Efficacy of Biorational Products for Managing Diseases of Tomato in Greenhouse Production
Abstract
:1. Introduction
2. Results
2.1. Treatment Effect in 2016: Experiment 1
2.2. Treatment Effect in 2016: Experiment 2
2.3. Treatment Effect in 2017: Experiment 1
2.4. Treatment Effect in 2017: Experiment 2
3. Discussion
4. Materials and Methods
4.1. Description of the Experiments
4.2. Experiment 1
4.3. Experiment 2
4.4. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koike, S.T.; Gladders, P.; Paulus, A.O. Vegetable Diseases: A Colour Handbook; Manson Publishing: London, UK, 2007. [Google Scholar]
- SIAP. Servicio de Información Agroalimentaria y Pesquera. Panorama Agroalimentario. 2020. Available online: https://nube.siap.gob.mx/gobmx_publicaciones_siap/pag/2020/Atlas-Agroalimentario-2020 (accessed on 10 December 2021).
- Blancard, D. Tomato Diseases: Identification, Biology and Control, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Vallad, G.E.; Messelink, G.; Smith, H.A. Crop Protection: Pest and Disease Management. In Tomatoes, 2nd ed.; Euvelink, E., Ed.; CAB International: Boston, MA, USA, 2018; pp. 207–257. [Google Scholar]
- Jones, J.B.; Zitter, T.A.; Momol, T.M.; Miller, S.A. Compendium of Tomato Diseases and Pests, 2nd ed.; APS Press: St. Paul, MN, USA, 2014. [Google Scholar]
- Shrestha, S.; Hausbeck, M.K. Evaluation of geranium cultivars and biorational products to control botrytis blight in the greenhouse. Plant Health Prog. 2021, 22, 474–482. [Google Scholar] [CrossRef]
- Akanmu, A.O.; Babalola, O.O.; Venturi, V.; Ayilara, M.S.; Adeleke, B.S.; Amoo, A.E.; Sobowale, A.A.; Fadiji, A.E.; Glick, B.R. Plant Disease Management: Leveraging on the Plant-Microbe-Soil Interface in the Biorational Use of Organic Amendments. Front. Plant Sci. 2021, 12, 700507. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Singh, A.K.; Kumar, A. Disease management of tomato through PGPB: Current trends and future perspective. 3 Biotech 2017, 7, 255. [Google Scholar] [CrossRef] [PubMed]
- Miljaković, D.; Marinković, J.; Balesĕević-Tubić, S. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms 2020, 8, 1037. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, B.J.; Zidack, N.K.; Larson, B.J. The role of Bacillus-based biological control agents in integrated pest management systems: Plant diseases. Phytopathology 2014, 94, 1272–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villarreal-Delgado, M.F.; Villa-Rodríguez, E.D.; Cira-Chávez, L.A.; Estrada-Alvarado, M.I.; Parra-Cota, F.I.; De los Santos-Villalobos, S. The genus Bacillus as a biological control agent and its implications in the agricultural biosecurity. Rev. Mex. Fitopatol. 2017, 36, 95–130. [Google Scholar] [CrossRef]
- Mandal, A.K.; Maurya, P.K.; Dutta, S.; Chattopadhyay, A. Effective management of major tomato diseases in the Gangetic Plains of Eastern India through integrated approach. Agric. Res. Technol. 2017, 10, 109–117. [Google Scholar] [CrossRef]
- Samaras, A.; Roumeliotis, E.; Ntasiou, P.; Karaoglanidis, G. Bacillus subtilis MBI600 promotes growth of tomato plants and induces systemic resistance contributing to the control of soilborne pathogens. Plants 2021, 10, 1113. [Google Scholar] [CrossRef]
- Shao, X.; Cheng, S.; Wang, H.; Yu, D.; Mungai, C. The possible mechanism of antifungal action of tea tree oil on Botrytis cinerea. J. Appl. Microbiol. 2013, 114, 1642–1649. [Google Scholar] [CrossRef]
- Oliveira, M.S.; Cordova, L.G.; Marin, M.V.; Peres, N.A. Fungicide dip treatments for management of Botrytis cinerea infection on strawberry transplants. Plant Health Prog. 2018, 19, 279–283. [Google Scholar] [CrossRef]
- Soylu, E.M.; Kurt, S.; Soylu, S. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Int. J. Food Microbiol. 2010, 143, 183–189. [Google Scholar] [CrossRef]
- Fontanilla, M.; Montes, M.; De Prado, R. Effects of the foliar-applied protein “Harpin (Ea)” (messenger) on tomatoes infected with Phytophthora infestans. Commun. Agric. Appl. Biol. Sci. 2005, 70, 41–45. [Google Scholar] [PubMed]
- Seidl Johnson, A.C.; Jordan, S.A.; Gevens, A.J. Efficacy of organic and conventional fungicides and impact of application timing on control of tomato late blight caused by US-22, US-23, and US-24 isolates of Phytophthora infestans. Plant Dis. 2015, 99, 641–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reuveni, M.; Neifeld, D.; Dayan, D.; Kotzer, Y. BM-608-A novel organic product based on essential tea tree oil for the control of fungal diseases in tomato. Acta Hortic. 2008, 808, 129–132. [Google Scholar] [CrossRef]
- Reuveni, M.; Sanches, E.; Barbier, M. Curative and suppressive activities of essential tea tree oil against fungal plant pathogens. Agronomy 2020, 10, 609. [Google Scholar] [CrossRef]
- Konstantinidou-Doltsinis, S.; Markellou, E.; Kasselaki, A.M.; Fanouraki, M.N.; Koumaki, C.M.; Schmitt, A.; Liopa-Tsakalidis, A.; Malathrakis, N.E. Efficacy of Milsana, a formulated plant extract from Reynoutria sachalinensis, against powdery mildew of tomato (Leveillula taurica). Biocontrol 2006, 51, 375–392. [Google Scholar] [CrossRef]
- Baysal-Gurel, F.; Miller, S.A. Management of powdery mildew in greenhouse tomato production with biorational products and fungicides. In Proceedings of the IV International Symposium on Tomato Diseases, Orlando, FL, USA, 24–27 June 2013; Volume 1069, pp. 179–184. [Google Scholar] [CrossRef]
- Petsikos-Panayotarou, N.; Schmitt, A.; Markellou, E.; Kalamarakis, A.E.; Tzempelikou, K.; Siranidou, E.; Konstantinidou-Doltsinis, S. Management of cucumber powdery mildew by new formulations of Reynoutria sachalinensis (F. Schmidt) Nakai extract. J. Plant Dis. Prot. 2002, 109, 478–490. [Google Scholar]
- Bokshi, A.; Jobling, J.; McConchie, R. A single application of Milsana® followed by Bion® assists in the control of powdery mildew in cucumber and helps overcome yield losses. J. Hortic. Sci. Biotechnol. 2008, 83, 701–706. [Google Scholar] [CrossRef]
- Margaritopoulou, T.; Toufexi, E.; Kizis, D.; Balayiannis, G.; Anagnostopoulos, C.; Theocharis, A.; Rempelos, L.; Troyanos, Y.; Leifert, C.; Markellou, E. Reynoutria sachalinensis extract elicits SA-dependent defense responses in courgette genotypes against powdery mildew caused by Podosphaera xanthii. Sci. Rep. 2020, 10, 3354. [Google Scholar] [CrossRef] [Green Version]
- Abo-Elyousr, K.A.M.; Khalil Bagy, H.M.M.; Hashem, M.; Alamri, S.A.M.; Mostafam, Y.S. Biological control of the tomato wilt caused by Clavibacter michiganensis subsp. michiganensis using formulated plant growth-promoting bacteria. Egypt. J. Biol. Pest Control 2019, 29, 54. [Google Scholar] [CrossRef]
- Sen, Y.; van der Wolf, J.; Visser, R.G.F.; van Heusden, S. Bacterial canker of tomato: Current knowledge of detection, management, resistance, and interactions. Plant Dis. 2019, 99, 4–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ustun, N.; Ulutas, E.; Yasarakinci, N.; Kilic, T. Efficacy of some plant activators on bacterial canker of tomato in Aegean Region of Turkey. Acta Hortic. 2009, 808, 405–408. [Google Scholar] [CrossRef]
- Obradovic, A.; Jones, J.B.; Momol, M.T.; Olson, S.M.; Jackson, L.E.; Balogh, B.; Guven, K.; Iriarte, F.B. Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Dis. 2005, 89, 712–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madden, L.V.; Hughes, G.; van den Bosch, F. The Study of Plant Disease Epidemics; APS Press: St. Paul, MN, USA, 2007. [Google Scholar]
Treatment | AUDPC a Gray Mold | AUDPC Late Blight | AUDPC Powdery Mildew | AUDPC Pith Necrosis | AUDPC Bacterial Canker | |||||
---|---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
T1 c | 59.24 ab | 119.67 a | 10.62 a | 15.16 a | 1.43 a | 20.65 a | 68.90 a | 153.03 a | 3.03 ab | 23.26 a |
T2 d | 36.04 bc | 53.65 c | 10.94 a | 6.35 b | 0.18 a | 4.05 b | 30.65 b | 164.30 a | 0.0 b | 18.31 a |
T3 e | 27.80 c | 82.93 b | 3.98 a | 7.64 ab | 0.17 a | 10.09 ab | 48.43 ab | 121.60 a | 6.52 a | 18.07 a |
T4 f | 48.80 ab | 53.41 c | 14.31 a | 9.51 ab | 0.0 a | 4.60 b | 58.39 ab | 171.64 a | 0.0 b | 19.07 a |
T5 g | 45.03 abc | 67.8 bc | 5.36 a | 7.25 ab | 0.35 a | 9.57 ab | 45.52 ab | 129.71 a | 0.0 b | 23.74 a |
Treatment | AUDPC a Gray Mold | AUDPC Late Blight | AUDPC Powdery Mildew | AUDPC Pith Necrosis | AUDPC Bacterial Canker | |||||
---|---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
T1 c | 61.20 ab | 103.03 a | 1.45 a | 12.5 a | 6.16 a | 15.49 a | 48.05 a | 215.93 a | 0.00 a | 31.55 a |
T2 d | 33.81 b | 55.34 bc | 2.41 a | 9.89 a | 1.71 b | 3.16 b | 28.92 a | 207.08 a | 3.12 a | 41.85 a |
T3 e | 37.08 ab | 83.11 ab | 1.47 a | 10.54 a | 4.40 ab | 8.06 ab | 51.21 a | 161.81 a | 10.6 a | 24.39 a |
T4 f | 39.17 ab | 52.17 c | 0.00 a | 13.04 a | 2.59 b | 4.16 b | 40.74 a | 261.23 a | 0.00 a | 39.31 a |
T5 g | 56.53 ab | 72.15 bc | 3.08 a | 18.01 a | 2.25 b | 9.60 ab | 35.24 a | 167.89 a | 2.75 a | 31.38 a |
Product; Manufacturer | Active Ingredient | Rate |
---|---|---|
PHC Colonize®, PHC | Bacillus spp. | 2.0 kg/ha |
Fungifree AB®, FMC | Bacillus subtilis | 2.0 kg/ha |
Regalia Maxx®, FMC | Extract of Reynoutria sachalinensis | 1.25 L/ha |
Messenger Gold®, PHC | Harpin αβ proteins | 150 g/ha |
Timorex Gold®, Syngenta | Extract of Melaleuca alternifolia | 5 mL/L |
Bee honey | Bee honey | 1 mL/L |
Treatment a | Description |
---|---|
1 | Soil application of Bacillus spp. via drip irrigation + foliar application (conventional) of grower’s treatments (Control) |
2 | Soil application of Bacillus spp. via drip irrigation + foliar application of Reynoutria sachalinensis at 20-day intervals |
3 | Soil application of Bacillus spp. via drip irrigation + foliar application of αβ harpins at 20-day intervals |
4 | Soil application of Bacillus spp. via drip irrigation + foliar application of Melalueca alternifolia at 20-day intervals |
5 | Soil application of Bacillus spp. via drip irrigation + foliar application of bee honey at 20-day intervals |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esquivel-Cervantes, L.F.; Tlapal-Bolaños, B.; Tovar-Pedraza, J.M.; Pérez-Hernández, O.; Leyva-Mir, S.G.; Camacho-Tapia, M. Efficacy of Biorational Products for Managing Diseases of Tomato in Greenhouse Production. Plants 2022, 11, 1638. https://doi.org/10.3390/plants11131638
Esquivel-Cervantes LF, Tlapal-Bolaños B, Tovar-Pedraza JM, Pérez-Hernández O, Leyva-Mir SG, Camacho-Tapia M. Efficacy of Biorational Products for Managing Diseases of Tomato in Greenhouse Production. Plants. 2022; 11(13):1638. https://doi.org/10.3390/plants11131638
Chicago/Turabian StyleEsquivel-Cervantes, Luis Fernando, Bertha Tlapal-Bolaños, Juan Manuel Tovar-Pedraza, Oscar Pérez-Hernández, Santos Gerardo Leyva-Mir, and Moisés Camacho-Tapia. 2022. "Efficacy of Biorational Products for Managing Diseases of Tomato in Greenhouse Production" Plants 11, no. 13: 1638. https://doi.org/10.3390/plants11131638
APA StyleEsquivel-Cervantes, L. F., Tlapal-Bolaños, B., Tovar-Pedraza, J. M., Pérez-Hernández, O., Leyva-Mir, S. G., & Camacho-Tapia, M. (2022). Efficacy of Biorational Products for Managing Diseases of Tomato in Greenhouse Production. Plants, 11(13), 1638. https://doi.org/10.3390/plants11131638