Anticancer Potential and Other Pharmacological Properties of Prunus armeniaca L.: An Updated Overview
Abstract
:1. Introduction
2. Review Methodology
3. Botany
4. Traditional and Ethnomedicinal Importance
5. Chemistry and Bioactive Compounds
6. Anticancer Activities: Underlying Multi-Targets Mechanisms
6.1. Cancers of the Nervous System
6.2. Digestive Cancers
6.2.1. Oral Cancer
6.2.2. Gastric Cancer
6.2.3. Liver Cancer
6.2.4. Colon Cancer
6.2.5. Pancreatic Cancer
6.3. Breast Cancer
6.4. Lung Cancer
6.5. Urogenital Cancer
6.6. Skin Cancer
6.7. Leukemia
Cancer Type | Model | Main Cellular Effects | Ref |
---|---|---|---|
Cancers of the nervous system | N2a neuroblastoma cells in vitro | ↑Bax, ↑caspase-3, ↓Blc2 LC50 > 5.0 mg/mL | [66] |
C6 glioma cells in vitro | antiproliferative effect | [68] | |
Digestive cancers | KB oral cancer cells in vitro | ↓8-OH-dG IC50 = 61 µg/mL | [69] |
AGS human gastric carcinoma cells in vitro | ↓cell proliferation IC50 = 4 mg/mL | [71] | |
HepG2 cells in vitro | ↑apoptosis, ↑autophagy, ↑antioxidant defenses antiproliferative, ↓angiogenesis ↓TNF-α, ↓VEGF IC50 = 25.26 − 6.20 µg/mL | [72] | |
HCT-116 cells in vitro | IC50 = 17.5, 19.2, 14.5 µg/mL | [73] | |
mice inoculated with EAC cells in vivo | ↓tumor volume, ↓AST, ↓ALT, ↓urea, ↓creatinine, ↓MDA, ↓SOD, ↓CAT Dose = 100 mg/kg | [69] | |
HepG2 cells in vitro | ↑cytotoxic effect | [74] | |
HepG2 cells in vitro | antiproliferative EC50 = 14.72 ± 0.82 mg/mL | [71] | |
DMBA-induced carcinogenesis mice in vivo | antioxidant, ↓lipid peroxidation, ↓SOD, ↓CAT, ↓GSH, ↓MDA ↑caspase-3, ↑Beclin-1, ↓Bcl-2 | [75] | |
N-nitrosodiethylamine-induced hepatocellular carcinogenesis in rats in vivo | ↓AST, ↓ALT, ↓ALP, ↓bilirubin, ↓alpha-fetoprotein, ↓MDA, ↓NO, ↓glutathione Dose = 200 mg/mL | [77] | |
transplanted EAC cells in mice in vivo | ↓tumor growth | [78] | |
HCT-116 colon cancer cells in vitro | ↓cancer cell growth IC50 = 33.6 − 36.3 µg/mL | [73] | |
HCT-116 colon cancer cells in vitro | ↓cancer cell growth IC50 = 100 µg/mL | [79] | |
HT-29 colon cancer cells in vitro | ↓cell proliferation | [80] | |
Caco-2 human colon cancer cells in vitro | cell cycle interrupted in the S-phase, ↓cyclin B1 ↓D1 levels | [81] | |
Caco-2 and HT-29 cells in vitro | ↓proliferation ↓cells in G0/G1 | [82] | |
HT-29 cells in vitro | ↑cytotoxicity IC50 = 2.5 − 5 μg/mL antiproliferative IC50 > 5 μg/mL | [83] | |
PANC-1 human pancreatic cancer cells in vitro | ↓growth, ↑apoptosis, ↑Bax, ↑caspase-3, ↓Bcl-2 IC50 = 704, 945, 35 µg/mL | [85,86] | |
Breast cancer | MCF-7, HDF, MDA-MB-231 human breast cancer cells in vitro | ↓cell proliferation IC50 = 0.5, 1.51, 0.48 mg/mL | [87] |
MCF-7 cells in vitro | ↓cell growth IC50 = 8.9, 34.9, 33.9 µg/mL | [73] | |
IC50 = 31.5 μg/mL | [69] | ||
MCF-7, MDA-MB-231, T47D breast cancer cells in vitro | antiproliferative, ↑apoptosis, ↑Bax, ↑caspase-3, ↓Blc2, ↑cells in G0/G1 phase, ↑cells in the G2/M phase IC50 = 0.198, 0.693, 0.532 mg/mL | [88] | |
MCF-7 cells in vitro | antiproliferative IC50 = 25, 100, 400, 1200 μg/mL | [89] | |
↑cytotoxicity IC50 = 4 mg/mL | [71] | ||
↑apoptosis, ↑ROS, ↑Bax, ↑Bcl-2, ↓CDK4, ↓cyclin E, ↓ cyclin D1, ↑caspase-3 | [91] | ||
T47D human breast ductal cancer, MCF-7 breast adenocarcinoma, MCF-12A normal breast cells in vitro | ↑cytotoxicity IC50 = 1.2 μg/mL against MCF-7, T47D cells IC50 = 0.6 μg/mL against MCF-12A cells | [90] | |
Lung cancer | A549 human lung carcinoma cells in vitro | ↑cytotoxicity IC50 = 4 mg/mL | [71] |
↑cytotoxicity, ↓NF-κB, ↓E-cadherin, ↓N-cadherin, ↓MMP-2, ↓MMP-9, ↓IL-6, ↓TNF-α, ↓IL-1β | [93] | ||
Urogenital cancers | T24 human bladder carcinoma cells in vitro | antiproliferative ↑apoptosis IC50 > 20 µg/mL | [96] |
DU145 human prostate cancer cells in vitro | ↑apoptosis, ↑Bax, ↑caspase-3, ↓Blc2 | [97] | |
HeLa human cervical adenocarcinoma cells in vitro | ↑cytotoxicity, ↓cell growth IC50 = 4 mg/mL | [71] | |
Skin cancer | HaCaT cells in vitro | ↓ cell growth, ↑caspases-3/8/9, ↑Bax, ↑PARP, ↓Bcl2, ↓NF-κB ↑G0/G1 cell cycle arrest IC50 = 142.45 μg/mL | [98] |
Leukemia | NALM-6, KG-1 acute leukemia cells in vitro | ↑apoptosis, ↑caspase-3 IC50 = 0.388 − 0.159 mg/mL | [100] |
7. Other Pharmacological Properties
7.1. Neuroprotective Activity
7.2. Cardioprotective Activity
7.3. Hepatoprotective Activity
7.4. Metabolic Effects: Anti-Hyperlipidemic Activity
7.5. Immunomodulatory Activity
7.6. Antioxidant Activity
7.7. Anti-Inflammatory Activity
7.8. Antimicrobial, Antiparasitic, Antiviral Activity
7.9. Phytoestrogen-like Properties
8. P. armeniaca Toxicity
9. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alajil, O.; Sagar, V.R.; Kaur, C.; Rudra, S.G.; Sharma, R.R.; Kaushik, R.; Verma, M.K.; Tomar, M.; Kumar, M.; Mekhemar, M. Nutritional and Phytochemical Traits of Apricots (Prunus armeniaca L.) for Application in Nutraceutical and Health Industry. Foods 2021, 10, 1344. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, Z.N.; Sharma, V.; Shah, R.A.; Raina, S.; Aljabri, M.; Mir, J.I.; AlKenani, N.; Hakeem, K.R. Elucidating Genetic Diversity in Apricot (Prunus armeniaca L.) Cultivated in the North-Western Himalayan Provinces of India Using SSR Markers. Plants 2021, 10, 2668. [Google Scholar] [CrossRef] [PubMed]
- Deng, P.; Cui, B.; Zhu, H.; Phommakoun, B.; Zhang, D.; Li, Y.; Zhao, F.; Zhao, Z. Accumulation Pattern of Amygdalin and Prunasin and Its Correlation with Fruit and Kernel Agronomic Characteristics during Apricot (Prunus armeniaca L.) Kernel Development. Foods 2021, 10, 397. [Google Scholar] [CrossRef] [PubMed]
- Rampáčková, E.; Mrázová, M.; Čížková, J.; Nečas, T. Pomological Traits and Genome Size of Prunus armeniaca L. Considering to Geographical Origin. Horticulturae 2022, 8, 199. [Google Scholar] [CrossRef]
- Sagbo, I.J.; Otang-Mbeng, W. Plants Used for the Traditional Management of Cancer in the Eastern Cape Province of South Africa: A Review of Ethnobotanical Surveys, Ethnopharmacological Studies and Active Phytochemicals. Molecules 2021, 26, 4639. [Google Scholar] [CrossRef] [PubMed]
- WFO. The World Flora Online. Available online: http://www.worldfloraonline.org (accessed on 20 January 2022).
- Corrado, G.; Forlani, M.; Rao, R.; Basile, B. Diversity and Relationships among Neglected Apricot (Prunus armeniaca L.) Landraces Using Morphological Traits and SSR Markers: Implications for Agro-Biodiversity Conservation. Plants 2021, 10, 1341. [Google Scholar] [CrossRef]
- Lim, T. Prunus armeniaca. In Edible Medicinal and Non-Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2012; pp. 442–450. [Google Scholar]
- Roussos, P.A.; Denaxa, N.-K.; Tsafouros, A.; Efstathios, N.; Intidhar, B. Apricot (Prunus armeniaca L.). In Nutritional Composition of Fruit Cultivars; Elsevier: Amsterdam, The Netherlands, 2016; pp. 19–48. [Google Scholar]
- Palop, J.J.; Mucke, L.; Roberson, E.D. Quantifying biomarkers of cognitive dysfunction and neuronal network hyperexcitability in mouse models of Alzheimer’s disease: Depletion of calcium-dependent proteins and inhibitory hippocampal remodeling. In Alzheimer’s Disease and Frontotemporal Dementia; Springer: Berlin/Heidelberg, Germany, 2010; pp. 245–262. [Google Scholar]
- World Health Organization; WHO Consultation on Selected Medicinal Plants. WHO Monographs on Selected Medicinal Plants; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Wang, L.; Zhang, R.-M.; Liu, G.-Y.; Wei, B.-L.; Wang, Y.; Cai, H.-Y.; Li, F.-S.; Xu, Y.-L.; Zheng, S.-P.; Wang, G. Chinese herbs in treatment of influenza: A randomized, double-blind, placebo-controlled trial. Respir. Med. 2010, 104, 1362–1369. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhong, P. Clinical progress on management of pneumonia due to COVID-19 with Chinese traditional patent medicines. Front. Pharmacol. 2021, 12, 655063. [Google Scholar] [CrossRef]
- Kshirsagar, M.; Magno, A.C.R. Ayurveda: A Quick Reference Handbook; Lotus Press: Twin Lakes, WI, USA, 2011. [Google Scholar]
- Taibi, K.; Abderrahim, L.A.; Boussaid, M.; Taibi, F.; Achir, M.; Souana, K.; Benaissa, T.; Farhi, K.H.; Naamani, F.Z.; Said, K.N. Unraveling the ethnopharmacological potential of medicinal plants used in Algerian traditional medicine for urinary diseases. Eur. J. Integr. Med. 2021, 44, 101339. [Google Scholar] [CrossRef]
- Rasool, N.; Ganie, A.H.; Lone, M.S.; Mir, G. Economic and Ethno-Medicinal Uses of Prunus armeniaca L. in Trans-Himalayan Zone of Ladakh. J. Pharm. Biol. Sci. 2017, 5, 27. [Google Scholar]
- Rai, I.; Bachheti, R.; Saini, C.; Joshi, A.; Satyan, R. A review on phytochemical, biological screening and importance of Wild Apricot (Prunus armeniaca L.). Orient. Pharm. Exp. Med. 2016, 16, 1–15. [Google Scholar] [CrossRef]
- Kaushik, P.; Pahwa, P.; Kaushik, D. A comprehensive review on medicinal plants with anticancer activity. Glob. J. Pharm. Educat. Res. 2014, 3. [Google Scholar]
- Dwivedi, T.; Kanta, C.; Singh, L.R.; Prakash, I. A list of some important medicinal plants with their medicinal uses from Himalayan State Uttarakhand, India. J. Med. Plants 2019, 7, 106–116. [Google Scholar]
- Sağiroğlu, M.; Topuz, T.; Ceylan, K.; Turna, M. An Ethnobotanical Survey From Yahyali (Kayseri) And Tarsus (Mersin). Sak. Univ. Fen Edeb. Derg. 2013, 15, 13–37. [Google Scholar]
- Merrouni, I.A.; Elachouri, M. Anticancer medicinal plants used by Moroccan people: Ethnobotanical, preclinical, phytochemical and clinical evidence. J. Ethnopharmacol. 2021, 266, 113435. [Google Scholar] [CrossRef]
- Tang, M.; Wang, S.; Zhao, B.; Wang, W.; Zhu, Y.; Hu, L.; Zhang, X.; Xiong, S. Traditional Chinese medicine prolongs progression-free survival and enhances therapeutic effects in epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) treated non-small-cell lung cancer (NSCLC) patients harboring EGFR mutations. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 8430. [Google Scholar] [CrossRef]
- Zhao, X.; Dai, X.; Wang, S.; Yang, T.; Yan, Y.; Zhu, G.; Feng, J.; Pan, B.; Sunagawa, M.; Zhang, X. Traditional Chinese medicine integrated with chemotherapy for stage II-IIIA patients with non-small-cell lung cancer after radical surgery: A retrospective clinical analysis with small sample size. Evid. Based Complement. Altern. Med. 2018, 2018, 4369027. [Google Scholar] [CrossRef]
- Jellinek, N.; Maloney, M.E. Escharotic and other botanical agents for the treatment of skin cancer: A review. J. Am. Acad. Dermatol. 2005, 53, 486–494. [Google Scholar] [CrossRef]
- Toygar, I.; Yeşilbalkan, Ö.U.; Kürkütlü, M.; Aslan, A. Complementary and alternative medicines used by cancer patients to cope with chemotherapy-induced constipation. Complement. Ther. Clin. Pract. 2020, 39, 101108. [Google Scholar] [CrossRef]
- Shen, H.-S.; Wen, S.-H. Effect of early use of Chinese herbal products on mortality rate in patients with lung cancer. J. Ethnopharmacol. 2018, 211, 1–8. [Google Scholar] [CrossRef]
- June, H.-Y.; Muo, C.-H.; Su, S.-Y.; Morisky, D.E. The association between the use of traditional Chinese medicine and mortality among cervical cancer patients: A large-scale retrospective cohort study. Eur. J. Integr. Med. 2020, 33, 101036. [Google Scholar] [CrossRef]
- Li, T.-M.; Yu, Y.-H.; Tsai, F.-J.; Cheng, C.-F.; Wu, Y.-C.; Ho, T.-J.; Liu, X.; Tsang, H.; Lin, T.-H.; Liao, C.-C. Characteristics of Chinese herbal medicine usage and its effect on survival of lung cancer patients in Taiwan. J. Ethnopharmacol. 2018, 213, 92–100. [Google Scholar] [CrossRef]
- Zulkipli, A.F.; Islam, T.; Mohd Taib, N.A.; Dahlui, M.; Bhoo-Pathy, N.; Al-Sadat, N.; Abdul Majid, H.; Hussain, S. Use of complementary and alternative medicine among newly diagnosed breast cancer patients in Malaysia: An early report from the MyBCC study. Integr. Cancer Ther. 2018, 17, 312–321. [Google Scholar] [CrossRef] [Green Version]
- Xi, W.; Lei, Y. Apricot. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Elsevier: Amsterdam, The Netherlands, 2020; pp. 613–629. [Google Scholar]
- Takeoka, G.R.; Flath, R.A.; Mon, T.R.; Teranishi, R.; Guentert, M. Volatile constituents of apricot (Prunus armeniaca). J. Agric. Food Chem. 1990, 38, 471–477. [Google Scholar] [CrossRef]
- Gündoğdu, M.; Kan, T.; Gecer, M.K. Vitamins, flavonoids, and phenolic acid levels in early-and late-ripening apricot (Prunus armeniaca L.) cultivars from Turkey. HortScience 2013, 48, 696–700. [Google Scholar] [CrossRef] [Green Version]
- Trisomboon, H.; Malaivijitnond, S.; Watanabe, G.; Taya, K. Estrogenic effects of Pueraria mirifica on the menstrual cycle and hormone-related ovarian functions in cyclic female cynomolgus monkeys. J. Pharmacol. Sci. 2004, 94, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Bone, K.; Simon Mills, M.; Fnimh, M. Principles and Practice of Phytotherapy: Modern Herbal Medicine; Elsevier Health Sciences: New York, NY, USA, 2012. [Google Scholar]
- Tanwar, B.; Modgil, R.; Goyal, A. Antinutritional factors and hypocholesterolemic effect of wild apricot kernel (Prunus armeniaca L.) as affected by detoxification. Food Funct. 2018, 9, 2121–2135. [Google Scholar] [CrossRef]
- Femenia, A.; Rossello, C.; Mulet, A.; Canellas, J. Chemical composition of bitter and sweet apricot kernels. J. Agric. Food Chem. 1995, 43, 356–361. [Google Scholar] [CrossRef]
- Frohne, D.; Pfander, H.J.; Pfänder, H.J. Poisonous Plants: A Handbook for Doctors, Pharmacists, Toxicologists, Biologists and Veterinarians; Timber Press: Portland, OR, USA, 2005. [Google Scholar]
- Gupta, A.; Sharma, P.; Tilakratne, B.; Verma, A.K. Studies on physico-chemical characteristics and fatty acid composition of wild apricot (Prunus armeniaca Linn.) kernel oil. Indian J. Nat. Prod. Res. 2012, 3, 366–370. [Google Scholar]
- Kiralan, M.; Özkan, G.; Kucukoner, E.; Ozcelik, M.M. Apricot (Prunus armeniaca L.) oil. In Fruit Oils: Chemistry and Functionality; Springer: Berlin/Heidelberg, Germany, 2019; pp. 505–519. [Google Scholar]
- Hwang, H.-J.; Kim, P.; Kim, C.-J.; Lee, H.-J.; Shim, I.; Yin, C.S.; Yang, Y.; Hahm, D.-H. Antinociceptive effect of amygdalin isolated from Prunus armeniaca on formalin-induced pain in rats. Biol. Pharm. Bull. 2008, 31, 1559–1564. [Google Scholar] [CrossRef] [Green Version]
- Nacci, G. Thousand Plants against Cancer without Chemo-Therapy; Citeseer: Forest Grove, OR, USA, 2008. [Google Scholar]
- Shi, J.; Chen, Q.; Xu, M.; Xia, Q.; Zheng, T.; Teng, J.; Li, M.; Fan, L. Recent updates and future perspectives about amygdalin as a potential anticancer agent: A review. Cancer Med. 2019, 8, 3004–3011. [Google Scholar] [CrossRef] [PubMed]
- Do, B.-K.; Kwon, H.-J.; Lee, D.-H.; Nah, A.-H.; Choi, Y.-J.; Lee, S.-Y. Removal of cyanogenic compounds in apricot kernel during heating process. J. Food Hyg. Saf. 2007, 22, 395–400. [Google Scholar]
- Mitrut, P.; Docea, A.O.; Kamal, A.M.; Mitrut, R.; Calina, D.; Gofita, E.; Padureanu, V.; Gruia, C.; Streba, L. Colorectal Cancer and Inflammatory Bowel Disease; IntechOpen: Rijeka, Croatia, 2016; pp. 185–199. [Google Scholar] [CrossRef] [Green Version]
- Docea, A.O.; Mitrut, P.; Grigore, D.; Pirici, D.; Calina, D.C.; Gofita, E. Immunohistochemical expression of TGF beta (TGF-beta), TGF beta receptor 1 (TGFBR1), and Ki67 in intestinal variant of gastric adenocarcinomas. Rom. J. Morphol. Embryol. 2012, 53, 683–692. [Google Scholar] [PubMed]
- Zlatian, O.M.; Comanescu, M.V.; Rosu, A.F.; Rosu, L.; Cruce, M.; Gaman, A.E.; Calina, C.D.; Sfredel, V. Histochemical and immunohistochemical evidence of tumor heterogeneity in colorectal cancer. Rom. J. Morphol. Embryol. 2015, 56, 175–181. [Google Scholar]
- Jain, D.; Chaudhary, P.; Varshney, N.; Bin Razzak, K.S.; Verma, D.; Zahra, T.R.K.; Janmeda, P.; Sharifi-Rad, J.; Dastan, S.D.; Mahmud, S.; et al. Tobacco Smoking and Liver Cancer Risk: Potential Avenues for Carcinogenesis. J. Oncol. 2021, 2021, 5905357. [Google Scholar] [CrossRef]
- GBD 2019 Colorectal Cancer Collaborators. Global, regional, and national burden of colorectal cancer and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Gastroenterol. Hepatol. 2022, 7, 627. [Google Scholar] [CrossRef]
- Buga, A.M.; Docea, A.O.; Albu, C.; Malin, R.D.; Branisteanu, D.E.; Ianosi, G.; Ianosi, S.L.; Iordache, A.; Calina, D. Molecular and cellular stratagem of brain metastases associated with melanoma. Oncol. Lett. 2019, 17, 4170–4175. [Google Scholar] [CrossRef] [Green Version]
- Ianoși, S.L.; Batani, A.; Ilie, M.A.; Tampa, M.; Georgescu, S.R.; Zurac, S.; Boda, D.; Ianosi, N.G.; Neagoe, D.; Calina, D.; et al. Non-invasive imaging techniques for the in vivo diagnosis of Bowen’s disease: Three case reports. Oncol. Lett. 2019, 17, 4094–4101. [Google Scholar] [CrossRef] [Green Version]
- Sharifi-Rad, J.; Quispe, C.; Patra, J.K.; Singh, Y.D.; Panda, M.K.; Das, G.; Adetunji, C.O.; Michael, O.S.; Sytar, O.; Polito, L.; et al. Paclitaxel: Application in Modern Oncology and Nanomedicine-Based Cancer Therapy. Oxidative Med. Cell. Longev. 2021, 2021, 3687700. [Google Scholar] [CrossRef]
- Semwal, P.; Painuli, S.; Abu-Izneid, T.; Rauf, A.; Sharma, A.; Daştan, S.D.; Kumar, M.; Alshehri, M.M.; Taheri, Y.; Das, R.; et al. Diosgenin: An Updated Pharmacological Review and Therapeutic Perspectives. Oxidative Med. Cell. Longev. 2022, 2022, 1035441. [Google Scholar] [CrossRef]
- Salehi, B.; Prakash Mishra, A.; Nigam, M.; Karazhan, N.; Shukla, I.; Kiełtyka-Dadasiewicz, A.; Sawicka, B.; Głowacka, A.; Abu-Darwish, M.S.; Hussein Tarawneh, A.; et al. Ficus plants: State of the art from a phytochemical, pharmacological, and toxicological perspective. Phytother. Res. 2021, 35, 1187–1217. [Google Scholar] [CrossRef]
- Evans, M.; Shaw, A.; Thompson, E.A.; Falk, S.; Turton, P.; Thompson, T.; Sharp, D. Decisions to use complementary and alternative medicine (CAM) by male cancer patients: Information-seeking roles and types of evidence used. BMC Complement. Altern. Med. 2007, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Zavery, B.; Appleton, L.; Sandiford, K.; Wong, H.; Hughes, J. Complementary and alternative medicine use amongst oncology patients attending a large cancer centre in England. Prog. Palliat. Care 2010, 18, 89–93. [Google Scholar] [CrossRef]
- Smith, P.J. Complementary and Alternative Medicine Use by Cancer Patients Commencing Curative-Intent Chemotherapy: Survey and Educational Intervention. Ph.D. Thesis, The University of Queensland, St Lucia, Australia, 2016. [Google Scholar]
- Dhyani, P.; Quispe, C.; Sharma, E.; Bahukhandi, A.; Sati, P.; Attri, D.C.; Szopa, A.; Sharifi-Rad, J.; Docea, A.O.; Mardare, I.; et al. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int. 2022, 22, 206. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Quispe, C.; Butnariu, M.; Rotariu, L.S.; Sytar, O.; Sestito, S.; Rapposelli, S.; Akram, M.; Iqbal, M.; Krishna, A.; et al. Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. Cancer Cell Int. 2021, 21, 318. [Google Scholar] [CrossRef]
- Quetglas-Llabrés, M.M.; Quispe, C.; Herrera-Bravo, J.; Catarino, M.D.; Pereira, O.R.; Cardoso, S.M.; Dua, K.; Chellappan, D.K.; Pabreja, K.; Satija, S.; et al. Pharmacological Properties of Bergapten: Mechanistic and Therapeutic Aspects. Oxidative Med. Cell. Longev. 2022, 2022, 8615242. [Google Scholar] [CrossRef]
- Sani, T.A.; Mohammadpour, E.; Mohammadi, A.; Memariani, T.; Yazdi, M.V.; Rezaee, R.; Calina, D.; Docea, A.O.; Goumenou, M.; Etemad, L.; et al. Cytotoxic and apoptogenic properties of dracocephalum kotschyi aerial part different fractions on calu-6 and mehr-80 lung cancer cell lines. Farmacia 2017, 65, 189–199. [Google Scholar]
- Abubakar, A.R.; Haque, M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Salehi, B.; Rescigno, A.; Dettori, T.; Calina, D.; Docea, A.O.; Singh, L.; Cebeci, F.; Özçelik, B.; Bhia, M.; Dowlati Beirami, A.; et al. Avocado–Soybean Unsaponifiables: A Panoply of Potentialities to Be Exploited. Biomolecules 2020, 10, 130. [Google Scholar] [CrossRef] [Green Version]
- Tsoukalas, D.; Zlatian, O.; Mitroi, M.; Renieri, E.; Tsatsakis, A.; Izotov, B.N.; Burada, F.; Sosoi, S.; Burada, E.; Buga, A.M.; et al. A Novel Nutraceutical Formulation Can Improve Motor Activity and Decrease the Stress Level in a Murine Model of Middle-Age Animals. J. Clin. Med. 2021, 10, 624. [Google Scholar] [CrossRef]
- Iglesias-Carres, L.; Mas-Capdevila, A.; Bravo, F.I.; Bladé, C.; Arola-Arnal, A.; Muguerza, B. Optimization of extraction methods for characterization of phenolic compounds in apricot fruit (Prunus armeniaca). Food Funct. 2019, 10, 6492–6502. [Google Scholar] [CrossRef] [Green Version]
- Lezoul, N.E.H.; Belkadi, M.; Habibi, F.; Guillén, F. Extraction Processes with Several Solvents on Total Bioactive Compounds in Different Organs of Three Medicinal Plants. Molecules 2020, 25, 4672. [Google Scholar] [CrossRef]
- Kim, B.-S.; Song, Y.-K.; Lim, H.-H. Armeniacae semen extract induces apoptosis in mouse N2a neuroblastoma cells. J. Korean Med. 2005, 26, 12–21. [Google Scholar]
- Mazzio, E.A.; Soliman, K.F. In vitro screening of tumoricidal properties of international medicinal herbs: Part II. Phytother. Res. 2010, 24, 1813–1824. [Google Scholar] [CrossRef] [Green Version]
- Wani, S.M.; Masoodi, F.; Yousuf, S.; Dar, B.; Rather, S. Phenolic compounds and antiproliferative activity of apricots: Influence of canning, freezing, and drying. J. Food Process. Preserv. 2020, 44, e14887. [Google Scholar] [CrossRef]
- Sireesha, D.; Reddy, B.S.; Reginald, B.A.; Samatha, M.; Kamal, F. Effect of amygdalin on oral cancer cell line: An in vitro study. J. Oral Maxillofac. Pathol. 2019, 23, 104. [Google Scholar]
- Kasai, H.; Fukada, S.; Yamaizumi, Z.; Sugie, S.; Mori, H. Action of chlorogenic acid in vegetables and fruits as an inhibitor of 8-hydroxydeoxyguanosine formation in vitro and in a rat carcinogenesis model. Food Chem. Toxicol. 2000, 38, 467–471. [Google Scholar] [CrossRef]
- Yoo, S.-J.; Kim, S.-H.; Jun, M.-S.; Oh, H.-T.; Choi, H.-J.; Ham, S.-S. Antioxidative, antimutagenic and cytotoxic effects of Prunus armeniaca extracts. Korean J. Food Preserv. 2007, 14, 220–225. [Google Scholar]
- Chen, Y.; Al-Ghamdi, A.A.; Elshikh, M.S.; Shah, M.H.; Al-Dosary, M.A.; Abbasi, A.M. Phytochemical profiling, antioxidant and HepG2 cancer cells’ antiproliferation potential in the kernels of apricot cultivars. Saudi J. Biol. Sci. 2020, 27, 163–172. [Google Scholar] [CrossRef]
- Gomaa, E.Z. In vitro antioxidant, antimicrobial, and antitumor activities of bitter almond and sweet apricot (Prunus armeniaca L.) kernels. Food Sci. Biotechnol. 2013, 22, 455–463. [Google Scholar] [CrossRef]
- Dimitrov, M.; Iliev, I.; Bardarov, K.; Georgieva, D.; Todorova, T. Phytochemical characterization and biological activity of apricot kernels’ extract in yeast-cell based tests and hepatocellular and colorectal carcinoma cell lines. J. Ethnopharmacol. 2021, 279, 114333. [Google Scholar] [CrossRef] [PubMed]
- Hosny, S.; Sahyon, H.; Youssef, M.; Negm, A. Prunus armeniaca L. Seed Extract and Its Amygdalin Containing Fraction Induced Mitochondrial-Mediated Apoptosis and Autophagy in Liver Carcinogenesis. Anti-Cancer Agents Med. Chem. 2021, 21, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Karabulut, A.B.; Karadag, N.; Gurocak, S.; Kiran, T.; Tuzcu, M.; Sahin, K. Apricot attenuates oxidative stress and modulates of Bax, Bcl-2, caspases, NFκ-B, AP-1, CREB expression of rats bearing DMBA-induced liver damage and treated with a combination of radiotherapy. Food Chem. Toxicol. 2014, 70, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, A.; Kamel, G.; Awad, N.E.; Shokry, A.A.; Fayed, H.M. The pharmacological effect of apricot seeds extracts and amygdalin in experimentally induced liver damage and hepatocellular carcinoma. J. Herbmed Pharmacol. 2020, 9, 400–407. [Google Scholar] [CrossRef]
- Yamshanov, V.; Kovan’ko, E.; Pustovalov, Y.I. Effects of amygdaline from apricot kernel on transplanted tumors in mice. Bull. Exp. Biol. Med. 2016, 160, 712–714. [Google Scholar] [CrossRef]
- Sohn, H.-Y.; Shin, Y.-K.; Kim, J.-S. Anti-proliferative activities of solid-state fermented medicinal herbs using Phellinus baumii against human colorectal HCT116 cell. J. Life Sci. 2010, 20, 1268–1275. [Google Scholar] [CrossRef] [Green Version]
- Cassiem, W.; de Kock, M. The anti-proliferative effect of apricot and peach kernel extracts on human colon cancer cells in vitro. BMC Complement. Altern. Med. 2019, 19, 32. [Google Scholar] [CrossRef] [Green Version]
- Cilla, A.; González-Sarrías, A.; Tomás-Barberán, F.A.; Espín, J.C.; Barberá, R. Availability of polyphenols in fruit beverages subjected to in vitro gastrointestinal digestion and their effects on proliferation, cell-cycle and apoptosis in human colon cancer Caco-2 cells. Food Chem. 2009, 114, 813–820. [Google Scholar] [CrossRef]
- Cilla, A.; Lagarda, M.J.; Barberá, R.; Romero, F. Polyphenolic profile and antiproliferative activity of bioaccessible fractions of zinc-fortified fruit beverages in human colon cancer cell lines. Nutr. Hosp. 2010, 25, 561–571. [Google Scholar]
- Deferme, S.; Van Gelder, J.; Augustijns, P. Inhibitory effect of fruit extracts on P-glycoproteinrelated efflux carriers: An in-vitro screening. J. Pharm. Pharmacol. 2002, 54, 1213–1219. [Google Scholar] [CrossRef]
- Aysun, B.K.; Diner, Z.; Simay, G.; Nese, K.; Onder, O.; Cemil, C. Comparision between the effects of dietary suplements of sun dried or sulfur fumigated apricots on the telomerase activity and oxidatıve stress parameters in azoxymethane administered rats. Int. J. Nutr. Metab. 2014, 6, 50–55. [Google Scholar]
- Aamazadeh, F.; Ostadrahimi, A.; Rahbar Saadat, Y.; Barar, J. Bitter apricot ethanolic extract induces apoptosis through increasing expression of Bax/Bcl-2 ratio and caspase-3 in PANC-1 pancreatic cancer cells. Mol. Biol. Rep. 2020, 47, 1895–1904. [Google Scholar] [CrossRef]
- Aamazadeh, F.; Barar, J.; Saadat, Y.R.; Ostadrahimi, A. In vitro evaluation of cytotoxic and apoptotic activities of ethanolic extract of sweet apricot kernel on PANC-1 pancreatic cancer cells. Nutr. Food Sci. 2021, 52, 12–25. [Google Scholar] [CrossRef]
- Mahmoudi, E.; Abolfathi, M.; Hassanzadeh, N.; Milasi, Y.E.; Dehghani-Samani, M.; Khaledi, M.; Kerdarian, H.; Najafipour, M.; Arshi, A. Prunus armeniaca effects on expression of genes related to apoptosis in human breast cancer cells. Transl. Med. Commun. 2019, 4, 5. [Google Scholar] [CrossRef]
- Mosadegh Manshadi, S.; Nadali, F.; Shams Ardekani, M.R. Armeniacae Semen Regulates Apoptosis and Cell Cycle Progression in MCF-7, MDA-MB-231, and T47D Breast Cancer Cell Lines. Middle East J. Cancer 2021, 12, 208–218. [Google Scholar]
- Soltani, L.; Darbemamieh, M.; Zokaee Khosroshahi, M. Comparative Study of Anti-Cancer Properties of Hydroalcoholic Extract of Different Cultivars of Apricot Kernels on Breast Cancer Cells (MCF7) and Human Umbilical Vein Endothelial Cells. J. Maz. Univ. Med. Sci. 2021, 31, 13–27. [Google Scholar]
- Sołtys, M.Z.; Szwajgier, D.; Kukuła-Koch, W. Cytotoxic effect of multifruit polyphenol preparation on human breast cancer cell lines. Emir. J. Food Agric. 2021, 33, 320–327. [Google Scholar] [CrossRef]
- Mei-hua, S.; Jian-xin, D.; Xiao-guang, L.; Ya-hui, M.; Jin-mei, W.; Yu-yong, Z.; Jie, L. Mechanism of proliferation and apoptosis in breast cancer cells MCF7 induced by ethyl acetate extract of wild apricot leaves. Nat. Prod. Res. Dev. 2019, 31, 1124. [Google Scholar]
- Salarbashi, D.; Tafaghodi, M.; Fathi, M.; Aboutorabzade, S.M.; Sabbagh, F. Development of curcumin-loaded Prunus armeniaca gum nanoparticles: Synthesis, characterization, control release behavior, and evaluation of anticancer and antimicrobial properties. Food Sci. Nutr. 2021, 9, 6109–6119. [Google Scholar] [CrossRef]
- Li, W.; Chen, C.; Saud, S.M.; Geng, L.; Zhang, G.; Liu, R.; Hua, B. Fei-Liu-Ping ointment inhibits lung cancer growth and invasion by suppressing tumor inflammatory microenvironment. BMC Complement. Altern. Med. 2014, 14, 153. [Google Scholar] [CrossRef] [Green Version]
- Zang, W.K.; Mohamed, M.; Ting, L.W.; Ahad, S. Study of Traditional and Complementary Medicine (TCM) Usage among Cancer Patients Receiving Chemotherapy in Hospital Melaka. Editor. Board 2018, 1, 78. [Google Scholar]
- Yuan, F.; Sining, C.; Ying, Z.; Ze, X.; Weinan, L.; Lin, Z.; Shenge, S.; Lulu, W.; Jianzhe, L.; Fangmei, T. Clinical study of bufei huayu decoction combined with gefitinib in the treatment of advanced non-small cell lung cancer. Acta Med. Mediterr. 2020, 36, 1815–1821. [Google Scholar]
- Kim, S.-J.; Lee, I.-S.; Chang, I.-M.; Mar, W.-C. Development of TPA-induced Ornithine Decarboxylase (ODC) Inhibitors from Plants as Cancer Chemopreventive Agents. Nat. Prod. Sci. 1996, 2, 123–129. [Google Scholar]
- Lee, D.-K.; Kim, Y.-S.; Kim, D.-H. Effect of Armeniacae Amarum semen on expression of Bax and Bcl-2 mRNA and caspase-3 activity of human DU145 prostate cancer cells. J. Korean Med. Ophthalmol. Otolaryngol. Dermatol. 2016, 29, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Yang, W.; Li, Z.; Jia, W.; Li, J.; Zhang, P.; Xiao, T. Bitter apricot essential oil induces apoptosis of human HaCaT keratinocytes. Int. Immunopharmacol. 2016, 34, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Kapadia, G.J.; Balasubramanian, V.; Tokuda, H.; Iwashima, A.; Nishino, H. Inhibition of 12-O-tetradecanoylphorbol-13-acetate induced Epstein-Barr virus early antigen activation by natural colorants. Cancer Lett. 1997, 115, 173–178. [Google Scholar] [CrossRef]
- Manshadi, S.M.; Safavi, M.; Rostami, S.; Nadali, F.; Ardekani, M.R.S. Apoptosis Induction of Armeniacae Semen Extractin Human Acute Leukemia (NALM-6 and KG-1) Cells. Int. J. Hematol. Oncol. Stem Cell Res. 2019, 13, 116. [Google Scholar]
- Lee, G.-J.; Song, Y.-K.; Lim, H.-H. Effect of Amygdalin from Armeniacae Semen on Ion Currents Changed by Lipopolysaccharide in Rat Periaqueductal Gray Neurons. J. Korean Med. 2007, 28, 104–113. [Google Scholar]
- Phull, A.-R.; Ali, A.; Rafiq, M.; Tahir, T.; Majid, A.; Seo, S.-Y.; Park, H.-J. Antioxidant potential, urease and acetylcholine esterase inhibitory activity and phytochemical analysis of selected medicinal plants from the Republic of Korea. Explor. Res. Hypothesis Med. 2021, 6, 51–59. [Google Scholar] [CrossRef]
- Bonesi, M.; Tenuta, M.C.; Loizzo, M.R.; Sicari, V.; Tundis, R. Potential application of Prunus armeniaca L. and P. domestica L. leaf essential oils as antioxidant and of cholinesterases inhibitors. Antioxidants 2018, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Katayama, S.; Ogawa, H.; Nakamura, S. Apricot carotenoids possess potent anti-amyloidogenic activity in vitro. J. Agric. Food Chem. 2011, 59, 12691–12696. [Google Scholar] [CrossRef]
- Parlakpinar, H.; Olmez, E.; Acet, A.; Ozturk, F.; Tasdemir, S.; Ates, B.; Gul, M.; Otlu, A. Beneficial effects of apricot-feeding on myocardial ischemia-reperfusion injury in rats. Food Chem. Toxicol. 2009, 47, 802–808. [Google Scholar] [CrossRef]
- Kutlu, T.; Durmaz, G.; Ates, B.; Erdogan, A. Protective effect of dietary apricot kernel oil supplementation on cholesterol levels and antioxidant status of liver in hypercholesteremic rats. J. Food Agric. Environ. 2009, 3, 61–65. [Google Scholar]
- Zhu, Z.; Qiu, N.; Yi, J. Production and characterization of angiotensin converting enzyme (ACE) inhibitory peptides from apricot (Prunus armeniaca L.) kernel protein hydrolysate. Eur. Food Res. Technol. 2010, 231, 13–19. [Google Scholar] [CrossRef]
- Kolesar, E.; Tvrda, E.; Halenar, M.; Schneidgenova, M.; Chrastinova, L.; Ondruska, L.; Jurcik, R.; Kovacik, A.; Kovacikova, E.; Massanyi, P. Assessment of rabbit spermatozoa characteristics after amygdalin and apricot seeds exposure in vivo. Toxicol. Rep. 2018, 5, 679–686. [Google Scholar] [CrossRef]
- Kolesárová, A.; Džurňáková, V.; Michalcová, K.; Baldovská, S.; Chrastinová, Ľ.; Ondruška, Ľ.; Jurčík, R.; Tokárová, K.; Kováčiková, E.; Kováčik, A. The effect of Apricot seeds on microscopic structure of rabbit liver. J. Microbiol. Biotechnol. Food Sci. 2020, 10, 321–324. [Google Scholar] [CrossRef]
- Ozturk, F.; Gul, M.; Ates, B.; Ozturk, I.C.; Cetin, A.; Vardi, N.; Otlu, A.; Yilmaz, I. Protective effect of apricot (Prunus armeniaca L.) on hepatic steatosis and damage induced by carbon tetrachloride in Wistar rats. Br. J. Nutr. 2009, 102, 1767–1775. [Google Scholar] [CrossRef] [Green Version]
- Karabulut, A.; Önal, Y.; Gül, M.; Otlu, O.; Tuzcu, M.; Gül, S. Nutri-protection and mediterranean diet: Bitter apricot kernel and amygdalin treatment effects on a battery of oxidative stress and apoptosis biomarkers. J. Plant Physiol. Pathol. 2014, 3, 2. [Google Scholar] [CrossRef]
- Dawod, B.K.; Ahmed, M.A. Evaluation various doses of apricot kernels effect on antioxidant system and hepatic tissue in female albino rats. Ann. Rom. Soc. Cell Biol. 2021, 25, 1694–1701. [Google Scholar]
- Yurt, B.; Celik, I. Hepatoprotective effect and antioxidant role of sun, sulphited-dried apricot (Prunus armeniaca L.) and its kernel against ethanol-induced oxidative stress in rats. Food Chem. Toxicol. 2011, 49, 508–513. [Google Scholar] [CrossRef]
- Yilmaz, I.; Cetin, A.; Bilgic, Y. Hepatoprotective effects of apricot against acetaminophen induced acute hepatotoxicity in rats. Am. J. Pharmacol. Sci. 2015, 3, 44–48. [Google Scholar]
- Raj, V.; Mishra, A.K.; Mishra, A.; Khan, N.A. Hepatoprotective effect of Prunus armeniaca L.(Apricot) leaf extracts on Paracetamol induced liver damage in Wistar rats. Pharmacogn. J. 2016, 8, 154–158. [Google Scholar] [CrossRef] [Green Version]
- Elwan, M.M.; Basyouny, M.; Amin, S.; Naggar, S. Prophylactic effects of apricot seed Is extract on cyclophosphamide-induced leukopenia and hepatorenal toxicity in male mice. Egypt. J. Exp. Biol. 2020, 16, 47–55. [Google Scholar] [CrossRef]
- Erdemli, M.E.; Doğan, Z.; Çiğremiş, Y.; Akgöz, M.; Altinöz, E.; Gecer, M.; Türköz, Y. Amelioration of subchronic acrylamide toxicity in large intestine of rats byorganic dried apricot intake. Turk. J. Biol. 2015, 39, 872–878. [Google Scholar] [CrossRef]
- Nagi, H.M.; Amin, W.; Zaki, S. The potential effect of fruits and vegetables on liver functions and liver alterations induced by acrylamide in mice. In Proceedings of the 3rd International Conference on Nutrition and Food Sciences (ICNFS 2014), Copenhagen, Denmark, 18–20 June 2014; IACSIT Press: Singapore; pp. 5–9. [Google Scholar]
- Tiwari, S.W.; Sah, A.N. Effect of Apricot Fruit and Kernel Extracts on in-vitro Dissolution of Cholesterol Gallstones: Implication for Development of Potent Anti-cholilithiaticc agent. Indian J. Pharm. Educ. Res. 2020, 54, 755–760. [Google Scholar] [CrossRef]
- Karabulut, E. Emerging microencapsulated apricot kernel powder improves biochemical parameters in rats. Emerg. Mater. Res. 2020, 9, 1209–1216. [Google Scholar] [CrossRef]
- Hussein, L.; Abdel-Rahim, E.A.; Afify, A.E.-M.M.; El-Arab, A.E.; Labib, E. Effectiveness of Apricots (Prunus armeniaca), Pomegranate (Punica granatum) Juice and Lactic Acid Fermented Sobya on Plasma Levels of Lipid Profile Parameters and Total Homocysteine among Egyptian Adults. Food Nutr. Sci. 2014, 5, 2225. [Google Scholar]
- Kopčeková, J.; Kolesárová, A.; Kováčik, A.; Kováčiková, E.; Gažarová, M.; Chlebo, P.; Valuch, J.; Kolesárová, A. Influence of long-term consumption of bitter apricot seeds on risk factors for cardiovascular diseases. J. Environ. Sci. Health Part B 2018, 53, 298–303. [Google Scholar] [CrossRef]
- Kopčeková, J.; Kováčiková, E.; Kováčik, A.; Kolesárová, A.; Mrázová, J.; Chlebo, P.; Kolesárová, A. Consumption of bitter apricot seeds affects lipid and endocrine profile in women. J. Environ. Sci. Health Part B 2021, 56, 378–386. [Google Scholar] [CrossRef]
- Tian, H.; Yan, H.; Tan, S.; Zhan, P.; Mao, X.; Wang, P.; Wang, Z. Apricot Kernel Oil Ameliorates Cyclophosphamide-Associated Immunosuppression in Rats. Lipids 2016, 51, 931–939. [Google Scholar] [CrossRef]
- Alshehri, M.M.; Quispe, C.; Herrera-Bravo, J.; Sharifi-Rad, J.; Tutuncu, S.; Aydar, E.F.; Topkaya, C.; Mertdinc, Z.; Ozcelik, B.; Aital, M.; et al. A Review of Recent Studies on the Antioxidant and Anti-Infectious Properties of Senna Plants. Oxid. Med. Cell. Longev. 2022, 2022, 6025900. [Google Scholar] [CrossRef] [PubMed]
- Painuli, S.; Quispe, C.; Herrera-Bravo, J.; Semwal, P.; Martorell, M.; Almarhoon, Z.M.; Seilkhan, A.; Ydyrys, A.; Rad, J.S.; Alshehri, M.M.; et al. Nutraceutical Profiling, Bioactive Composition, and Biological Applications of Lepidium sativum L. Oxid. Med. Cell. Longev. 2022, 2022, 2910411. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Sharifi-Rad, J.; Capanoglu, E.; Adrar, N.; Catalkaya, G.; Shaheen, S.; Jaffer, M.; Giri, L.; Suyal, R.; Jugran, A.K.; et al. Cucurbita Plants: From Farm to Industry. Appl. Sci. 2019, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Sharifi-Rad, J.; Quispe, C.; Durazzo, A.; Lucarini, M.; Souto, E.B.; Santini, A.; Imran, M.; Moussa, A.Y.; Mostafa, N.M.; El-Shazly, M.; et al. Resveratrol’ biotechnological applications: Enlightening its antimicrobial and antioxidant properties. J. Herb. Med. 2022, 32, 100550. [Google Scholar] [CrossRef]
- Hossain, R.; Quispe, C.; Herrera-Bravo, J.; Islam, M.S.; Sarkar, C.; Islam, M.T.; Martorell, M.; Cruz-Martins, N.; Al-Harrasi, A.; Al-Rawahi, A.; et al. Lasia spinosa Chemical Composition and Therapeutic Potential: A Literature-Based Review. Oxid. Med. Cell. Longev. 2021, 2021, 1602437. [Google Scholar] [CrossRef]
- Hegedus, A.; Tordai, E.; Pedryc, A.; Engel, R.; Stefanovits-Bányai, E. Antioxidant characterization of apricot fruits: Genotype affected variability and correlations among different antioxidant assays. Acta Hortic. 2010, 862, 573–576. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Quispe-Fuentes, I.; Uribe, E.; Martinez-Monzo, J.; Pasten, A.; Lemus-Mondaca, R. Bioactive compounds and physicochemical characterization of dried apricot (Prunus armeniaca L.) as affected by different drying temperatures. CyTA-J. Food 2019, 17, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Durmaz, G.; Alpaslan, M. Antioxidant properties of roasted apricot (Prunus armeniaca L.) kernel. Food Chem. 2007, 100, 1177–1181. [Google Scholar] [CrossRef]
- Vardi, N.; Parlakpinar, H.; Ozturk, F.; Ates, B.; Gul, M.; Cetin, A.; Erdogan, A.; Otlu, A. Potent protective effect of apricot and β-carotene on methotrexate-induced intestinal oxidative damage in rats. Food Chem. Toxicol. 2008, 46, 3015–3022. [Google Scholar] [CrossRef]
- Vardi, N.; Parlakpinar, H.; Ates, B.; Cetin, A.; Otlu, A. The protective effects of Prunus armeniaca L (apricot) against methotrexate-induced oxidative damage and apoptosis in rat kidney. J. Physiol. Biochem. 2013, 69, 371–381. [Google Scholar] [CrossRef]
- Ugras, M.Y.; Kurus, M.; Ates, B.; Soylemez, H.; Otlu, A.; Yilmaz, İ. Prunus armeniaca L (apricot) protects rat testes from detrimental effects of low-dose x-rays. Nutr. Res. 2010, 30, 200–208. [Google Scholar] [CrossRef]
- Bütün, B.; Akdemir, A. Target Recognition Molecules and Molecular Modeling Studies. Curr. Top. Med. Chem. 2017, 17, 1580–1587. [Google Scholar]
- Chang, H.-K.; Yang, H.-Y.; Lee, T.-H.; Shin, M.-C.; Lee, M.-H.; Shin, M.-S.; Kim, C.-J.; Kim, O.-J.; Hong, S.-P.; Cho, S. Armeniacae semen extract suppresses lipopolysaccharide-induced expressions of cycloosygenase-2 and inducible nitric oxide synthase in mouse BV2 microglial cells. Biol. Pharm. Bull. 2005, 28, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-J.; Ryu, J.-H. Screening of Leukotriene $ B_4 $ Receptor Antagonist Activity from the Herbal Drugs. Korean J. Pharmacogn. 2000, 31, 273–279. [Google Scholar]
- Minaiyan, M.; Ghannadi, A.; Asadi, M.; Etemad, M.; Mahzouni, P. Anti-inflammatory effect of Prunus armeniaca L.(Apricot) extracts ameliorates TNBS-induced ulcerative colitis in rats. Res. Pharm. Sci. 2014, 9, 225. [Google Scholar]
- Hyun, S.-W.; Kim, J.; Park, B.; Jo, K.; Lee, T.G.; Kim, J.S.; Kim, C.-S. Apricot kernel extract and amygdalin inhibit urban particulate matter-induced keratoconjunctivitis sicca. Molecules 2019, 24, 650. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.; Kaddour, S.; Trari, M. Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon. J. Ind. Eng. Chem. 2014, 20, 745–751. [Google Scholar] [CrossRef]
- Abdulsamad, R.K.; Hameed, A.K.; Hilal, J.A.K.; Rashid, I.M.A. Comparative Study between the Effect of Apricot Seeds Extract and Gentamicine Ointment on Corneal Healing After Induced Ulcer in Eye Cornea in Pigeons. Ann. Rom. Soc. Cell Biol. 2021, 25, 10270–10278. [Google Scholar]
- Taheri, Y.; Jokovic, N.; Vitorovic, J.; Grundmann, O.; Maroyi, A.; Calina, D. The Burden of the Serious and Difficult-to-Treat Infections and a New Antibiotic Available: Cefiderocol. Front. Pharmacol. 2021, 11, 18. [Google Scholar] [CrossRef]
- Ghenea, A.E.; Cioboată, R.; Drocaş, A.I.; Țieranu, E.N.; Vasile, C.M.; Moroşanu, A.; Țieranu, C.G.; Salan, A.-I.; Popescu, M.; Turculeanu, A.; et al. Prevalence and Antimicrobial Resistance of Klebsiella Strains Isolated from a County Hospital in Romania. Antibiotics 2021, 10, 868. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Quispe, C.; Rahavian, A.; Pereira Carneiro, J.N.; Rocha, J.E.; Alves Borges Leal, A.L.; Bezerra Morais Braga, M.F.; Melo Coutinho, H.D.; Ansari Djafari, A.; Alarcón-Zapata, P.; et al. Bioactive Compounds as Potential Agents for Sexually Transmitted Diseases Management: A Review to Explore Molecular Mechanisms of Action. Front. Pharmacol. 2021, 12, 1886. [Google Scholar] [CrossRef]
- Yiğit, D.; Yiğit, N.; Mavi, A. Antioxidant and antimicrobial activities of bitter and sweet apricot (Prunus armeniaca L.) kernels. Braz. J. Med. Biol. Res. 2009, 42, 346–352. [Google Scholar] [CrossRef] [Green Version]
- Amiran, F.; Shafaghat, A.; Shafaghatlonbar, M. Omega-6 content, antioxidant and antimicrobial activities of hexanic extract from Prunus armeniaca L. kernel from North-West Iran. Natl. Acad. Sci. Lett. 2015, 38, 107–111. [Google Scholar] [CrossRef]
- Jaya, S.; Siddheswaran, P.; Kumar, K.S.; Karthiyayini, T. Anti-tubercular activity of fruits of Prunus armeniaca (L.). Int. J. Pharma Bio Sci. 2010, 1, PS89. [Google Scholar]
- Nafis, A.; Kasrati, A.; Jamali, C.A.; Custódio, L.; Vitalini, S.; Iriti, M.; Hassani, L. A comparative study of the in vitro antimicrobial and synergistic effect of essential oils from Laurus nobilis L. and Prunus armeniaca L. from Morocco with antimicrobial drugs: New approach for health promoting products. Antibiotics 2020, 9, 140. [Google Scholar] [CrossRef] [Green Version]
- Mujtaba, A.; Masud, T.; Ahmad, A.; Ahmed, W.; Jabbar, S.; Levin, R.E. Antibacterial activity by chlorogenic acid isolated through resin from apricot (Prunus Armeniaca L.). Pak. J. Agric. Res. 2017, 30, 144–148. [Google Scholar] [CrossRef]
- Yamamoto, K.; Osaki, Y.; Kato, T.; Miyazaki, T. Antimutagenic substances in the Armeniacae semen and Persicae semen. Yakugaku Zasshi J. Pharm. Soc. Jpn. 1992, 112, 934–939. [Google Scholar] [CrossRef]
- Shaheen, N.; Qureshi, N.A.; Ashraf, A.; Hamid, A.; Iqbal, A.; Fatima, H. In vitro anti-leishmanial activity of Prunus armeniaca fractions on Leishmania tropica and molecular docking studies. J. Photochem. Photobiol. B Biol. 2020, 213, 112077. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Quispe, C.; Imran, M.; Rauf, A.; Nadeem, M.; Gondal, T.A.; Ahmad, B.; Atif, M.; Mubarak, M.S.; Sytar, O.; et al. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits. Oxid. Med. Cell. Longev. 2021, 2021, 3268136. [Google Scholar] [CrossRef]
- Ianoşi, S.; Ianoşi, G.; Neagoe, D.; Ionescu, O.; Zlatian, O.; Docea, A.O.; Badiu, C.; Sifaki, M.; Tsoukalas, D.; Tsatsakis, A.M.; et al. Age-dependent endocrine disorders involved in the pathogenesis of refractory acne in women. Mol. Med. Rep. 2016, 14, 5501–5506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalcova, K.; Halenár, M.; Tušimová, E.; Kováčik, A.; Chrastinová, Ľ.; Ondruška, Ľ.; Jurčík, R.; Kolesárová, A. Blood plasma levels of anterior pituitary hormones of rabbits after apricot seed exposure in vivo. J. Cent. Eur. Agric. 2016, 17, 1241–1252. [Google Scholar] [CrossRef]
- Rendina, E.; Hembree, K.D.; Davis, M.R.; Marlow, D.; Clarke, S.L.; Halloran, B.P.; Lucas, E.A.; Smith, B.J. Dried plum’s unique capacity to reverse bone loss and alter bone metabolism in postmenopausal osteoporosis model. PLoS ONE 2013, 8, e60569. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Seo, B.-l.; Cho, S.-Y.; Park, K.-R.; Choi, S.-H.; Han, C.-K.; Song, C.-H.; Park, S.-J.; Ku, S.-K. Single oral dose toxicity study of prebrewed armeniacae semen in rats. Toxicol. Res. 2013, 29, 91–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaouali, N.; Gana, I.; Dorra, A.; Khelifi, F.; Nouioui, A.; Masri, W.; Belwaer, I.; Ghorbel, H.; Hedhili, A. Potential toxic levels of cyanide in almonds (Prunus amygdalus), apricot kernels (Prunus armeniaca), and almond syrup. Int. Sch. Res. Not. 2013, 2013, 610648. [Google Scholar] [CrossRef] [Green Version]
- Dhanani, Z.; Uyan, R. 1511: POISONED BY APRICOT SEEDS. Crit. Care Med. 2020, 48, 731. [Google Scholar] [CrossRef]
- Sauer, H.; Wollny, C.; Oster, I.; Tutdibi, E.; Gortner, L.; Gottschling, S.; Meyer, S. Severe cyanide poisoning from an alternative medicine treatment with amygdalin and apricot kernels in a 4-year-old child. Wien. Med. Wochenschr. 2015, 165, 185–188. [Google Scholar] [CrossRef]
- Seghers, L.; Walenbergh-van Veen, M.; Salome, J.; Hamberg, P. Cyanide intoxication by apricot kernel ingestion as complimentary cancer therapy. Neth. J. Med. 2013, 71, 496–498. [Google Scholar]
- Suchard, J.R.; Wallace, K.L.; Gerkin, R.D. Acute cyanide toxicity caused by apricot kernel ingestion. Ann. Emerg. Med. 1998, 32, 742–744. [Google Scholar] [CrossRef]
- Kim, K.-H.; Park, J.Y.; Lee, I.-S.; Kim, Y.; Jang, H.-J. Proteins derived from Prunus armeniaca kernel are possible to cause Immunoglobulin E reactivity in human sera. Mol. Cell. Toxicol. 2017, 13, 213–220. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitic, D.; Miladinovic, B.; Randjelovic, M.; Szopa, A.; Sharifi-Rad, J.; Calina, D.; Seidel, V. Anticancer Potential and Other Pharmacological Properties of Prunus armeniaca L.: An Updated Overview. Plants 2022, 11, 1885. https://doi.org/10.3390/plants11141885
Kitic D, Miladinovic B, Randjelovic M, Szopa A, Sharifi-Rad J, Calina D, Seidel V. Anticancer Potential and Other Pharmacological Properties of Prunus armeniaca L.: An Updated Overview. Plants. 2022; 11(14):1885. https://doi.org/10.3390/plants11141885
Chicago/Turabian StyleKitic, Dusanka, Bojana Miladinovic, Milica Randjelovic, Agnieszka Szopa, Javad Sharifi-Rad, Daniela Calina, and Veronique Seidel. 2022. "Anticancer Potential and Other Pharmacological Properties of Prunus armeniaca L.: An Updated Overview" Plants 11, no. 14: 1885. https://doi.org/10.3390/plants11141885
APA StyleKitic, D., Miladinovic, B., Randjelovic, M., Szopa, A., Sharifi-Rad, J., Calina, D., & Seidel, V. (2022). Anticancer Potential and Other Pharmacological Properties of Prunus armeniaca L.: An Updated Overview. Plants, 11(14), 1885. https://doi.org/10.3390/plants11141885