Alleviation of Cadmium and Nickel Toxicity and Phyto-Stimulation of Tomato Plant L. by Endophytic Micrococcus luteus and Enterobacter cloacae
Abstract
:1. Introduction
- (i)
- Evaluate the efficiency of Micrococcus luteus and Enterobacter cloacae when applied with Cd and Ni on tomato plants.
- (ii)
- Assess the role of Micrococcus luteus and Enterobacter cloacae in accelerating morphological, antioxidant enzyme activities, biochemical, and physiological in tomato plant against Cd and Ni stress.
2. Material and Methods
2.1. Isolation of Endophytic Bacteria from Roots of Tomato Plant
2.1.1. Collection of Plant Samples
2.1.2. Surface Sterilization of Samples
2.1.3. Isolation of Endophytic Bacteria
2.1.4. Morphological and Biochemical Characteristics of the Isolates
2.1.5. Molecular Characterization of Bacterial Isolates
2.1.6. Sequence Alignments and Phylogenetic Analyses
2.1.7. Screening of the Most Potent Growth-Promoting Endophytic Bacterial Isolates
2.1.8. Determination of the Tolerance of Endophytes Strains to Heavy Metal Stress
2.1.9. Bacterial Suspension Inoculation and Treatments
2.2. Plant Material
2.3. Measurement of Growth Parameter
2.4. Chlorophyll Content and Photosynthetic Characteristics
2.5. Determination of Stress-Induced Biomarkers
2.5.1. Total Proline and Phenol Content
2.5.2. Lipid Peroxidation
2.5.3. Measurement of ROS Indicators
2.6. Enzymatic Antioxidant Assays
2.7. Determination of α-Tocopherol, Lignin, and Ethylene Content
2.8. Determination of Mineral (N, P, K) Content
2.9. Determination of Metal Concentration, Accumulation, and Translocation in Tomato Plants
2.10. Gene Expression Analysis through Quantitative Real-Time (qRT-PCR)
2.11. Statistical Analysis
3. Results
3.1. Isolation, Characterization, and Biochemical Identification of Endophytic Bacteria
3.2. Molecular Identification of the 16S rDNA Gene for the Two Bacterial Isolates
3.3. Bioinformatics Analysis of Isolates Enterobacter Cloacae and Micrococcus Luteus Nucleotide Sequence
3.4. Variations in Growth Parameters
3.5. Chlorophyll Content and Photosynthetic Characteristics
3.6. Osmolytes (Proline and Phenol)
3.7. Lipid Peroxidation Content and ROS Production
3.8. Changes in Antioxidant Enzymes
3.9. α-Tocopherol, Lignin, Ethylene, and Mineral Content
3.10. Effect of Endophytic Bacteria on Cd, Ni Concentration, and BCF of Cd and Ni
3.11. Antioxidant Enzyme Gene Expression
3.12. Correlation Analysis and Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ore, O.T.; Adeola, A.O. Toxic metals in oil sands: Review of human health implications, environmental impact, and potential remediation using membrane-based approach. Energy Ecol. Environ. 2021, 6, 81–91. [Google Scholar] [CrossRef]
- Thakare, M.; Sarma, H.; Datar, S.; Roy, A.; Pawar, P.; Gupta, K.; Pandit, S.; Prasad, R. Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. Curr. Res. Biotechnol. 2021, 3, 84–98. [Google Scholar] [CrossRef]
- Xu, D.-M.; Fu, R.-B.; Liu, H.-Q.; Guo, X.-P. Current knowledge from heavy metal pollution in chinese smelter contaminated soils, health risk implications and associated remediation progress in recent decades: A critical review. J Clean. Prod. 2020, 286, 124989. [Google Scholar] [CrossRef]
- Hossain, M.J.; Bakhsh, A. Development and applications of transplastomic plants; a way towards eco-friendly agriculture. In Environment, Climate, Plant and Vegetation Growth; Springer: Berlin, Germany, 2020; pp. 285–322. [Google Scholar] [CrossRef]
- Saleh, S.R.; Kandeel, M.M.; Ghareeb, D.; Ghoneim, T.M.; Talha, N.I.; Alaoui-Sossé, B.; Aleya, L.; Abdel-Daim, M.M. Wheat biological responses to stress caused by cadmium, nickel and lead. Sci. Total Environ. 2020, 706, 136013. [Google Scholar] [CrossRef] [PubMed]
- Szolnoki, Z.; Farsang, A.; Puskás, I. Cumulative impacts of human activities on urban garden soils: Origin and accumulation of metals. Environ. Pollut. 2013, 177, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, J.; Sharma, M.; Wani, K.A. Heavy metals in vegetables and their impact on the nutrient quality of vegetables: A review. J. Plant Nutr. 2018, 41, 1744–1763. [Google Scholar] [CrossRef]
- Bhalerao, S.A.; Sharma, A.S.; Poojari, A.C. Toxicity of nickel in plants. Int. J. Pure Appl. Biosci. 2015, 3, 345–355. [Google Scholar]
- El-Sheshtawy, H.S.; Mahdy, H.M.; Sofy, A.R.; Sofy, M.R. Production of biosurfactant by bacillus megaterium and its correlation with lipid peroxidation of lactuca sativa. Egypt. J. Pet. 2022, 31, 1–6. [Google Scholar] [CrossRef]
- Amjad, M.; Raza, H.; Murtaza, B.; Abbas, G.; Imran, M.; Shahid, M.; Naeem, M.A.; Zakir, A.; Iqbal, M.M. Nickel toxicity induced changes in nutrient dynamics and antioxidant profiling in two maize (Zea mays L.) hybrids. Plants 2020, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Jalmi, S.K.; Bhagat, P.K.; Verma, D.; Noryang, S.; Tayyeba, S.; Singh, K.; Sharma, D.; Sinha, A.K. Traversing the links between heavy metal stress and plant signaling. Front. Plant Sci. 2018, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Abu-Shahba, M.S.; Mansour, M.M.; Mohamed, H.I.; Sofy, M.R. Effect of biosorptive removal of cadmium ions from hydroponic solution containing indigenous garlic peel and mercerized garlic peel on lettuce productivity. Sci. Horti. 2022, 293, 110727. [Google Scholar] [CrossRef]
- Sofy, M.R.; Aboseidah, A.A.; Heneidak, S.A.; Ahmed, H.R. Acc deaminase containing endophytic bacteria ameliorate salt stress in pisum sativum through reduced oxidative damage and induction of antioxidative defense systems. Environ. Sci. Pollut. Res. 2021, 28, 1–21. [Google Scholar] [CrossRef]
- Santoyo, G.; Urtis-Flores, C.A.; Loeza-Lara, P.D.; Orozco-Mosqueda, M.; Glick, B.R. Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (pgpr). Biology 2021, 10, 475. [Google Scholar] [CrossRef]
- Jha, Y.; Mohamed, H.I. Inoculation with Lysinibacillus fusiformis strain yj4 and Lysinibacillus sphaericus strain yj5 alleviates the effects of cold stress in maize plants. Gesunde Pflanz. 2022, 3, 1–19. [Google Scholar] [CrossRef]
- Jha, Y. Endophytic bacteria as a modern tool for sustainable crop management under stress. In Biofertilizers for Sustainable Agriculture and Environment; Springer: Berlin, Germany, 2019; pp. 203–223. [Google Scholar]
- Sofy, A.R.; Sofy, M.R.; Hmed, A.A.; Dawoud, R.A.; Alnaggar, A.E.-A.M.; Soliman, A.M.; El-Dougdoug, N.K. Ameliorating the adverse effects of tomato mosaic tobamovirus infecting tomato plants in egypt by boosting immunity in tomato plants using zinc oxide nanoparticles. Molecules 2021, 26, 1337. [Google Scholar] [CrossRef]
- Zinniel, D.K.; Lambrecht, P.; Harris, N.B.; Feng, Z.; Kuczmarski, D.; Higley, P.; Ishimaru, C.A.; Arunakumari, A.; Barletta, R.G.; Vidaver, A.K. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl. Environ. Microbiol. 2002, 68, 2198–2208. [Google Scholar] [CrossRef] [Green Version]
- Etesami, H.; Hosseini, H.M.; Alikhani, H.A.; Mohammadi, L. Bacterial biosynthesis of 1-aminocyclopropane-1-carboxylate (acc) deaminase and indole-3-acetic acid (iaa) as endophytic preferential selection traits by rice plant seedlings. J. Plant Growth Regul. 2014, 33, 654–670. [Google Scholar] [CrossRef]
- Bartholomew, J.W. Variables influencing results, and the precise definition of steps in gram staining as a means of standardizing the results obtained. Stain Technol. 1962, 37, 139–155. [Google Scholar] [CrossRef] [PubMed]
- James, G. Universal bacterial identification by PCR and DNA sequencing of 16s rRNA gene. In Pcr for Clinical Microbiology; Springer: Berlin, Germany, 2010; pp. 209–214. [Google Scholar]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. Clustal w: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Jukes, T.; Cantor, C. Evolution of protein molecules. In Mammalian Protein Metabolism; Munro, H., Ed.; Academic Press: New York, NY, USA, 1969; pp. 21–132. [Google Scholar] [CrossRef]
- Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. Mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol. Biol. Evol. 2007, 24, 1596–1599. [Google Scholar] [CrossRef]
- Shahab, S.; Ahmed, N.; Khan, N.S. Indole acetic acid production and enhanced plant growth promotion by indigenous psbs. Afr. J. Agric. Res. 2009, 4, 1312–1316. [Google Scholar]
- Okon, Y.; Albrecht, S.L.; Burris, R. Methods for growing spirillum lipoferum and for counting it in pure culture and in association with plants. Appl. Environ. Microbiol. 1977, 33, 85–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pikovskaya, R. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 1948, 17, 362–370. [Google Scholar]
- Fujishige, N.A.; Kapadia, N.N.; De Hoff, P.L.; Hirsch, A.M. Investigations of rhizobium biofilm formation. FEMS Microbiol. Ecol. 2006, 56, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Penrose, D.M.; Glick, B.R. Methods for isolating and characterizing acc deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 2003, 118, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Oehrle, N.W.; Karr, D.B.; Kremer, R.J.; Emerich, D.W. Enhanced attachment of bradyrhizobium japonicum to soybean through reduced root colonization of internally seedborne microorganisms. Can. J. Microbiol. 2000, 46, 600–606. [Google Scholar] [CrossRef]
- Khan, A.R.; Ullah, I.; Waqas, M.; Park, G.-S.; Khan, A.L.; Hong, S.-J.; Ullah, R.; Jung, B.K.; Park, C.E.; Ur-Rehman, S. Host plant growth promotion and cadmium detoxification in solanum nigrum, mediated by endophytic fungi. Ecotoxicol. Environ. Saf. 2017, 136, 180–188. [Google Scholar] [CrossRef]
- Sieuwerts, S.; De Bok, F.A.; Mols, E.; De Vos, W.M.; van Hylckama Vlieg, J. A simple and fast method for determining colony forming units. Lett. Appl. Microbiol. 2008, 47, 275–278. [Google Scholar] [CrossRef]
- Rajendra, L.; Samiyappan, R.; Raguchander, T.G.; Saravanakumar, D. Endophytic bacterial induction of defence enzymes against bacterial blight of cotton. Endophytic Bact. Induction Def. Enzym. Against Bact. Blight Cotton 2006, 4, 1000–1012. [Google Scholar]
- Jahan, M.S.; Guo, S.; Baloch, A.R.; Sun, J.; Shu, S.; Wang, Y.; Ahammed, G.J.; Kabir, K.; Roy, R. Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicol. Environ. Saf. 2020, 197, 110593. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Wang, Y.; Li, G.-Z.; Hao, L. Salicylic acid-altering arabidopsis plant response to cadmium exposure: Underlying mechanisms affecting antioxidation and photosynthesis-related processes. Ecotoxicol. Environ. Saf. 2019, 169, 645–653. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Dihazi, A.; Jaiti, F.; Zouine, J.; El Hassni, M.; El Hadrami, I. Effect of salicylic acid on phenolic compounds related to date palm resistance to fusarium oxysporum f. Sp. Albedinis [phoenix dactylifera l.]. Phytopathol. Mediterr. 2003, 42, 9–16. [Google Scholar]
- Hernández, J.A.; Almansa, M.S. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol. Plant. 2002, 115, 251–257. [Google Scholar] [CrossRef]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.; Aruoma, O.I. The deoxyribose method: A simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 1987, 165, 215–219. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Sofy, M.R.; Aldaej, M.I.; Mohamed, H.I. Silicon alleviates copper toxicity in flax plants by up-regulating antioxidant defense and secondary metabolites and decreasing oxidative damage. Sustainability 2020, 12, 4732. [Google Scholar] [CrossRef]
- Aebi, H. [13] catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- Kono, Y. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch. Biochem. Biophys. 1978, 186, 189–195. [Google Scholar] [CrossRef]
- Thomas, R.L.; Jen, J.J.; Morr, C.V. Changes in soluble and bound peroxidase—iaa oxidase during tomato fruit development. J. Food Sci. 1982, 47, 158–161. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
- Jiang, M.; Zhang, J. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J. Exp. Bot. 2002, 53, 2401–2410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todd, J.F.; Paliyath, G.; Thompson, J.E. Characteristics of a membrane-associated lipoxygenase in tomato fruit. Plant Physiol. 1990, 94, 1225–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaworski, E.G. Nitrate reductase assay in intact plant tissues. Biochem. Biophys. Res. Commun. 1971, 43, 1274–1279. [Google Scholar] [CrossRef]
- Dwivedi, R.S.; Randhawa, N. Evaluation of a rapid test for the hidden hunger of zinc in plants. Plan Soil 1974, 40, 445–451. [Google Scholar] [CrossRef]
- Kivçak, B.; Mert, T. Quantitative determination of α-tocopherol in arbutus unedo by tlc-densitometry and colorimetry. Fitoterapia 2001, 72, 656–661. [Google Scholar] [CrossRef]
- Bruce, R.J.; West, C.A. Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiol. 1989, 91, 889–897. [Google Scholar] [CrossRef]
- Sun, P.; Tian, Q.-Y.; Zhao, M.-G.; Dai, X.-Y.; Huang, J.-H.; Li, L.-H.; Zhang, W.-H. Aluminum-induced ethylene production is associated with inhibition of root elongation in Lotus japonicus L. Plant Cell Physiol. 2007, 48, 1229–1235. [Google Scholar] [CrossRef] [Green Version]
- Bremner, J. Determination of nitrogen in soil by the kjeldahl method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Sen Tran, T.; Giroux, M.; Fardeau, J. Effects of soil properties on plant-available phosphorus determined by the isotopic dilution phosphorus-32 method. Soil Sci. Soc. Am. J. 1988, 52, 1383–1390. [Google Scholar] [CrossRef]
- Page, A.; Miller, R.; Keeny, D. Methods of Soil Analysis. Part π. Chemical and Microbiological Properties, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1982. [Google Scholar]
- Tatiana, O.P.; García, A.; Guedes, J.D.N.; do, A. Sobrinho, N.M.; Tavares, O.; Berbara, R. Assessment of the use of natural materials for the remediation of cadmium soil contamination. PLoS ONE 2016, 11, e0157547. [Google Scholar] [CrossRef]
- Qihang, W.; Wang, S.; Thangavel, P.; Li, Q.; Zheng, H.; Bai, J.; Qiu, R. Phytostabilization potential of Jatropha curcas L. In polymetallic acid mine tailings. Int. J. Phytoremed. 2011, 13, 788–804. [Google Scholar] [CrossRef]
- Awasthi, P.; Mahajan, V.; Jamwal, V.L.; Kapoor, N.; Rasool, S.; Bedi, Y.S.; Gandhi, S.G. Cloning and expression analysis of chalcone synthase gene from Coleus forskohlii. J. Genet. 2016, 95, 647–657. [Google Scholar] [CrossRef]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012, 40, 115. [Google Scholar] [CrossRef] [Green Version]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
- Nadeem, S.M.; Ahmad, M.; Zahir, Z.A.; Javaid, A.; Ashraf, M. The role of mycorrhizae and plant growth promoting rhizobacteria (pgpr) in improving crop productivity under stressful environments. Biotechnol. Adv. 2014, 32, 429–448. [Google Scholar] [CrossRef]
- Fouda, H.M.; Sofy, M.R. Effect of biological synthesis of nanoparticles from Penicillium chrysogenum as well as traditional salt and chemical nanoparticles of zinc on canola plant oil productivity and metabolic activity. Egypt. J. Chem. 2022, 65, 1–2. [Google Scholar] [CrossRef]
- Agha, M.S.; Abbas, M.A.; Sofy, M.R.; Haroun, S.A.; Mowafy, A.M. Dual inoculation of bradyrhizobium and enterobacter alleviates the adverse effect of salinity on Glycine max seedling. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12461. [Google Scholar] [CrossRef]
- Mowafy, A.M.; Agha, M.; Haroun, S.; Abbas, M.; Elbalkini, M. Insights in nodule-inhabiting plant growth promoting bacteria and their ability to stimulate Vicia faba growth. Egypt. J. Basic Appl. Sci. 2022, 9, 51–64. [Google Scholar] [CrossRef]
- Pradhan, N.; Sukla, L. Solubilization of inorganic phosphates by fungi isolated from agriculture soil. Afr. J. Biotechnol. 2006, 5, 850–854. [Google Scholar]
- Jha, Y.; Subramanian, R.B.; Jethwa, R.; Patel, N. Identification of plant growth promoting rhizobacteria from suaeda nudiflora plant and its effect on maize. Indian J. Plant Prot. 2014, 42, 422–429. [Google Scholar]
- El-Mahdy, O.M.; Mohamed, H.I.; Mogazy, A.M. Biosorption effect of Aspergillus niger and Penicillium chrysosporium for cd-and pb-contaminated soil and their physiological effects on Vicia faba L. Environ. Sci. Pollut. Res. 2021, 7, 1–24. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, C.; Du, B.; Cui, H.; Fan, X.; Zhou, D.; Zhou, J. Soil and foliar applications of silicon and selenium effects on cadmium accumulation and plant growth by modulation of antioxidant system and cd translocation: Comparison of soft vs. Durum wheat varieties. J. Hazard. Mater. 2021, 402, 123546. [Google Scholar] [CrossRef]
- Irfan, M.; Ahmad, A.; Hayat, S. Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi J. Biol. Sci. 2014, 21, 125–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Khan, Z.S.; Rizwan, M.; Hafeez, M.; Ali, S.; Adrees, M.; Qayyum, M.F.; Khalid, S.; Ur Rehman, M.Z.; Sarwar, M.A. Effects of silicon nanoparticles on growth and physiology of wheat in cadmium contaminated soil under different soil moisture levels. Environ. Sci. Pollut. Res. 2020, 27, 4958–4968. [Google Scholar] [CrossRef]
- Mohamed, H.I. Molecular and biochemical studies on the effect of gamma rays on lead toxicity in cowpea (Vigna sinensis) plants. Biol. Trace Elem. Res. 2011, 144, 1205–1218. [Google Scholar] [CrossRef] [PubMed]
- El-Sheshtawy, H.S.; Sofy, M.R.; Ghareeb, D.A.; Yacout, G.A.; Eldemellawy, M.A.; Ibrahim, B.M. Eco-friendly polyurethane acrylate (pua)/natural filler-based composite as an antifouling product for marine coating. Appl. Microbiol. Biotechnol. 2021, 105, 7023–7034. [Google Scholar] [CrossRef]
- Ghori, N.H.; Ghori, T.; Hayat, M.Q.; Imadi, S.R.; Gul, A.; Altay, V.; Ozturk, M. Heavy metal stress and responses in plants. Int. J. Environ. Sci. Technol. 2019, 16, 1807–1828. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Wassie, M.; Chen, L. Selenium supplementation alleviates cadmium-induced damages in tall fescue through modulating antioxidant system, photosynthesis efficiency, and gene expression. Environ. Sci. Pollut. Res. 2020, 27, 9490–9502. [Google Scholar] [CrossRef]
- Maksoud, M.A.; Bekhit, M.; El-Sherif, D.M.; Sofy, A.R.; Sofy, M.R. Gamma radiation-induced synthesis of a novel chitosan/silver/mn-mg ferrite nanocomposite and its impact on cadmium accumulation and translocation in brassica plant growth. Int. J. Biol. Macromol. 2022, 194, 306–316. [Google Scholar] [CrossRef]
- Sharaf, A.; Farghal, I.I.; Sofy, M.R. Response of broad bean and lupin plants to foliar treatment with boron and zinc. Aust. J. Basic Appl. Sci. 2009, 3, 2226–2231. [Google Scholar]
- Mohamed, H.I.; Abd-Elsalam, K.A.; Tmam, A.M.; Sofy, M.R. Silver-based nanomaterials for plant diseases management: Today and future perspectives. In Silver Nanomaterials for Agri-Food Applications; Elsevier: Amsterdam, The Netherlands, 2021; Volume 1, pp. 495–526 . [Google Scholar] [CrossRef]
- Zhou, J.; Li, P.; Meng, D.; Gu, Y.; Zheng, Z.; Yin, H.; Zhou, Q.; Li, J. Isolation, characterization and inoculation of cd tolerant rice endophytes and their impacts on rice under cd contaminated environment. Environ. Pollut. 2020, 260, 113990. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Bukhari, S.S.; Mustafa, A.; Ditta, A.; Alamri, S.; El-Esawi, M.A.; Rafique, M.; Ashraf, S.; Siddiqui, M.H. Mitigation of nickel toxicity and growth promotion in sesame through the application of a bacterial endophyte and zeolite in nickel contaminated soil. Int. J. Environ. Res. Public Health 2020, 17, 8859. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, T.-M.; Choi, B.; Kim, Y.; Kim, E. Invasive Lactuca serriola seeds contain endophytic bacteria that contribute to drought tolerance. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Nasibi, F.; Heidari, T.; Asrar, Z.; Mansoori, H. Effect of arginine pre-treatment on nickel accumulation and alleviation of the oxidative stress in hyoscyamus niger. J. Soil Sci. Plant Nutr. 2013, 13, 680–689. [Google Scholar] [CrossRef] [Green Version]
- Osman, H.S.; Gowayed, S.M.; Elbagory, M.; Omara, A.E.-D.; El-Monem, A.M.A.; El-Razek, A.; Usama, A.; Hafez, E.M. Interactive impacts of beneficial microbes and si-zn nanocomposite on growth and productivity of soybean subjected to water deficit under salt-affected soil conditions. Plants 2021, 10, 1396. [Google Scholar] [CrossRef] [PubMed]
- Khanna, K.; Kohli, S.K.; Ohri, P.; Bhardwaj, R.; Al-Huqail, A.A.; Siddiqui, M.H.; Alosaimi, G.S.; Ahmad, P. Microbial fortification improved photosynthetic efficiency and secondary metabolism in Lycopersicon esculentum plants under cd stress. Biomolecules 2019, 9, 581. [Google Scholar] [CrossRef] [Green Version]
- Kamran, M.A.; Eqani, S.A.M.A.S.; Bibi, S.; Xu, R.-K.; Monis, M.F.H.; Katsoyiannis, A.; Bokhari, H.; Chaudhary, H.J. Bioaccumulation of nickel by E. Sativa and role of plant growth promoting rhizobacteria (pgprs) under nickel stress. Ecotoxicol. Environ. Saf. 2016, 126, 256–263. [Google Scholar] [CrossRef]
- Khan, W.U.; Ahmad, S.R.; Yasin, N.A.; Ali, A.; Ahmad, A.; Akram, W. Application of Bacillus megaterium mcr-8 improved phytoextraction and stress alleviation of nickel in Vinca rosea. Int. J. Phytoremed. 2017, 19, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Stefan, M.; Munteanu, N.; Stoleru, V.; Mihasan, M.; Hritcu, L. Seed inoculation with plant growth promoting rhizobacteria enhances photosynthesis and yield of runner bean (Phaseolus coccineus L.). Sci. Horti. 2013, 151, 22–29. [Google Scholar] [CrossRef]
- Brilli, F.; Pollastri, S.; Raio, A.; Baraldi, R.; Neri, L.; Bartolini, P.; Podda, A.; Loreto, F.; Maserti, B.E.; Balestrini, R. Root colonization by Pseudomonas chlororaphis primes tomato (Lycopersicum esculentum) plants for enhanced tolerance to water stress. J. Plant Physiol. 2019, 232, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Kaya, C.; Ashraf, M.; Alyemeni, M.N.; Ahmad, P. Responses of nitric oxide and hydrogen sulfide in regulating oxidative defence system in wheat plants grown under cadmium stress. Physiol. Plant. 2020, 168, 345–360. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Pramanik, K.; Mitra, S.; Sarkar, A.; Soren, T.; Maiti, T.K. Characterization of cadmium-resistant Klebsiella pneumoniae mcc 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium. Environ. Sci. Pollut. Res. 2017, 24, 24419–24437. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Sidhu, G.P.S.; Araniti, F.; Bali, A.S.; Shahzad, B.; Tripathi, D.K.; Brestic, M.; Skalicky, M.; Landi, M. The role of salicylic acid in plants exposed to heavy metals. Molecules 2020, 25, 540. [Google Scholar] [CrossRef] [Green Version]
- Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. Ros in cancer therapy: The bright side of the moon. Exp. Mol. Med. 2020, 52, 192–203. [Google Scholar] [CrossRef]
- AbdElgawad, H.; Zinta, G.; Hamed, B.A.; Selim, S.; Beemster, G.; Hozzein, W.N.; Wadaan, M.A.; Asard, H.; Abuelsoud, W. Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity. Environ. Pollut. 2020, 258, 113705. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Jin, Z.; Zhang, X.; Wang, G.; Li, R.; Qu, J.; Jin, Y. Alleviation of cd phytotoxicity and enhancement of rape seedling growth by plant growth–promoting bacterium enterobacter sp. Zm-123. Environ. Sci. Pollut. Res. 2020, 27, 33192–33203. [Google Scholar] [CrossRef] [PubMed]
- Dawood, M.F.; Sofy, M.R.; Mohamed, H.I.; Sofy, A.R.; Abdel-kader, H.A. Hydrogen Sulfide Modulates Salinity Stress in Common Bean Plants by Maintaining Osmolytes and Regulating Nitric Oxide Levels and the Antioxidant Enzyme Expression. J Soil Sci Plant Nut 2022, 7, 1–19. [Google Scholar] [CrossRef]
- Sakouhi, L.; Kharbech, O.; Massoud, M.B.; Gharsallah, C.; Hassine, S.B.; Munemasa, S.; Murata, Y.; Chaoui, A. Calcium and ethylene glycol tetraacetic acid mitigate toxicity and alteration of gene expression associated with cadmium stress in chickpea (Cicer arietinum L.) shoots. Protoplasma 2021, 258, 849–861. [Google Scholar] [CrossRef] [PubMed]
- Nazir, F.; Hussain, A.; Fariduddin, Q. Hydrogen peroxide modulate photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress. Chemosphere 2019, 230, 544–558. [Google Scholar] [CrossRef]
- Hashem, A.; Alqarawi, A.A.; Al-Hazzani, A.A.; Egamberdieva, D.; Tabassum, B.; Abd_Allah, E.F. Cadmium stress tolerance in plants and role of beneficial soil microorganisms. Phyto Rhizo Remediat. 2019, 11, 213–234. [Google Scholar] [CrossRef]
- Sun, C.; Lv, T.; Huang, L.; Liu, X.; Jin, C.; Lin, X. Melatonin ameliorates aluminum toxicity through enhancing aluminum exclusion and reestablishing redox homeostasis in roots of wheat. J. Pineal Res. 2020, 68, e12642. [Google Scholar] [CrossRef]
- Saddhe, A.A.; Jamdade, R.A.; Gairola, S. Recent advances on cellular signaling paradigm and salt stress responsive genes in halophytes. In Handbook of Halophytes: From Molecules to Ecosystems towards Biosaline Agriculture; Springer: Berlin, Germany, 2020; pp. 1–26. [Google Scholar] [CrossRef]
- Bakunina, N.; Pariante, C.M.; Zunszain, P.A. Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology 2015, 144, 365–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schurch, N.J.; Schofield, P.; Gierliński, M.; Cole, C.; Sherstnev, A.; Singh, V.; Wrobel, N.; Gharbi, K.; Simpson, G.G.; Owen-Hughes, T. How many biological replicates are needed in an rna-seq experiment and which differential expression tool should you use? RNA 2016, 22, 839–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapoor, D.; Singh, S.; Kumar, V.; Romero, R.; Prasad, R.; Singh, J. Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ros) and reactive nitrogen species (rns). Plant Gene 2019, 19, 100182. [Google Scholar] [CrossRef]
- Mishra, B.; Sangwan, N.S. Amelioration of cadmium stress in withania somnifera by ros management: Active participation of primary and secondary metabolism. Plant Growth Regul. 2019, 87, 403–412. [Google Scholar] [CrossRef]
- Gulcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grover, M.; Bodhankar, S.; Sharma, A.; Sharma, P.; Singh, J.; Nain, L. Pgpr mediated alterations in root traits: Way toward sustainable crop production. Front. Sustain. Food Syst. 2021, 287, 618230. [Google Scholar] [CrossRef]
- Damam, M.; Kaloori, K.; Gaddam, B.; Kausar, R. Plant growth promoting substances (phytohormones) produced by rhizobacterial strains isolated from the rhizosphere of medicinal plants. Int. J. Pharm. Sci. Rev. Res. 2016, 37, 130–136. [Google Scholar]
- Dawood, M.F.; Abu-Elsaoud, A.M.; Sofy, M.R.; Mohamed, H.I.; Soliman, M.H. Appraisal of kinetin spraying strategy to alleviate the harmful effects of uvc stress on tomato plants. Environ. Sci. Pollut. Res. 2022, 3, 1–21. [Google Scholar] [CrossRef]
- Sofy, M.R.; Mancy, A.G.; Alnaggar, A.E.A.M.; Refaey, E.E.; Mohamed, H.I.; Elnosary, M.E.; Sofy, A.R. A polishing the harmful effects of Broad Bean Mottle Virus infecting broad bean plants by enhancing the immunity using different potassium concentrations. Not. Bot. Horti Agrobot. Cluj-Napoca 2022, 50, 12654. [Google Scholar] [CrossRef]
- Rajawat, M.V.S.; Singh, R.; Singh, D.; Yadav, A.N.; Singh, S.; Kumar, M.; Saxena, A.K. Spatial distribution and identification of bacteria in stressed environments capable to weather potassium aluminosilicate mineral. Braz. J. Microbiol. 2020, 51, 751–764. [Google Scholar] [CrossRef]
- Kour, D.; Rana, K.L.; Kaur, T.; Sheikh, I.; Yadav, A.N.; Kumar, V.; Dhaliwal, H.S.; Saxena, A.K. Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatal. Agric. Biotechnol. 2020, 23, 101501. [Google Scholar] [CrossRef]
- ALHaithloul, H.A.; Khan, M.I.; Musa, A.; Ghoneim, M.M.; Aysh, A.; Khan, I.; Azab, E.; Gobouri, A.A.; Sofy, M.R.; El-Sherbiny, M.; et al. Phytotoxic effects of Acacia saligna dry leachates on germination, seedling growth, photosynthetic performance, and gene expression of economically important crops. PeerJ. 2022, 10, 13623. [Google Scholar] [CrossRef]
- Bhatt, I.; Tripathi, B. Plant peroxiredoxins: Catalytic mechanisms, functional significance and future perspectives. Biotechnol. Adv. 2011, 29, 850–859. [Google Scholar] [CrossRef] [PubMed]
Primer Sequence (5′–3′) | |
---|---|
Phenylalanine ammonia-lyase 5 (PAL) | F: CGGTGAGGAGATTGATAA R: TTAGCAGATTGGAATAGGA |
Polyphenol oxidase (PPO) | F: TACTACTACAACGCTCAA R: AACCAAGAAGAACATTCC |
Glutathione peroxidase (GPOX) | F: GAGATAATATTCAGTGGAATTTCGCTAA R: GTTGAGGGCTCAACCTT |
Glutathione-S-transferase (GST) | F: CATTTGTTATGAATTTATTGAGCAAGAT R: TAAGTGGCCATGTTTCTTCAATATAC |
Ubiquitin | F: GAGGAATGCAGATCTTCGTG R: TCCTTGTCCTGGATCTTAGC |
Bacterial Isolate Code | IAA Production μg mL−1 | Root Colonization Ability log10 CFU/g | Phosphate Solubilization μg mL−1 | Biofilm Production Activity OD570 | ACC Deaminase (mmol α-Ketobutyrate mg−1 protein h−1) | Nitrogen Fixation |
---|---|---|---|---|---|---|
Micrococcus luteus | 8.77 ± 0.34 | 6.54 ± 0.11 | 10.23 ± 0.31 | 1.38 ± 0.07 | 860.32 ± 0.25 | +++ |
Enterobacter cloacae | 8.69 ± 0.40 | 6.49 ± 0.31 | 7.03 ± 0.32 | 811.42 ± 0.54 | ++ |
Bacterial Isolate Code | Gram Reaction | Urease Activity | Catalase Test | Oxidase Test | Nitrate Reduction | Citrate Utilization | H2S Production | Indole | MR | VP |
---|---|---|---|---|---|---|---|---|---|---|
Micrococcus luteus | + | + | + | + | − | − | − | − | − | − |
Enterobacter cloacae | − | + | + | − | + | + | − | − | − | + |
Bacterial Isolate Code | Heavy Metal Tolerance | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | Cd (μM) | Ni (μM) | |||||||||||
3.125 | 6.25 | 12.5 | 25 | 50 | 100 | 3.125 | 6.25 | 12.5 | 25 | 50 | 100 | ||
Micrococcus luteus | +++ | +++ | +++ | ++ | + | + | − | +++ | +++ | ++ | + | + | − |
Enterobacter cloacae | +++ | +++ | +++ | ++ | + | + | − | +++ | +++ | ++ | + | + | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badawy, I.H.; Hmed, A.A.; Sofy, M.R.; Al-Mokadem, A.Z. Alleviation of Cadmium and Nickel Toxicity and Phyto-Stimulation of Tomato Plant L. by Endophytic Micrococcus luteus and Enterobacter cloacae. Plants 2022, 11, 2018. https://doi.org/10.3390/plants11152018
Badawy IH, Hmed AA, Sofy MR, Al-Mokadem AZ. Alleviation of Cadmium and Nickel Toxicity and Phyto-Stimulation of Tomato Plant L. by Endophytic Micrococcus luteus and Enterobacter cloacae. Plants. 2022; 11(15):2018. https://doi.org/10.3390/plants11152018
Chicago/Turabian StyleBadawy, Ibrahim H., Ahmed A. Hmed, Mahmoud R. Sofy, and Alshymaa Z. Al-Mokadem. 2022. "Alleviation of Cadmium and Nickel Toxicity and Phyto-Stimulation of Tomato Plant L. by Endophytic Micrococcus luteus and Enterobacter cloacae" Plants 11, no. 15: 2018. https://doi.org/10.3390/plants11152018
APA StyleBadawy, I. H., Hmed, A. A., Sofy, M. R., & Al-Mokadem, A. Z. (2022). Alleviation of Cadmium and Nickel Toxicity and Phyto-Stimulation of Tomato Plant L. by Endophytic Micrococcus luteus and Enterobacter cloacae. Plants, 11(15), 2018. https://doi.org/10.3390/plants11152018