Transcriptome Level Analysis of Genes of Exogenous Ethylene Applied under Phosphorus Stress in Chinese Fir
Abstract
:1. Introduction
2. Results
2.1. Chlorophyll and Anthocyanin Contents of Chinese Fir Seedlings
2.2. Transcriptome Dataset of Chinese Fir Roots
2.3. Response of DEGs under P Treatment with Application of Ethephon or CoCl2
2.3.1. Identification of DEGs under Relevant Treatments
2.3.2. Functional Enrichment of DEGs
2.4. Screening of DEGs under Different Ethylene Treatments
Identification of DEGs in Four Treatment Groups
2.5. Differential Gene Cluster Analysis in Different Treatment Groups
3. Discussion
4. Materials and Methods
4.1. Plant Materials, Growth Conditions, and Sampling
4.2. Determination of Chlorophyll and Anthocyanin in Leaves of Chinese Fir Seedlings
4.3. UMI mRNA Sequencing
4.4. Full-Length Reference Transcripts
4.5. Functional and Structural Annotation of Unigenes
4.6. Transcript Differential Expression Analysis
4.7. Differential Gene Enrichment Analysis
4.8. Data Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, E.; Zhuang, H.; Yu, J.; Liu, X.; Huang, H.; Zhu, M.; Tong, Z. Genome survey of Chinese fir (Cunninghamia lanceolata): Identification of genomic SSRs and demonstration of their utility in genetic diversity analysis. Sci. Rep. 2020, 10, 4698. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yu, J.; Li, H.; Zhang, Y.; Pan, F.; Zhou, C.; Liu, A. Characteristics of Soil Phosphorus in Cunninghamia lanceolata Plantations with Different Planting Rotations. For. Res. 2021, 34, 10–18. [Google Scholar]
- Plant Nutrition 2: Macronutrients (N, P, K, S, Mg, and Ca). Plant Cell 2014, 26, tpc.114.tt1214.
- Dissanayaka, D.M.S.B.; Ghahremani, M.; Siebers, M.; Wasaki, J.; Plaxton, W.C. Recent insights into the metabolic adaptations of phosphorus-deprived plants. J. Exp. Bot. 2021, 72, 199–223. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, Y.F.; Wu, W.H. Potassium and phosphorus transport and signaling in plants. J. Integr. Plant Biol. 2021, 63, 34–52. [Google Scholar] [CrossRef]
- Chen, Y.; Nguyen, T.H.N.; Qin, J.; Jiao, Y.; Li, Z.; Ding, S.; Lu, Y.; Liu, Q.; Luo, Z.-B. Phosphorus assimilation of Chinese fir from two provenances during acclimation to changing phosphorus availability. Environ. Exp. Bot. 2018, 153, 21–34. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, M.; Zhao, M.; Chen, R.; Tigabu, M.; Wu, P.; Li, M.; Ma, X. Transcriptome analysis provides insights into the root response of Chinese fir to phosphorus deficiency. BMC Plant Biol. 2021, 21, 525. [Google Scholar] [CrossRef]
- García, M.J.; Romera, F.J.; Lucena, C.; Alcántara, E.; Pérez-Vicente, R. Ethylene and the Regulation of Physiological and Morphological Responses to Nutrient Deficiencies. Plant Physiol. 2015, 169, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Prerostova, S.; Kramna, B.; Dobrev, P.I.; Gaudinova, A.; Marsik, P.; Fiala, R.; Knirsch, V.; Vanek, T.; Kuresova, G.; Vankova, R. Organ-specific hormonal cross-talk in phosphate deficiency. Environ. Exp. Bot. 2018, 153, 198–208. [Google Scholar] [CrossRef]
- Munné-Bosch, S.; Simancas, B.; Müller, M. Ethylene signaling cross-talk with other hormones in Arabidopsis thaliana exposed to contrasting phosphate availability: Differential effects in roots, leaves and fruits. J. Plant Physiol. 2018, 226, 114–122. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, S.; Sun, C.; Xu, Y.; Chen, Y.; Yu, C.; Qian, Q.; Jiang, D.A.; Qi, Y. Auxin response factor (OsARF12), a novel regulator for phosphate homeostasis in rice (Oryza sativa). New Phytol. 2014, 201, 91–103. [Google Scholar] [CrossRef]
- Wang, Z.; Kuo, H.F.; Chiou, T.J. Intracellular phosphate sensing and regulation of phosphate transport systems in plants. Plant Physiol. 2021, 187, 2043–2055. [Google Scholar] [CrossRef]
- Zhang, Z.; Liao, H.; Lucas, W.J. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. J. Integr. Plant Biol. 2014, 56, 192–220. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, Y.; Wang, H.; Ma, X.; Yao, W.; Wang, H. Light and Ethylene Coordinately Regulate the Phosphate Starvation Response through Transcriptional Regulation of PHOSPHATE STARVATION RESPONSE1. Plant Cell 2017, 29, 2269–2284. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Guo, W.; Chen, B.; Pan, F.; Yang, H.; Zhou, J.; Wang, G.; Li, X. Transcriptional and Hormonal Responses in Ethephon-Induced Promotion of Femaleness in Pumpkin. Front. Plant Sci. 2021, 12, 715487. [Google Scholar] [CrossRef]
- Lau, O.; Yang, S.F. Inhibition of Ethylene Production by Cobaltous Ion. Plant Physiol. 1976, 58, 114–117. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, N.; Zheng, S.; Chen, M.; Ma, X.; Wu, P. Effects of Exogenous Ethylene and Cobalt Chloride on Root Growth of Chinese Fir Seedlings under Phosphorus-Deficient Conditions. Forests 2021, 12, 1585. [Google Scholar] [CrossRef]
- Ren, H.; Han, G.; Li, M.-H.; Gao, C.; Jiang, L. Ethylene-regulated leaf lifespan explains divergent responses of plant productivity to warming among three hydrologically different growing seasons. Glob. Chang. Biol. 2021, 27, 4169–4180. [Google Scholar] [CrossRef]
- Zhu, X.F.; Zhu, C.Q.; Zhao, X.S.; Zheng, S.J.; Shen, R.F. Ethylene is involved in root phosphorus remobilization in rice (Oryza sativa) by regulating cell-wall pectin and enhancing phosphate translocation to shoots. Ann. Bot. 2016, 118, 645–653. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wu, P.; Zhao, Q.; Tang, Y.; Chen, Y.; Li, M.; Jiang, H.; Wu, G. Overexpression of a Phosphate Starvation Response AP2/ERF Gene from Physic Nut in Arabidopsis Alters Root Morphological Traits and Phosphate Starvation-Induced Anthocyanin Accumulation. Front. Plant Sci. 2018, 9, 1186. [Google Scholar] [CrossRef]
- Zeng, H. Expression of mir399 and p responsive genes and their relationship in white lupin under p stress. Acta Pedol. Sin. 2010, 47, 971–978. [Google Scholar]
- Pegler, J.L.; Nguyen, D.Q.; Oultram, J.M.J.; Grof, C.P.L.; Eamens, A.L. Molecular Manipulation of the miR396 and miR399 Expression Modules Alters the Response of Arabidopsis thaliana to Phosphate Stress. Plants 2021, 10, 2570. [Google Scholar] [CrossRef]
- Du, Q.; Wang, K.; Zou, C.; Xu, C.; Li, W.X. The PILNCR1-miR399 Regulatory Module Is Important for Low Phosphate Tolerance in Maize. Plant Physiol. 2018, 177, 1743–1753. [Google Scholar] [CrossRef] [Green Version]
- Hackenberg, M.; Shi, B.-J.; Gustafson, P.; Langridge, P. Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions. BMC Plant Biol. 2013, 13, 214. [Google Scholar] [CrossRef] [Green Version]
- García, M.J.; Angulo, M.; García, C.; Lucena, C.; Alcántara, E.; Pérez-Vicente, R.; Romera, F.J. Influence of Ethylene Signaling in the Crosstalk Between Fe, S, and P Deficiency Responses in Arabidopsis thaliana. Front. Plant Sci. 2021, 12, 643585. [Google Scholar] [CrossRef]
- Thibaud, M.-C.; Arrighi, J.-F.; Bayle, V.; Chiarenza, S.; Creff, A.; Bustos, R.; Paz-Ares, J.; Poirier, Y.; Nussaume, L. Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. Plant J. 2010, 64, 775–789. [Google Scholar] [CrossRef]
- Xiao, F.; Zhang, Y.; Zhao, S.; Zhou, H. MYB30 and ETHYLENE INSENEITIVE3 antagonistically regulate root hair growth and phosphorus uptake under phosphate deficiency in Arabidopsis. Plant Signal. Behav. 2021, 16, 1913310. [Google Scholar] [CrossRef]
- Li, J.; Luo, D.; Ma, G.; Jia, L.; Xu, J.; Huang, H.; Tong, Z.; Lu, Y.-Q. Response of Chinese fir seedlings to low phosphorus stress and analysis of gene expression differences. J. For. Res. 2018, 30, 183–192. [Google Scholar] [CrossRef]
- Li, M.; Su, S.-S.; Wu, P.-F.; Cameron, K.M.; Zhang, Y.; Chen, W.-T.; Ma, X.-Q. Transcriptome Characterization of the Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook.) and Expression Analysis of Candidate Phosphate Transporter Genes. Forests 2017, 8, 420. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Hu, H. Transcriptome analysis of low phosphate stress response in the roots of masson pine (Pinus massoniana) seedlings. Acta Physiol. Plant. 2020, 42, 176. [Google Scholar] [CrossRef]
- Romera, F.J.; Lucena, C.; García, M.J.; Alcántara, E.; Angulo, M.; Aparicio, M.Á.; Pérez-Vicente, R. Plant Hormones and Nutrient Deficiency Responses. In Hormones and Plant Response; Springer: Cham, Switzerland, 2021; pp. 29–65. [Google Scholar]
- Garcia, M.J.; Lucena, C.; Romera, F.J. Ethylene and Nitric Oxide Involvement in the Regulation of Fe and P Deficiency Responses in Dicotyledonous Plants. Int. J. Mol. Sci. 2021, 22, 4904. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huang, J.; Li, X. Transcript analyses of ethylene pathway genes during ripening of Chinese jujube fruit. J. Plant Physiol. 2018, 224–225, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zha, M.; Huang, J.; Li, L.; Imran, M.; Zhang, C. StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato. J. Exp. Bot. 2017, 68, 1265–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Zhao, Q.; Zeng, D.; Xu, J.; Zhou, H.; Wang, F.; Ma, N.; Li, Y. RhMYB108, an R2R3-MYB transcription factor, is involved in ethylene- and JA-induced petal senescence in rose plants. Hortic. Res. 2019, 6, 131. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Chen, W.-W.; Wang, Y.-Y.; Huang, Z.-R.; Ye, X.; Chen, L.-S.; Yang, L.-T. Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in Citrus grandis. PLoS ONE 2021, 16, e0246944. [Google Scholar] [CrossRef]
- Liu, M.; Diretto, G.; Pirrello, J.; Roustan, J.P.; Li, Z.; Giuliano, G.; Regad, F.; Bouzayen, M. The chimeric repressor version of an Ethylene Response Factor (ERF) family member, Sl-ERF.B3, shows contrasting effects on tomato fruit ripening. New Phytol. 2014, 203, 206–218. [Google Scholar] [CrossRef] [Green Version]
- Ramaiah, M.; Jain, A.; Raghothama, K.G. Ethylene Response Factor070 regulates root development and phosphate starvation-mediated responses. Plant Physiol. 2014, 164, 1484–1498. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Song, S.; Wang, X.; Liu, J.; Dong, S. Transcriptomic and Metabolomic Analysis of Seedling-Stage Soybean Responses to PEG-Simulated Drought Stress. Int. J. Mol. Sci. 2022, 23, 6869. [Google Scholar] [CrossRef]
- Krishnaswamy, S.; Verma, S.; Rahman, M.H.; Kav, N.N.V. Functional characterization of four APETALA2-family genes (RAP2.6, RAP2.6L, DREB19 and DREB26) in Arabidopsis. Plant Mol. Biol. 2011, 75, 107–127. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, J.; Zhang, Q.; Li, X.; Li, M.; Yang, Y.; Zhou, J.; Wei, Q.; Zhou, B. Transcriptome and metabolome analyses revealed the response mechanism of apple to different phosphorus stresses. Plant Physiol. Biochem. 2021, 167, 639–650. [Google Scholar] [CrossRef]
- Chen, R.; Zhou, M.; Li, J.; Zhong, W.; Wu, P.; Ma, X.; Li, M. Effects of sucrose addition on response of Chinese fir to low phosphorus stress and sucrose metabolism. Acta Ecol. Sin. 2021, 41, 6588–6599. [Google Scholar]
- Gao, B.; Cao, C.L.; Tao, L.I. Effect of Ethylene on Morphology and Physiological Characteristic of Soybean Seedlings under Low-Phosphorus Stress. Soybean Sci. 2012, 31, 58–63. [Google Scholar]
- Li, J. Effect of Ethylene on Root Morphology&Astomataand Carbohydrate Content in Triticum aestivum L. under Phosphate Stress. Master’s Thesis, Northwest A&F University, Xianyang, China, May 2012. [Google Scholar]
- Schaller, G.E.; Binder, B.M. Inhibitors of Ethylene Biosynthesis and Signaling. Methods Mol. Biol. 2017, 1573, 223–235. [Google Scholar]
- Shiroguchi, K.; Jia, T.Z.; Sims, P.A.; Xie, X.S. Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes. Proc. Natl. Acad. Sci. USA 2012, 109, 1347–1352. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Tian, T.; Liu, Y.; Yan, H.; You, Q.; Yi, X.; Du, Z.; Xu, W.; Su, Z. AgriGO v2.0: A GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017, 45, W122–W129. [Google Scholar] [CrossRef] [Green Version]
Name | Reads Number | Average Length |
---|---|---|
Polymerase reads | 698,758 | 106,051 |
Subreads | 36,840,729 | 1936 |
CCS | 631,560 | 2110 |
FLNC | 564,893 | 1966 |
Consensus | 53,413 | 2015 |
Unigenes | 22,243 | 2079 |
Gene_id | NPvsCKP | NP_ETHvsCKP | NP_CovsCKP |
---|---|---|---|
transcript11003/f13p0/2395 | −2.12 | −4.2817 | −2.3369 |
transcript21015/f3p0/2069 | −2.6494 | −4.2227 | −1.75 |
transcript13260/f5p0/2398 | −2.6975 | −6.5059 | 1.0092 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Zhang, L.; Cai, T.; Zhao, Y.; Liu, J.; Wu, P.; Ma, X.; Shuai, P. Transcriptome Level Analysis of Genes of Exogenous Ethylene Applied under Phosphorus Stress in Chinese Fir. Plants 2022, 11, 2036. https://doi.org/10.3390/plants11152036
Huang S, Zhang L, Cai T, Zhao Y, Liu J, Wu P, Ma X, Shuai P. Transcriptome Level Analysis of Genes of Exogenous Ethylene Applied under Phosphorus Stress in Chinese Fir. Plants. 2022; 11(15):2036. https://doi.org/10.3390/plants11152036
Chicago/Turabian StyleHuang, Shuotian, Lixia Zhang, Tingting Cai, Yuxuan Zhao, Jiao Liu, Pengfei Wu, Xiangqing Ma, and Peng Shuai. 2022. "Transcriptome Level Analysis of Genes of Exogenous Ethylene Applied under Phosphorus Stress in Chinese Fir" Plants 11, no. 15: 2036. https://doi.org/10.3390/plants11152036
APA StyleHuang, S., Zhang, L., Cai, T., Zhao, Y., Liu, J., Wu, P., Ma, X., & Shuai, P. (2022). Transcriptome Level Analysis of Genes of Exogenous Ethylene Applied under Phosphorus Stress in Chinese Fir. Plants, 11(15), 2036. https://doi.org/10.3390/plants11152036