Integrated Starches and Physicochemical Characterization of Sorghum Cultivars for an Efficient and Sustainable Intercropping Model
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Analysis
2.2. Microscopy Analysis of Sorghum Starches
2.3. Flow Cytometry Analysis
2.4. X-ray Diffraction Analysis
2.5. Light Transmittance and Water Holding Capacity of Sorghum Starch
2.6. Water Solubility and Swelling Power of Sorghum Starch
2.7. Pasting Properties of Starch by Application of Peak Viscosity
2.8. Differential Scanning Calorimetry
2.9. Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) of Starches
2.10. Heat Map Correlation Analysis of Starches
3. Materials and Methods
3.1. Materials
3.2. Starch Extraction
3.3. Chemical Analysis of Sorghum Starches
3.4. Polarized Light Microscopy Analysis
3.5. Microscopy Analysis
3.6. Flow Cytometric Analysis
3.7. X-ray Diffraction Analysis
3.8. Light Transmittances and Water Holding Capacity
3.9. Water Solubility and Swelling Power of Sorghum Starch
3.10. Differential Scanning Calorimetry
3.11. Pasting Properties
3.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, S.; Wang, Y.; Li, G. Sorghum breeding and production in China. In Cereals in China; He, Z., Bonjean, A.P.A., Eds.; CIMMYT: Veracruz, Mexico, 2010; pp. 97–107. [Google Scholar]
- Wang, S.J.; Li, C.L.; Copeland, L.; Niu, Q.; Wang, S. Starch retrogradation: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Cardoso, L.D.; Pinheiro, M.; Martino, S.S.; Pinheiro-Sant’Ana, H.S.; Pinheiro-Sant’Ana, H.M. Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health. Criti. Rev. Food Sci. Nutr. 2017, 57, 372–390. [Google Scholar] [CrossRef] [PubMed]
- Yun, X.; Zhang, P.Z.; Robyn, D.W.; Fang, Z.X. Sorghum grain: From genotype, nutrition, and phenolic profile to its health benefits and food applications. A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2025–2046. [Google Scholar] [CrossRef] [Green Version]
- Ai, Y.F.; Medic, J.; Jiang, H.X.; Wang, D.H.; Jane, J.L. Starch characterization and ethanol production of sorghum. J. Agric. Food Chem. 2011, 59, 7385–7392. [Google Scholar] [CrossRef]
- Lithourgidis, A.; Vlachostergios, D.; Dordas, C.; Damalas, C. Dry matter yield, nitrogen content, and competition in pea–cereal intercropping systems. Eur. J. Agron. 2011, 34, 287–294. [Google Scholar] [CrossRef]
- Duvvada, S.K.; Maitra, S. Sorghum-based intercropping system for agricultural sustainability. Indian J. Nat. Sci. 2020, 10, 20306–20313. [Google Scholar]
- Yang, F.; Liao, D.; Wu, X.; Gao, R.; Fan, Y.; Raza, M.A. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Res. 2017, 203, 16–23. [Google Scholar] [CrossRef]
- Feng, L.; Raza, M.A.; Chen, Y.; Khalid, M.H.B.; Meraj, T.A.; Ahsan, F.; Fan, Y.; Du, J.; Wu, X.; Song, C.; et al. Narrow-wide row planting pattern improves the light environmental and seed yields of intercrop species in relay intercropping system. PLoS ONE 2019, 14, e0212885. [Google Scholar]
- Raza, M.A.; Feng, L.Y.; Iqbal, N.; Ahmed, M.; Chen, Y.K.; Khalid, M.H.B.; Yang, W. Growth and development of soybean under changing light environments in relay intercropping system. PeerJ 2019, 7, e7262. [Google Scholar] [CrossRef]
- Tester, R.F.; Karkalas, J.; Qi, X. Starch-composition, fine structure and architecture. J. Cereal. Sci. 2004, 39, 151–165. [Google Scholar] [CrossRef]
- Zhu, F. Structure, physicochemical properties, modifications, and uses of sorghum starch. A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Alcázar-Alay, S.C.; Meireles, M.A.A. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci. Technol. 2015, 35, 215–236. [Google Scholar] [CrossRef] [Green Version]
- Sang, Y.J.; Scott, B.; Paul, A.S.; Jeff, P.; Shi, Y.C. Structure and functional properties of sorghum starches differing in amylose content. J. Agric. Food Chem. 2008, 56, 6680–6685. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.S.; Cai, C.H.; Gilbert, G.; Li, E.P.; Wang, J.; Wei, C.X. Relationships between amylopectin molecular structures and functional properties of different-sized fractions of normal and high-amylose maize starches. Food Hydrocoll. 2016, 52, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Zhang, S.; Zhang, B.; Qiao, D.; Pu, H.; Liu, S.; Li, L. Structural features and thermal property of propionylated starches with different amylose/amylopectin ratio. Int. J. Biol. Macromol. 2017, 97, 123–130. [Google Scholar] [CrossRef]
- Yang, Q.H.; Zhang, W.L.; Li, J.; Gong, X.W.; Feng, B.L. Physicochemical properties of starches in proso (non-waxy and waxy) and foxtail millets (non-waxy and waxy). Molecules 2019, 24, 1743. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.K.; Zhang, Y.; Chen, X.S.; Zhang, M.; Wang, Z.W. Multi-scale structural and digestion properties of wheat starches with different amylose contents. Int. J. Food Sci. Tech. 2014, 49, 2619–2627. [Google Scholar] [CrossRef]
- Li, H.; Wen, Y.; Wang, J.; Sun, B. Relations between chain-length distribution, molecular size, and amylose content of rice starches. Int. J. Biol. Macromol. 2018, 120, 2017–2025. [Google Scholar] [CrossRef]
- Chao, G.; Gao, J.; Liu, R.; Wang, L.; Li, C.; Wang, Y.; Qu, Y.; Feng, B.L. Starch physicochemical properties of waxy proso millet (Panicum miliaceum L.). Starch–Stärke 2014, 66, 1005–1012. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; Hoover, R.; Donner, E.; Liu, Q.; Jaiswal, S.; Chibbar, R.; Seetharaman, K. Structure of faba bean, black bean and pinto bean starches at different levels of granule organization and their physicochemical properties. Food Res. Int. 2011, 44, 2962–2974. [Google Scholar] [CrossRef]
- Wang, Y. Study on Character and Starch Physico-Chemical Properties of Proso Millet; Northwest Agriculture and Forestry University: Yangling, China, 2012. (In Chinese) [Google Scholar]
- Yang, Q.H.; Zhang, W.L.; Luo, Y.; Li, J.; Gao, J.F.; Yang, P.; Gao, X.L.; Feng, B.L. Comparison of structural and physicochemical properties of starches from five coarse grains. Food Chem. 2019, 288, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Daung, A.T.; Vo, T.T.; Le, V.P. Analyzing 2D structure images of piezoelectric ceramic using ImageJ. Int. J. Mater. Chem. 2014, 4, 88–91. [Google Scholar]
- Yang, Q.H.; Zhang, P.P.; Qu, Y.; Gao, X.L.; Liang, J.B.; Yang, P.; Feng, B.L. Comparison of physicochemical properties and cooking edibility of waxy and nonwaxy proso millet (Panicum miliaceum L.). Food Chem. 2018, 257, 271–278. [Google Scholar] [CrossRef]
- Rasras, A.; Hamdi, R.; Mansour, S.; Samara, A.; Halik, Y. Effects of the sintering temperature on the La0.63 Gd0.37 MnO3 structure and magnetic properties. Appl. Phys. 2020, 126, 838. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, L.; Bian, X.; Guo, K.; Zhou, L.; Wei, C. Characterization and comparative study of starches from seven purple sweet potatoes. Food Hydrocoll. 2018, 80, 168–176. [Google Scholar] [CrossRef]
- Zhang, X.D.; Feng, J.J.; Wang, H.; Zhu, J.C.; Zhong, Y.Y.; Liu, L.S. Bivariate flow cytometric analysis and sorting of different types of maize starch grains. Cytom. Part A 2018, 93, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Astuti, R.M.; Widaningrum; Asiah, N.; Setyowati, A.; Fitriawati, R. Effect of physical modification on granule morphology, pasting behavior, and functional properties of arrowroot (Marantha arundinaceae L.) starch. Food Hydrocoll. 2018, 81, 23–30. [Google Scholar] [CrossRef]
- Wang, H.; Li, D.; Wan, C.; Luo, Y.; Yang, Q.; Gao, X.; Feng, B. Improving the functionality of proso millet protein and its potential as a functional food ingredient by applying nitrogen fertilizer. Foods 2021, 10, 1332. [Google Scholar] [CrossRef]
- Uarrota, V.G.; Amante, E.R.; Demiate, I.M.; Vieira, F.; Delgadillo, I.; Maraschin, M. Physicochemical, thermal, and pasting properties of flours and starches of eight Brazilian maize landraces (Zea mays L.). Food Hydrocoll. 2013, 30, 614–624. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Woo, K.S.; Chung, H.J. Starch characteristics of cowpea and mungbean cultivars grown in Korea. Food Chem. 2018, 263, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Singh, S.N.; Singh, N. Structure and functional properties of acid thinned sorghum starch. Int. J. Food Prop. 2009, 12, 713–725. [Google Scholar] [CrossRef]
- Gao, J.F.; Kreft, I.; Chao, G.M.; Wang, Y.; Liu, X.J.; Wang, L.; Feng, B.L. Tartary buckwheat (Fagopyrum tataricum Gaertn.) starch, a side product in functional food production, as a potential source of retrograded starch. Food Chem. 2016, 190, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.C.; Lai, H.M. Noodle quality affected by different cereal starches. J. Food Eng. 2010, 97, 135–143. [Google Scholar] [CrossRef]
- Rabek, J.F. Applications of wide-angle X-ray diffraction (WAXD) to the study of the structure of polymers. In Experimental Methods in Polymer Chemistry, 1st ed.; Wiley-Interscience: Chichester, UK, 1980; pp. 505–508. [Google Scholar]
- Yang, Q.H.; Liu, L.; Li, X.D.; Li, J.; Zhang, W.L.; Shi, M.; Feng, B.L. Physicochemical characteristics of resistant starch prepared from Job’s tears starch using autoclaving-cooling treatment. CyTA J. Food. 2021, 19, 316–325. [Google Scholar] [CrossRef]
- Zhu, L.J.; Liu, Q.; Sang, Y.; Gu, M.H.; Shi, Y.C. Underlying reasons for waxy rice flours having different pasting properties. Food Chem. 2010, 120, 94–100. [Google Scholar] [CrossRef]
Varieties | Fat (%) | Protein (%) | Starch (%) | Amylose (%) |
---|---|---|---|---|
Jinza 34 | 0.01 ± 0.01 | 0.86 ± 0.19 b | 88.82 ± 0.60 b | 17.61 ± 2.10 c |
Liaoza 19 | 0.01 ± 0.00 | 0.89 ± 0.05 b | 90.24 ± 1.23 b | 22.12 ± 2.02 b |
Jinnuo 3 | 0.02 ± 0.01 | 1.20 ± 0.09 a | 85.26 ± 0.30 c | 8.60 ± 0.62 d |
Jiza 127 | 0.01 ± 0.00 | 0.87 ± 0.30 b | 89.98 ± 0.90 b | 26.90 ± 1.95 a |
Jiniang 2 | 0.01 ± 0.01 | 0.86 ± 0.20 b | 89.94 ± 0.94 b | 8.30 ± 0.61 d |
Jiaxian | 0.01 ± 0.00 | 0.80 ± 0.20 c | 96.42 ± 1.30 a | 20.47 ± 3.39 b |
Varieties | Solubility (%) | Swelling Power (g/g) | ||||||
---|---|---|---|---|---|---|---|---|
30 (°C) | 50 (°C) | 70 (°C) | 90 (°C) | 30 (°C) | 50 (°C) | 70 (°C) | 90 (°C) | |
Jinza 34 | 0.62 ± 0.04 b | 0.87 ± 0.24 b | 3.80 ± 0.24 b | 4.78 ± 0.19 b | 1.89 ± 0.08 c | 1.93 ± 0.05 b | 10.83 ± 0.30 c | 11.01 ± 0.83 c |
Liaoza 19 | 0.44 ± 0.08 c | 0.93 ± 0.12 a | 3.00 ± 0.10 c | 3.53 ± 0.23 c | 1.89 ± 0.03 c | 1.92 ± 0.05 b | 11.30 ± 0.40 b | 11.47 ± 0.44 b |
Jinnuo 3 | 0.15 ± 0.10 e | 0.22 ± 0.15 f | 0.73 ± 0.13 d | 0.91 ± 0.19 e | 2.19 ± 0.06 a | 2.21 ± 0.15 a | 3.11 ± 0.42 e | 6.54 ± 0.15 d |
Jiza 127 | 0.22 ± 0.04 d | 0.37 ± 0.19 e | 3.20 ± 0.04 c | 4.02 ± 0.31 c | 1.83 ± 0.13 d | 1.89 ± 0.07 c | 12.41 ± 0.29 a | 12.72 ± 0.25 a |
Jiniang 2 | 0.46 ± 0.10 c | 0.62 ± 0.04 c | 0.84 ± 0.12 d | 2.33 ± 0.19 d | 2.18 ± 0.09 a | 2.26 ± 0.11 a | 3.74 ± 0.73 d | 6.04 ± 0.22 d |
Jiaxian | 0.78 ± 0.03 a | 0.44 ± 0.14 d | 5.07 ± 0.00 a | 6.22 ± 0.23 a | 1.93 ± 0.04 b | 2.04 ± 0.15 ab | 10.67 ± 0.20 c | 11.02 ± 0.68 c |
Varieties | Pasting Properties | ||||||
---|---|---|---|---|---|---|---|
PV (mPa∙s) | TV (mPa∙s) | BD (mPa∙s) | FV (mPa∙s) | SB (mPa∙s) | PT (min) | PTM (°C) | |
Jinza 34 | 4994.00 ± 226 a | 973.50 ± 44 d | 4013.50 ± 171 a | 2807.50 ± 70 b | 1834.00 ± 25 a | 3.70 ± 0.0 b | 77.22 ± 0.6 b |
Liaoza 19 | 4468.5 0 ± 88 bc | 1185.50 ± 00 c | 3283.00 ± 87 b | 2880.00 ± 106 b | 1694.50 ± 50 a | 3.67 ± 0.0 c | 76.35 ± 0.6 b |
Jinnuo 3 | 3467.50 ± 77 d | 1503.50 ± 27 ab | 1964.00 ± 49 d | 2192.50 ± 51 c | 689.00 ± 24 b | 4.20 ± 0.1 a | 81.65 ± 0.0 a |
Jiza 127 | 4861.00 ± 302 b | 1396.00 ± 114 b | 3465.00 ± 188 b | 3117.00 ± 292 a | 1721.00 ± 78 a | 3.56 ± 0.0 c | 75.10 ± 0.0 c |
Jiniang 2 | 3484.50 ± 20 d | 1591.00 ± 50 a | 1893.50 ± 14 d | 2191.50 ± 20 c | 600.50 ± 30 b | 4.33 ± 0.0 a | 81.60 ± 1.2 a |
Jiaxian | 4292.50 ± 211 c | 1439.50 ± 53 ab | 2853.00 ± 158 c | 3476.50 ± 379 a | 2037.00 ± 96 a | 3.76 ± 0.0 b | 76.40 ± 0.6 b |
Varieties | Thermal Properties | ||||
---|---|---|---|---|---|
To (°C) | Tp (°C) | Tc (°C) | ΔH (J/g) | Tc-To (°C) | |
Jinza 34 | 70.22 ± 3.1 c | 74.01 ± 3.0 b | 82.12 ± 2.2 d | 8.21 ± 1.9 b | 11.9 ± 0.2 b |
Liaoza 19 | 68.26 ± 3.1 d | 72.56 ± 3.0 c | 79.14 ± 2.4 d | 7.28 ± 2.2 bc | 10.9 ± 0.1 c |
Jinnuo 3 | 76.11 ± 0.1 a | 80.77 ± 0.0 a | 88.51 ± 0.6 a | 13.38 ± 0.5 b | 12.4 ± 0.3 a |
Jiza 127 | 68.04 ± 0.2 d | 71.34 ± 0.3 d | 77.70 ± 0.9 e | 5.94 ± 0.5 c | 9.7 ± 0.0 d |
Jiniang 2 | 75.74 ± 4.5 b | 81.00 ± 4.3 a | 87.47 ± 5.2 b | 13.68 ± 2.6 a | 11.7 ± 0.2 b |
Jiaxian | 68.28 ± 4.5 d | 72.47 ± 4.4 d | 79.52 ± 6.1 c | 7.02 ± 3.7 bc | 11.2 ± 0.2 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soe Htet, M.N.; Wang, H.; Tian, L.; Yadav, V.; Samoon, H.A.; Feng, B. Integrated Starches and Physicochemical Characterization of Sorghum Cultivars for an Efficient and Sustainable Intercropping Model. Plants 2022, 11, 1574. https://doi.org/10.3390/plants11121574
Soe Htet MN, Wang H, Tian L, Yadav V, Samoon HA, Feng B. Integrated Starches and Physicochemical Characterization of Sorghum Cultivars for an Efficient and Sustainable Intercropping Model. Plants. 2022; 11(12):1574. https://doi.org/10.3390/plants11121574
Chicago/Turabian StyleSoe Htet, Maw Ni, Honglu Wang, Lixin Tian, Vivek Yadav, Hamz Ali Samoon, and Baili Feng. 2022. "Integrated Starches and Physicochemical Characterization of Sorghum Cultivars for an Efficient and Sustainable Intercropping Model" Plants 11, no. 12: 1574. https://doi.org/10.3390/plants11121574
APA StyleSoe Htet, M. N., Wang, H., Tian, L., Yadav, V., Samoon, H. A., & Feng, B. (2022). Integrated Starches and Physicochemical Characterization of Sorghum Cultivars for an Efficient and Sustainable Intercropping Model. Plants, 11(12), 1574. https://doi.org/10.3390/plants11121574