Discovery and Diagnosis of a New Sobemovirus Infecting Cyperus esculentus Showing Leaf Yellow Mosaic and Dwarfism Using Small-RNA High Throughput Sequencing
Abstract
:1. Introduction
2. Results
2.1. Identification of a New Sobemovirus
2.2. Development of Methods for Fast Detection and Quantification of XYDV
2.3. Incidence of XYDV in the Field and Viral Accumulation
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Extract Preparation
4.3. Sequencing
4.4. Amino-Acid Identity and Phylogenetic Analyses
4.5. Primer and Probe Design
4.6. RT and DNA Amplification
4.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez-Zapata, E.; Fernández-López, J.; Pérez-Álvarez, J.A. Tiger nut (Cyperus esculentus) commercialization: Health aspects, composition, properties, and food applications. Compr. Rev. Food Sci. Food Saf. 2012, 11, 366–377. [Google Scholar] [CrossRef]
- Adams, I.P.; Glover, R.H.; Monger, W.A.; Mumford, R.; Jackeviciene, E.; Navalinskiene, M.; Samuitiene, M.; Boonham, N. Next-generation sequencing and metagenomic analysis: A universal diagnostic tool in plant virology. Mol. Plant Pathol. 2009, 10, 537–545. [Google Scholar] [CrossRef]
- Kreuze, J.F.; Pérez, A.; Untiveros, M.; Quispe, D.; Fuentes, S.; Barker, I.; Simon, R. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: A generic method for diagnosis, discovery and sequencing of viruses. Virology 2009, 388, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio, L.; Galipienso, L.; Ferriol, I. Detection of plant viruses and disease management: Relevance of genetic diversity and evolution. Front. Plant Sci. 2020, 11, 1092. [Google Scholar] [CrossRef]
- Panno, S.; Matić, S.; Tiberini, A.; Caruso, A.G.; Bella, P.; Torta, L.; Stassi, R.; Davino, S. Loop mediated isothermal amplification: Principles and applications in plant virology. Plants 2020, 9, 461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papayiannis, L.C. Diagnostic real-time RT-PCR for the simultaneous detection of Citrus exocortis viroid and Hop stunt viroid. J. Virol. Methods 2014, 196, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Sõmera, M.; Fargette, D.; Hébrard, E.; Sarmiento, C. ICTV Virus Taxonomy Profile: Solemoviridae 2021. J. Gen. Virol. 2021, 102, 001707. [Google Scholar] [CrossRef] [PubMed]
- García-Jiménez, J.; Busto, J.; Vicent, A.; Sales, R.; Armengol, J. A tuber rot of Cyperus esculentus caused by Rosellinia necatrix. Plant Dis. 1998, 82, 1281. [Google Scholar] [CrossRef] [PubMed]
- Montano-Mata, N.J. Etiologia, Epidemiologia y Control de la necrosis foliar de la chufa (Ciperus esculentus L.). Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2008. [Google Scholar]
- Alvares, D.; Armero, C.; Forte, A.; Serra, J.; Galipienso, L.; Rubio, L. Incidence and control of black spot syndrome of tiger nut. Ann. Appl. Biol. 2017, 171, 417–423. [Google Scholar] [CrossRef]
- Chivasa, S.; Ekpo, E.J.A.; Hicks, R.G.T. New hosts of Turnip mosaic virus in Zimbabwe. Plant Pathol. 2002, 51, 386. [Google Scholar] [CrossRef]
- Martínez-Ochoa, N.; Mullis, S.W.; Csinos, A.S. First report of yellow nutsedge (Cyperus esculentus) and purple nutsedge (C. rotundus) in Georgia naturally infected with Impatiens necrotic spot virus. Plant Dis. 2004, 88, 771. [Google Scholar] [CrossRef] [PubMed]
- Takács, A.P.; Kazinczi, G.; Horvath, J.; Gaborjanyi, R. Cyperus esculentus L. a new host of Brome streak mosaic virus (BrSMV). J. Plant Dis. Prot. 2008, 21, 527–528. [Google Scholar]
- Salaudeen, M.T.; Banwo, O.O.; Kashina, B.D.; Alegbejo, M.D. Possible wild hosts of rice yellow mottle Sobemovirus in northern Nigeria. Nigerian J. Weed Sci. 2008, 21, 67–71. [Google Scholar]
- Velasco, L.; Ruiz, L.; Galipienso, L.; Rubio, L.; Janssen, D. A historical account of viruses in intensive horticultural crops in the Spanish Mediterranean Arc: New challenges for a sustainable agriculture. Agronomy 2020, 10, 860. [Google Scholar] [CrossRef]
- Sõmera, M.; Sarmiento, C.; Truve, E. Overview on sobemoviruses and a proposal for the creation of the family Sobemoviridae. Viruses 2015, 7, 3076–3115. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.J.; Lim, S.T.S.; Schenck, S.; Arcinas, A.; Komor, E. RT-PCR and quantitative real-time RT-PCR detection of Sugarcane yellow leaf virus (SCYLV) in symptomatic and asymptomatic plants of Hawaiian sugarcane cultivars and the correlation of SCYLV titre to yield. Eur. J. Plant Pathol. 2010, 127, 263–273. [Google Scholar] [CrossRef]
- Galipienso, L.; Jassen, D.; Rubio, L.; Aramburu, J.M.; Velasco, L. Cucumber vein yellowing virus isolate-specific expression of symptoms and viral RNA accumulation in susceptible and resistant cucumber cultivars. Crop Prot. 2013, 43, 141–145. [Google Scholar] [CrossRef]
- Elvira-González, L.; Peiró, R.; Rubio, L.; Galipienso, L. Persistent Southern tomato virus (STV) interacts with Cucumber mosaic and/or Pepino mosaic virus in mixed- infections modifying plant symptoms, viral titer and small RNA accumulation. Microorganisms 2021, 9, 689. [Google Scholar] [CrossRef] [PubMed]
- Soler, S.; Debreczeni, D.E.; Vidal, E.; Aramburu, J.; López, C.; Galipienso, L.; Rubio, L. A new Capsicum baccatum accession shows tolerance to wild-type and resistance-breaking isolates of Tomato spotted wilt virus. Ann. Appl. Biol. 2015, 167, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Falgueras, J.; Lara, A.J.; Fernández-Pozo, N.; Cantón, F.R.; Pérez-Trabado, G.; Claros, M.G. SeqTrim: A high-throughput pipeline for pre-processing any type of sequence read. BMC Bioinform. 2010, 11, 38. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Gao, S.; Padmanabhan, C.; Li, R.; Galvez, M.; Gutierrez, D.; Fuentes, S.; Ling, K.S.; Kreuze, J.; Fei, Z. VirusDetect: An automated pipeline for efficient virus discovery using deep sequencing of small RNAs. Virology 2017, 500, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerbino, D.R.; Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008, 18, 821–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Higgins, D.; Thompson, J.; Gibson, T. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Le, S.Q.; Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 2008, 25, 1307–1320. [Google Scholar] [CrossRef] [Green Version]
- Efron, B.; Halloran, E.; Holmes, S. Bootstrap confidence levels for phylogenetic trees. Proc. Natl. Acad. Sci. USA 1996, 93, 13429–13434. [Google Scholar] [CrossRef] [Green Version]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [Green Version]
Use | Oligo | Sequence |
---|---|---|
RT-PCR and Sanger | 479F | 5′-AAGATGTGATCCTCCAGCC-3′ |
sequencing | 402R | 5′-CAGCTTGGACCAGACAGAA-3′ |
541R | 5′-GGGTATATCTAGCGAAGT-3′ | |
253F | 5′-TCAAATTTAGAGAGTCTGGTCG-3′ | |
253R | 5′-CAGACTCTCTAAATTTGAC-3′ | |
171F | 5′-AGGACGATTCCGCTTGATATC-3′ | |
171R | 5′-ATATCAAGCGGAATCGTCCTTC-3′ | |
148R | 5′-TGCAGTACGATCCAGATTTC-3′ | |
220F | 5′-GTTAAACTTTAACGCTAGGAATG-3′ | |
RT-PCR | X1F | 5′-ACGACTTAGTCGTTGAAGC-3′ |
X1R | 5′-TCCGCGTATTCCCAGATAGC-3′ | |
RT-qPCR | qX1F | ACGTGCTTGATGCCGCTAAG |
(SYBR Green) | qX1R | GGAACCTGTACCGCGGAGAT |
RT-qPCR | qX2F | 5′-GTGCAATGCGGGAAATCC-3′ |
(TaqMan probe) | qX2R | 5′-AGCTTAGCGGCATCAAGCA-3′ |
Xprobe | 5′Fam-CCGTGTTGCTCACAGCATGGCA-Tamra3′ | |
RT-LAMP | XF3 | 5′-TTCCACCGTCTCCTACAG-3′ |
XB3 | 5′-TCCACACCTGCGTATGTA-3′ | |
XFIP | 5′-GCGGAGAAGAATCTCACTCGGTGAACTTCAGTGGCTTGC-3′ | |
XBIP | 5′-AGTGGCGACATTGCGATAGGCTGGTATGGTATGGTGACTGTAGTTG-3′ | |
XLoopF | 5′-CTCGGAACTTCTGGTATCTCTG-3′ | |
XLoopR | 5′-GTTGTGTATGACTCCGCTGA-3′ |
Virus | Acronym | GenBank | 2a | 2b | 3 |
---|---|---|---|---|---|
Artemisia virus A | ArtVA | JN620802 | 32.5 | 58.3 | 24.4 |
Cocksfoot mottle virus | CoMV | AB040447 | 25.1 | 51.3 | 11.0 |
Cymbidium chlorotic mosaic virus | CyCMV | LC019764 | 28.6 | 51.4 | 20.5 |
Imperata yellow mottle virus | IYMV | AM990928 | 21.1 | 51.3 | 10.8 |
Lucerne transient streak virus | LTSV | JQ782213 | 26.7 | 54.5 | 17.6 |
Papaya lethal yellowing virus | PLYV | JX123318 | 26.7 | 53.3 | 16.3 |
Physalis rugose mosaic virus | PhyRMV | MN782300 | 27.7 | 51.3 | 16.1 |
Rice yellow mottle virus | RYMV | AJ608210 | 26.1 | 53.6 | 17.6 |
Rottboellia yellow mottle virus | RYMoV | KC577469 | 40.6 | 63.2 | 33.7 |
Rubus chlorotic mottle virus | RuCMV | AM940437 | 26.0 | 52.3 | 18.1 |
Ryegrass mottle virus | RGMoV | EF091714 | 39.6 | 61.1 | 35.1 |
Sesbania mosaic virus | SeMV | AY004291 | 27.0 | 50.8 | 20.7 |
Solanum nodiflorum mottle virus | SNMoV | KC577470 | 26.0 | 48.7 | 20.7 |
Southern bean mosaic virus | SBMV | DQ875594 | 25.0 | 51.8 | 21.6 |
Southern cowpea mosaic virus | SCPMV | NC_001625 | 27.7 | 52.8 | 19.6 |
Sowbane mosaic virus | SoMV | GQ845002 | 26.0 | 51.9 | 19.4 |
Soybean yellow common mosaic virus | SYCMV | JF495127 | 26.5 | 50.4 | 22.0 |
Subterranean clover mottle virus | SCMoV | AF208001 | 27.7 | 54.9 | 18.0 |
Turnip rosette virus | TRoV | KC778720 | 29.4 | 50.0 | 16.6 |
Velvet tobacco mottle virus | VTMoV | HM754263 | 27.2 | 48.7 | 21.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubio, L.; Guinot-Moreno, F.J.J.; Sanz-López, C.; Galipienso, L. Discovery and Diagnosis of a New Sobemovirus Infecting Cyperus esculentus Showing Leaf Yellow Mosaic and Dwarfism Using Small-RNA High Throughput Sequencing. Plants 2022, 11, 2002. https://doi.org/10.3390/plants11152002
Rubio L, Guinot-Moreno FJJ, Sanz-López C, Galipienso L. Discovery and Diagnosis of a New Sobemovirus Infecting Cyperus esculentus Showing Leaf Yellow Mosaic and Dwarfism Using Small-RNA High Throughput Sequencing. Plants. 2022; 11(15):2002. https://doi.org/10.3390/plants11152002
Chicago/Turabian StyleRubio, Luis, Francisco J. J. Guinot-Moreno, Carmen Sanz-López, and Luis Galipienso. 2022. "Discovery and Diagnosis of a New Sobemovirus Infecting Cyperus esculentus Showing Leaf Yellow Mosaic and Dwarfism Using Small-RNA High Throughput Sequencing" Plants 11, no. 15: 2002. https://doi.org/10.3390/plants11152002
APA StyleRubio, L., Guinot-Moreno, F. J. J., Sanz-López, C., & Galipienso, L. (2022). Discovery and Diagnosis of a New Sobemovirus Infecting Cyperus esculentus Showing Leaf Yellow Mosaic and Dwarfism Using Small-RNA High Throughput Sequencing. Plants, 11(15), 2002. https://doi.org/10.3390/plants11152002