossRef]
- Ni, Y.; Guo, N.; Zhao, Q.; Guo, Y. Identification of candidate genes involved in wax deposition in Poa pratensis by RNA-seq. BMC Genom. 2016, 17, 314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard, A.; Joubès, J. Arabidopsis cuticular waxes: Advances in synthesis, export and regulation. Prog. Lipid Res. 2013, 52, 110–129. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Yang, K.; Lee, M.; Kim, S.; Kim, J.; Lim, S.; Kang, G.-H.; Min, S.R.; Kim, S.-J.; Park, S.U.; et al. Differentiated cuticular wax content and expression patterns of cuticular wax biosynthetic genes in bloomed and bloomless broccoli (Brassica oleracea var. italica). Process Biochem. 2015, 50, 456–462. [Google Scholar] [CrossRef]
- Fraser, C.M.; Chapple, C. The phenylpropanoid pathway in arabidopsis. Arab. Book 2011, 9, e0152. [Google Scholar] [CrossRef] [Green Version]
- Lewis, N.G.; Yamamoto, E. Lignin: Occurrence, biogenesis and biodegradation. Annu. Rev. Plant Physiol Plant Mol. Biol. 1990, 41, 455–496. [Google Scholar] [CrossRef]
- Heidarabadi, M.D.; Ghanati, F.; Fujiwara, T. Interaction between boron and aluminum and their effects on phenolic metabolism of linum usitatissimum L. roots. Plant Physiol. Biochem. 2011, 49, 1377–1383. [Google Scholar] [CrossRef]
- Dodd, A.N.; Salathia, N.; Hall, A.; Kévei, E.; Tóth, R.; Nagy, F.; Hibberd, J.M.; Millar, A.J.; Webb, A.A.R. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 2005, 309, 630–633. [Google Scholar] [CrossRef] [Green Version]
- van der Weijde, T.; Huxley, L.M.; Hawkins, S.; Sembiring, E.H.; Farrar, K.; Dolstra, O.; Visser, R.G.F.; Trindade, L.M. Impact of drought stress on growth and quality of miscanthus for biofuel production. GCB Bioenergy 2017, 9, 770–782. [Google Scholar] [CrossRef] [Green Version]
- Lenk, I.; Fisher LH, C.; Vickers, M.; Akinyemi, A.; Didion, T.; Swain, M.; Jensen, C.S.; Mur, L.A.J.; Bosch, M. Transcriptional and metabolomic analyses indicate that cell wall properties are associated with drought tolerance in Brachypodium distachyon. Int. J. Mol. Sci. 2019, 20, 1758. [Google Scholar] [CrossRef] [Green Version]
- Shtein, I.; Bar-Ona, B.; Popper, Z.A. Plant and algal structure: From cell walls to biomechanical function. Physiol. Plant 2018, 164, 56–66. [Google Scholar] [CrossRef]
- Jiang, Y.; Yao, Y.; Wang, Y. Physiological response, cell wall components, and gene expression of switchgrass under short-term drought stress and recovery. Crop. Sci. 2012, 52, 2718–2727. [Google Scholar] [CrossRef]
- Meibaum, B.; Riede, S.; Schr€oder, B.; Manderscheid, R.; Weigel, H.-J.; Breves, G. Elevated CO2 and drought stress effects on the chemical composition of maize plants, their ruminal fermentation and microbial diversity in vitro. Arch. Anim. Nutr. 2012, 66, 473–489. [Google Scholar] [CrossRef]
- Zheng, C.; Iqbal, Y.; Labonte, N.; Sun, G.; Feng, H.; Yi, Z.; Xiao, L. Performance of switchgrass and Miscanthus genotypes on marginal land in the yellow river delta. Ind. Crops Prod. 2019, 141, 111773. [Google Scholar] [CrossRef]
- McClung, C.R. Plant circadian rhythms. Plant Cell 2006, 18, 792–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, K.; Araki, T.; Endo, M. Circadian clock during plant development. J. Plant Res. 2018, 131, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, A.; Khanale, V.; Char, B. Plant circadian rhythm in stress signaling. Indian J. Plant Physiol. 2017, 22, 147–155. [Google Scholar] [CrossRef]
- Pokhilko, A.; Mas, P.; Millar, A.J. Modelling the widespread effects of TOC1 signalling on the plant circadian clock and its outputs. BMC Syst. Biol. 2013, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Graf, A.; Smith, A.M. Starch and the clock: The dark side of plant productivity. Trends Plant Sci. 2011, 16, 169–175. [Google Scholar] [CrossRef]
- Harmer, S.L. The circadian system in higher plants. Annu. Rev. Plant Biol. 2009, 60, 357–377. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, K.; Zhang, X.; Guo, L.; Qi, T.; Tang, H.; Zhang, M.; Xing, C. Comparative transcriptome analysis of inbred lines and contrasting hybrids reveals overdominance mediate early biomass vigor in hybrid cotton. BMC Genom. 2020, 21, 140. [Google Scholar] [CrossRef] [Green Version]
- FASTQC. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 12 May 2022).
- FASTX-Toolkit. Available online: http://hannonlab.cshl.edu/fastx_toolkit/ (accessed on 12 May 2022).
- Xu, Q.; Xing, S.; Zhu, C.; Wei, L.; Fan, Y.; Qian, W.; Song, Z.; Yang, W.; Fan, L.; Fei, S.; et al. Population transcriptomics reveals a potentially positive role of expression diversity in adaptation. J. Integr. Plant Biol. 2015, 57, 284–299. [Google Scholar] [CrossRef] [PubMed]
- SOAPdenovo-Trans-bin-v1.03. Available online: https://sourceforge.net/projects/soapdenovotrans/files/SOAPdenovo-Trans/example/v1.03/ (accessed on 12 May 2022).
- GapClose. Available online: http://sourceforge.net/projects/soapdenovo2/files/GapClose (accessed on 12 May 2022).
- Huang, X.; Madan, A. CAP3: A DNA sequence assembly program. Genome Res. 1999, 9, 868–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, P.; Longden, I.; Bleasby, A. EMBOSS: The European molecular biology open software suite. Trends Genet. 2000, 16, 276–277. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Zhu, C.; Fan, Y.; Song, Z.; Xing, S.; Liu, W.; Yan, J.; Sang, T. Population transcriptomics uncovers the regulation of gene expression variation in adaptation to changing environment. Sci. Rep. 2016, 6, 25536. [Google Scholar] [CrossRef] [Green Version]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10, R25. [Google Scholar] [CrossRef] [Green Version]
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering splice junctions with RNA-seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef]
- Leng, N.; Dawson, J.A.; Thomson, J.A.; Ruotti, V.; Kendziorski, C. EBSeq: An empirical bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics 2013, 29, 1035–1043. [Google Scholar] [CrossRef] [Green Version]
- Tian, T.; Yue, L.; Hengyu, Y.; Qi, Y.; Xin, Y.; Zhou, D.; Wenying, X.; Zhen, S. agriGO v2.0: A GO analysis toolkit for the agricultural community. Nucleic. Acids Res. 2017, 45, W122–W129. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.; Mao, X.; Huang, J.; Ding, Y.; Wu, J.; Dong, S.; Kong, L.; Gao, G.; Li, C.Y.; Wei, L. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic. Acids Res. 2011, 39, W316–W322. [Google Scholar] [CrossRef] [Green Version]
Length | Number | Frequency |
---|---|---|
100–500 | 377 | 4.65 |
500–1000 | 2271 | 27.98 |
1000–1500 | 2501 | 30.82 |
1500–2000 | 1549 | 19.09 |
2000–2500 | 757 | 9.33 |
2500–3000 | 311 | 3.83 |
3000–3500 | 184 | 2.27 |
3500–4000 | 73 | 0.90 |
4000–4500 | 38 | 0.47 |
4500–5000 | 23 | 0.28 |
≥5000 | 32 | 0.39 |
Total | 8116 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, H.; Lin, C.; Liu, W.; Xiao, L.; Zhao, X.; Kang, L.; Liu, X.; Sang, T.; Yi, Z.; Yan, J.; et al. Transcriptomic Characterization of Miscanthus sacchariflorus × M. lutarioriparius and Its Implications for Energy Crop Development in the Semiarid Mine Area. Plants 2022, 11, 1568. https://doi.org/10.3390/plants11121568
Feng H, Lin C, Liu W, Xiao L, Zhao X, Kang L, Liu X, Sang T, Yi Z, Yan J, et al. Transcriptomic Characterization of Miscanthus sacchariflorus × M. lutarioriparius and Its Implications for Energy Crop Development in the Semiarid Mine Area. Plants. 2022; 11(12):1568. https://doi.org/10.3390/plants11121568
Chicago/Turabian StyleFeng, Hui, Cong Lin, Wei Liu, Liang Xiao, Xuhong Zhao, Lifang Kang, Xia Liu, Tao Sang, Zili Yi, Juan Yan, and et al. 2022. "Transcriptomic Characterization of Miscanthus sacchariflorus × M. lutarioriparius and Its Implications for Energy Crop Development in the Semiarid Mine Area" Plants 11, no. 12: 1568. https://doi.org/10.3390/plants11121568
APA StyleFeng, H., Lin, C., Liu, W., Xiao, L., Zhao, X., Kang, L., Liu, X., Sang, T., Yi, Z., Yan, J., & Huang, H. (2022). Transcriptomic Characterization of Miscanthus sacchariflorus × M. lutarioriparius and Its Implications for Energy Crop Development in the Semiarid Mine Area. Plants, 11(12), 1568. https://doi.org/10.3390/plants11121568