Isolation and In Silico Inhibitory Potential against SARS-CoV-2 RNA Polymerase of the Rare Kaempferol 3-O-(6″-O-acetyl)-Glucoside from Calligonum tetrapterum
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Characterization
2.2. Molecular Similarity
2.3. DFT Studies
2.3.1. Molecular Orbital Analysis
2.3.2. Molecular Electrostatic Potential Maps (MEPs)
2.4. Docking Studies
2.5. In Silico ADMET Analysis
2.6. In Silico Toxicity Studies
2.7. MD Simulations Studies
3. Experimental
3.1. Isolation of Compounds
3.2. Molecular Similarity
3.3. DFT
3.4. Docking Studies
3.5. ADMET
3.6. Toxicity Studies
3.7. Molecular Dynamics Simulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Metwaly, A.M.; Ghoneim, M.M.; Eissa, I.H.; Elsehemy, I.A.; Mostafa, A.E.; Hegazy, M.M.; Afifi, W.M.; Dou, D. Traditional ancient Egyptian medicine: A review. Saudi J. Biol. Sci. 2021, 28, 5823–5832. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Yang, Y.; Metwaly, A.M.; Xue, Y.; Shi, Y.; Dou, D. The Chinese herbal formulae (Yitangkang) exerts an antidiabetic effect through the regulation of substance metabolism and energy metabolism in type 2 diabetic rats. J. Ethnopharmacol. 2019, 239, 111942. [Google Scholar] [CrossRef] [PubMed]
- Zhanzhaxina, A.S.; Seiilgazy, M.; Jalmakhanbetova, R.; Ishmuratova, M.Y.; Seilkhanov, T.; Oyama, M.; Sarmurzina, Z.; Tekebayeva, Z.B.; Suleimen, Y.M. Flavonoids from Pulicaria vulgaris and their antimicrobial activity. Chem. Nat. Compd. 2020, 56, 915–917. [Google Scholar] [CrossRef]
- Zhanzhaxina, A.S.; Suleimen, Y.M.; Ishmuratova, M.Y.; Iskakova, Z.B.; Seilkhanov, T.; Birimzhanova, D.; Suleimen, R. Essential Oil of Pulicaria Vulgaris (Prostrata) and Its Biological Activity; Karaganda University: Karaganda State, Kazakhstan, 2020; p. 44. [Google Scholar]
- Sagyndykova, M.; Imanbayeva, A.; Suleimen, Y.M.; Ishmuratova, M.Y. Chemical composition and properties of essential oil of Ferula foetida (Bunge) Regel growing on Mangyshlak peninsula. Bull. Karaganda Univ. 2019, 4, 25–34. [Google Scholar] [CrossRef]
- Shaimerdenova, Z.R.; Makubayeva, A.; Suleimen, Y.M.; Adekenov, S. Constituent Composition and Biological Activity of Essential Oil from Roots of Ferula kelleri. Chem. Nat. Compd. 2020, 56, 937–939. [Google Scholar] [CrossRef]
- Zhanzhaxina, A.; Suleimen, Y.; Metwaly, A.M.; Eissa, I.H.; Elkaeed, E.B.; Suleimen, R.; Ishmuratova, M.; Akatan, K.; Luyten, W. In vitro and in silico cytotoxic and antibacterial activities of a diterpene from cousinia alata schrenk. J. Chem. 2021, 19, 2021. [Google Scholar] [CrossRef]
- Suleimen, E.; Ibataev, Z.A.; Iskakova, Z.B.; Ishmuratova, M.Y.; Ross, S.; Martins, C.H. Constituent composition and biological activity of essential oil from Artemisia terrae-albae. Chem. Nat. Compd. 2016, 52, 173–175. [Google Scholar] [CrossRef]
- Suleimen, Y.M.; Zhanzhaxina, A.S.; Ishmuratova, M.Y. Component composition of Achillea salicifolia Besser essential oil and its biological activity. Bull. Karaganda Univ. 2019, 2, 29–34. [Google Scholar] [CrossRef]
- Suleimen, E.; Sisengalieva, G.; Dzhalmakhanbetova, R.; Iskakova, Z.B.; Ishmuratova, M.Y. Constituent Composition and Cytotoxicity of Essential Oil from Chartolepis intermedia. Chem. Nat. Compd. 2018, 54, 1177–1179. [Google Scholar] [CrossRef]
- Calligonum Tetrapterum (Meisn. ex DC.). Available online: http://www.theplantlist.org/tpl1.1/record/kew-2692645 (accessed on 22 April 2022).
- Nauka. Flora of Kazakhstan, Science; Kazakhstan, Volume III. 1960. Available online: https://www.biotaxa.org/Phytotaxa/article/view/phytotaxa.464.2.1 (accessed on 1 July 2022).
- Ahamad, S.; Hema, K.; Ahmad, S.; Kumar, V.; Gupta, D. Insights into the structure and dynamics of SARS-CoV-2 spike glycoprotein double mutant L452R-E484Q. 3 Biotech 2022, 12, 87. [Google Scholar] [CrossRef]
- Prasad, K.; Ahamad, S.; Gupta, D.; Kumar, V. Targeting cathepsins: A potential link between COVID-19 and associated neurological manifestations. Heliyon 2021, 7, e08089. [Google Scholar] [CrossRef] [PubMed]
- Ahamad, S.; Hema, K.; Gupta, D. Structural stability predictions and molecular dynamics simulations of RBD and HR1 mutations associated with SARS-CoV-2 spike glycoprotein. J. Biomol. Struct. Dyn. 2021, 14, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ahamad, S.; Kanipakam, H.; Gupta, D. Insights into the structural and dynamical changes of spike glycoprotein mutations associated with SARS-CoV-2 host receptor binding. J. Biomol. Struct. Dyn. 2022, 40, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Ahamad, S.; Ali, H.; Secco, I.; Giacca, M.; Gupta, D. Anti-Fungal Drug Anidulafungin Inhibits SARS-CoV-2 Spike-Induced Syncytia Formation by Targeting ACE2-Spike Protein Interaction. Front. Genet. 2022, 13, 578. [Google Scholar] [CrossRef]
- Ahamad, S.; Gupta, D.; Kumar, V. Targeting SARS-CoV-2 nucleocapsid oligomerization: Insights from molecular docking and molecular dynamics simulations. J. Biomol. Struct. Dyn. 2022, 40, 2430–2443. [Google Scholar] [CrossRef]
- Prasad, K.; Ahamad, S.; Kanipakam, H.; Gupta, D.; Kumar, V. Simultaneous inhibition of SARS-CoV-2 entry pathways by cyclosporine. ACS Chem. Neurosci. 2021, 12, 930–944. [Google Scholar] [CrossRef]
- Imieje, V.O.; Zaki, A.A.; Metwaly, A.M.; Mostafa, A.E.; Elkaeed, E.B.; Falodun, A. Comprehensive In Silico Screening of the Antiviral Potentialities of a New Humulene Glucoside from Asteriscus hierochunticus against SARS-CoV-2. J. Chem. 2021, 2021, 5541876. [Google Scholar] [CrossRef]
- El-Demerdash, A.; Metwaly, A.M.; Hassan, A.; El-Aziz, A.; Mohamed, T.; Elkaeed, E.B.; Eissa, I.H.; Arafa, R.K.; Stockand, J.D. Comprehensive virtual screening of the antiviral potentialities of marine polycyclic guanidine alkaloids against SARS-CoV-2 (COVID-19). Biomolecules 2021, 11, 460. [Google Scholar] [CrossRef]
- Jalmakhanbetova, R.I.; Suleimen, Y.M.; Oyama, M.; Elkaeed, E.B.; Eissa, I.; Suleimen, R.N.; Metwaly, A.M.; Ishmuratova, M.Y. Isolation and In Silico Anti-COVID-19 Main Protease (Mpro) Activities of Flavonoids and a Sesquiterpene Lactone from Artemisia sublessingiana. J. Chem. 2021, 2021, 5547013. [Google Scholar] [CrossRef]
- Suleimen, Y.M.; Jose, R.A.; Suleimen, R.N.; Arenz, C.; Ishmuratova, M.Y.; Toppet, S.; Dehaen, W.; Alsfouk, B.A.; Elkaeed, E.B.; Eissa, I.H. Jusanin, a New Flavonoid from Artemisia commutata with an In Silico Inhibitory Potential against the SARS-CoV-2 Main Protease. Molecules 2022, 27, 1636. [Google Scholar] [CrossRef]
- Suleimen, Y.M.; Jose, R.A.; Suleimen, R.N.; Ishmuratova, M.Y.; Toppet, S.; Dehaen, W.; Alsfouk, A.A.; Elkaeed, E.B.; Eissa, I.H.; Metwaly, A.M.J.M. Isolation and In Silico SARS-CoV-2 Main Protease Inhibition Potential of Jusan Coumarin, a New Dicoumarin from Artemisia glauca. Molecules 2022, 27, 2281. [Google Scholar] [CrossRef] [PubMed]
- Jalmakhanbetova, R.; Suleimen, Y.M.; Abe, N.; Oyama, M.; Metwaly, A.; Eissa, I.; Ishmuratova, M.Y.; Ibatayev, Z.A. Isolation and in silico SARS-CoV-2 main protease inhibition potential of chrysoeriol from Chondrilla brevirostris Fisch. & CA Mey. Bull. Univ. Karaganda 2022, 105, 78–85. [Google Scholar]
- Suleimen, Y.M.; Jose, R.A.; Suleimen, R.N.; Arenz, C.; Ishmuratova, M.; Toppet, S.; Dehaen, W.; Alsfouk, A.A.; Elkaeed, E.B.; Eissa, I.H.; et al. Isolation and In Silico Anti-SARS-CoV-2 Papain-Like Protease Potentialities of Two Rare 2-Phenoxychromone Derivatives from Artemisia spp. Molecules 2022, 27, 1216. [Google Scholar] [CrossRef] [PubMed]
- Alesawy, M.S.; Abdallah, A.E.; Taghour, M.S.; Elkaeed, E.B.; H Eissa, I.; Metwaly, A.M. In Silico Studies of Some Isoflavonoids as Potential Candidates against COVID-19 Targeting Human ACE2 (hACE2) and Viral Main Protease (Mpro). Molecules 2021, 26, 2806. [Google Scholar] [CrossRef]
- Flores-Félix, J.D.; Gonçalves, A.C.; Alves, G.; Silva, L.R.J.F. Consumption of phenolic-rich food and dietary supplements as a key tool in SARS-CoV-19 infection. Foods 2021, 10, 2084. [Google Scholar] [CrossRef]
- Jo, S.; Kim, S.; Kim, D.Y.; Kim, M.-S.; Shin, D.H. Flavonoids with inhibitory activity against SARS-CoV-2 3CLpro. J. Enzym. Inhib. Med. Chem. 2020, 35, 1539–1544. [Google Scholar] [CrossRef]
- Leal, C.M.; Leitão, S.G.; Sausset, R.; Mendonça, S.C.; Nascimento, P.H.; de Araujo R Cheohen, C.F.; Esteves, M.E.A.; Leal da Silva, M.; Gondim, T.S.; Monteiro, M.E.; et al. Flavonoids from Siparuna cristata as potential inhibitors of SARS-CoV-2 replication. Rev. Bras. De Farmacogn. 2021, 31, 658–666. [Google Scholar] [CrossRef]
- Mendonca, P.; Soliman, K.F.J.A. Flavonoids activation of the transcription factor Nrf2 as a hypothesis approach for the prevention and modulation of SARS-CoV-2 infection severity. Antioxidants 2020, 9, 659. [Google Scholar] [CrossRef]
- Kaul, R.; Paul, P.; Kumar, S.; Büsselberg, D.; Dwivedi, V.D.; Chaari, A. Promising antiviral activities of natural flavonoids against SARS-CoV-2 targets: Systematic review. Int. J. Mol. Sci. 2021, 22, 11069. [Google Scholar] [CrossRef]
- Badria, F.A.; Ameen, M.; Akl, M.R. Evaluation of cytotoxic compounds from Calligonum comosum L. growing in Egypt. Z. Für Nat. C 2007, 62, 656–660. [Google Scholar] [CrossRef]
- Liu, X.; Zakaria, M.; Islam, M.; Radhakrishnan, R.; Ismail, A.; Chen, H.; Chan, K.; Al-Attas, A. Anti-inflammatory and anti-ulcer activity of Calligonum comosum in rats. Fitoterapia 2001, 72, 487–491. [Google Scholar] [CrossRef]
- Khan, A.; Khan, R.A.; Ahmed, M.; Mushtaq, N.J.; Pharmacology, B. In vitro antioxidant, antifungal and cytotoxic activity of methanolic extract of Calligonum polygonoides. Bangladesh J. Pharmacol. 2015, 10, 316–320. [Google Scholar] [CrossRef] [Green Version]
- Gasmi, A.; Benabderrahim, M.A.; Guasmi, F.; Elfalleh, W.; Triki, T.; Zammouri, T.; Ferchichi, A. Products. Phenolic profiling, sugar composition and antioxidant capacity of arta (Calligonum comosum L.), a wild Tunisian desert plant. Ind. Crops Prod. 2019, 130, 436–442. [Google Scholar] [CrossRef]
- Do, J.-C.; Yu, Y.-J.; Jung, K.-Y.; Son, K.-H. Flavonoids from the Leaves of Polygalga japonica. Korean J. Pharmacogn. 1992, 23, 9–13. [Google Scholar]
- Wagner, H.; Chari, V.M.; Sonnenbichler, J. 13C-NMR-spektren natürlich vorkommender flavonoide. Tetrahedron Lett. 1976, 17, 1799–1802. [Google Scholar] [CrossRef]
- De-Eknamkul, W.; Potduang, B. Biosynthesis of β-sitosterol and stigmasterol in Croton sublyratus proceeds via a mixed origin of isoprene units. Phytochemistry 2003, 62, 389–398. [Google Scholar] [CrossRef]
- Hassell, A.M.; An, G.; Bledsoe, R.K.; Bynum, J.M.; Carter, H.L.; Deng, S.-J.; Gampe, R.T.; Grisard, T.E.; Madauss, K.P.; Nolte, R.T. Crystallization of protein–ligand complexes. Acta Crystallogr. Sect. D 2007, 63, 72–79. [Google Scholar] [CrossRef]
- Nantasenamat, C.; Isarankura-Na-Ayudhya, C.; Naenna, T.; Prachayasittikul, V. A Practical Overview of Quantitative Structure-Activity Relationship. EXCLI J. 2009, 8, 74–88. [Google Scholar]
- Turchi, M.; Cai, Q.; Lian, G. An evaluation of in-silico methods for predicting solute partition in multiphase complex fluids–A case study of octanol/water partition coefficient. Chem. Eng. Sci. 2019, 197, 150–158. [Google Scholar] [CrossRef]
- Sullivan, K.M.; Enoch, S.J.; Ezendam, J.; Sewald, K.; Rforoggen, E.L.; Cochrane, S. An adverse outcome pathway for sensitization of the respiratory tract by low-molecular-weight chemicals: Building evidence to support the utility of in vitro and in silico methods in a regulatory context. Appl. Vitr. Toxicol. 2017, 3, 213–226. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Tian, Y.; Wang, W.; Gu, S.; Ju, X.; Liu, G. In silico studies of diarylpyridine derivatives as novel HIV-1 NNRTIs using docking-based 3D-QSAR, molecular dynamics, and pharmacophore modeling approaches. RSC Adv. 2018, 8, 40529–40543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altamash, T.; Amhamed, A.; Aparicio, S.; Atilhan, M. Effect of hydrogen bond donors and acceptors on CO2 absorption by deep eutectic solvents. Processes 2020, 8, 1533. [Google Scholar] [CrossRef]
- Escamilla-Gutiérrez, A.; Ribas-Aparicio, R.M.; Córdova-Espinoza, M.G.; Castelán-Vega, J.A. In silico strategies for modeling RNA aptamers and predicting binding sites of their molecular targets. Nucleotides Nucleic. Acids 2021, 40, 798–807. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.C.; Kumar, A.; Bharadwaj, S.; Chaudhary, R.; Sahi, S. Ligand-Based Approach for In-silico Drug Designing. In Bioinformatics Techniques for Drug Discovery; Springer: Berlin/Heidelberg, Germany, 2018; pp. 11–19. [Google Scholar]
- Zhang, H.; Ren, J.-X.; Ma, J.-X.; Ding, L. Development of an in silico prediction model for chemical-induced urinary tract toxicity by using naïve Bayes classifier. Mol. Divers. 2019, 23, 381–392. [Google Scholar] [CrossRef]
- Fleming, I. Frontier Orbitals and Organic Chemical Reactions; Wiley: London, UK, 1977. [Google Scholar]
- El-Nahass, M.; Kamel, M.; El-Deeb, A.; Atta, A.; Huthaily, S. Ab initio HF, DFT and experimental (FT-IR) investigation of vibrational spectroscopy of PN, N-dimethylaminobenzylidenemalononitrile (DBM). Spectrochim. Acta Part A 2011, 79, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Suhasini, M.; Sailatha, E.; Gunasekaran, S.; Ramkumaar, G. Vibrational and electronic investigations, thermodynamic parameters, HOMO and LUMO analysis on Lornoxicam by density functional theory. J. Mol. Struct. 2015, 1100, 116–128. [Google Scholar] [CrossRef]
- Bitencourt-Ferreira, G.; de Azevedo Junior, W.F. Electrostatic Potential Energy in Protein-Drug Complexes. Curr. Med. Chem. 2021, 28, 4954–4971. [Google Scholar] [CrossRef]
- Matin, M.M.; Hasan, M.S.; Uzzaman, M.; Bhuiyan, M.M.H.; Kibria, S.M.; Hossain, M.E.; Roshid, M.H. Synthesis, spectroscopic characterization, molecular docking, and ADMET studies of mannopyranoside esters as antimicrobial agents. J. Mol. Struct. 2020, 1222, 128821. [Google Scholar] [CrossRef]
- Eissa, I.H.; Khalifa, M.M.; Elkaeed, E.B.; Hafez, E.E.; Alsfouk, A.A.; Metwaly, A.M. In Silico Exploration of Potential Natural Inhibitors against SARS-Cov-2 nsp10. Molecules 2021, 26, 6151. [Google Scholar] [CrossRef]
- Alesawy, M.S.; Elkaeed, E.B.; Alsfouk, A.A.; Metwaly, A.M.; Eissa, I. In Silico Screening of Semi-Synthesized Compounds as Potential Inhibitors for SARS-CoV-2 Papain-Like Protease: Pharmacophoric Features, Molecular Docking, ADMET, Toxicity and DFT Studies. Molecules 2021, 26, 6593. [Google Scholar] [CrossRef]
- Parmar, D.R.; Soni, J.Y.; Guduru, R.; Rayani, R.H.; Kusurkar, R.V.; Vala, A.G.; Talukdar, S.N.; Eissa, I.H.; Metwaly, A.M.; Khalil, A. Discovery of new anticancer thiourea-azetidine hybrids: Design, synthesis, in vitro antiproliferative, SAR, in silico molecular docking against VEGFR-2, ADMET, toxicity, and DFT studies. Bioorg. Chem. 2021, 115, 105206. [Google Scholar] [CrossRef] [PubMed]
- Amer, H.H.; Alotaibi, S.H.; Trawneh, A.H.; Metwaly, A.M.; Eissa, I.H. Anticancer activity, spectroscopic and molecular docking of some new synthesized sugar hydrazones, Arylidene and α-Aminophosphonate derivatives. Arab. J. Chem. 2021, 14, 103348. [Google Scholar] [CrossRef]
- El-Adl, K.; Sakr, H.M.; Yousef, R.G.; Mehany, A.B.; Metwaly, A.M.; Elhendawy, M.A.; Radwan, M.M.; ElSohly, M.A.; Abulkhair, H.S.; Eissa, I.H. Discovery of new quinoxaline-2 (1H)-one-based anticancer agents targeting VEGFR-2 as inhibitors: Design, synthesis, and anti-proliferative evaluation. Bioorg. Chem. 2021, 114, 105105. [Google Scholar] [CrossRef] [PubMed]
- Eissa, I.H.; Ibrahim, M.K.; Metwaly, A.M.; Belal, A.; Mehany, A.B.; Abdelhady, A.A.; Elhendawy, M.A.; Radwan, M.M.; ElSohly, M.A.; Mahdy, H.A. Design, molecular docking, in vitro, and in vivo studies of new quinazolin-4 (3H)-ones as VEGFR-2 inhibitors with potential activity against hepatocellular carcinoma. Bioorg. Chem. 2021, 107, 104532. [Google Scholar] [CrossRef] [PubMed]
- Yousef, R.G.; Sakr, H.M.; Eissa, I.H.; Mehany, A.B.; Metwaly, A.M.; Elhendawy, M.A.; Radwan, M.M.; ElSohly, M.A.; Abulkhair, H.S.; El-Adl, K. New quinoxaline-2 (1 H)-ones as potential VEGFR-2 inhibitors: Design, synthesis, molecular docking, ADMET profile and anti-proliferative evaluations. New J. Chem. 2021, 45, 16949–16964. [Google Scholar] [CrossRef]
- Eissa, I.H.; El-Helby, A.-G.A.; Mahdy, H.A.; Khalifa, M.M.; Elnagar, H.A.; Mehany, A.B.; Metwaly, A.M.; Elhendawy, M.A.; Radwan, M.M.; ElSohly, M.A. Discovery of new quinazolin-4 (3H)-ones as VEGFR-2 inhibitors: Design, synthesis, and anti-proliferative evaluation. Bioorg. Chem. 2020, 105, 104380. [Google Scholar] [CrossRef]
- El-Adl, K.; El-Helby, A.-G.A.; Ayyad, R.R.; Mahdy, H.A.; Khalifa, M.M.; Elnagar, H.A.; Mehany, A.B.; Metwaly, A.M.; Elhendawy, M.A.; Radwan, M.M. Design, synthesis, and anti-proliferative evaluation of new quinazolin-4 (3H)-ones as potential VEGFR-2 inhibitors. Bioorg. Med. Chem. 2021, 29, 115872. [Google Scholar] [CrossRef]
- El-Helby, A.-G.A.; Sakr, H.; Ayyad, R.R.; Mahdy, H.A.; Khalifa, M.M.; Belal, A.; Rashed, M.; El-Sharkawy, A.; Metwaly, A.M.; Elhendawy, M.A. Design, synthesis, molecular modeling, in vivo studies and anticancer activity evaluation of new phthalazine derivatives as potential DNA intercalators and topoisomerase II inhibitors. Bioorg. Chem. 2020, 103, 104233. [Google Scholar] [CrossRef]
- Eissa, I.H.; Metwaly, A.M.; Belal, A.; Mehany, A.B.; Ayyad, R.R.; El-Adl, K.; Mahdy, H.A.; Taghour, M.S.; El-Gamal, K.M.; El-Sawah, M.E. Discovery and antiproliferative evaluation of new quinoxalines as potential DNA intercalators and topoisomerase II inhibitors. Arch. Der Pharm. 2019, 352, 1900123. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef]
- Brooks, B.R.; Brooks III, C.L.; Mackerell, A.D., Jr.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; et al. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009, 30, 1545–1614. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Chem. Theory Comput. 2016, 12, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Best, R.B.; Zhu, X.; Shim, J.; Lopes, P.E.; Mittal, J.; Feig, M.; Mackerell, A.D., Jr. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J. Chem. Theory Comput. 2012, 8, 3257–3273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kale, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef] [Green Version]
Position | δ1H (J = Hz) | δ13C | Position | δ1H (J = Hz) | δ13C |
---|---|---|---|---|---|
2 | - | 156.4 | 1″ | 5.34 d (7.3) | 101.2 |
3 | - | 133.12 | 2″ | 3.20 | 74.1 |
4 | - | 177.4 | 3″ | 3.24 | 76.2 |
5 | - | 161.2 | 4″ | 3.13 t | 69.8 |
6 | 6.21 d (1.8) | 98.7 | 5″ | 3.30 | 73.9 |
7 | - | 164.3 | 6″ a | 4.09 d | 62.8 |
8 | 6.45 d (1.8) | 93.7 | 6″ b | 3.94 dd | |
9 | - | 156.6 | 7″ | - | 169.8 |
10 | - | 103.9 | 8″ | 1.73 s | 20.2 |
1′ | - | 120.8 | 5-OH | 12.56 s | - |
2′, 6′ | 8.00 d (8.08) | 130.9 | |||
3′, 5′ | 6.87 d (8.08) | 115.1 | |||
4′ | - | 160.0 | |||
5′ | 6.87 d (8.08) | 115.1 | |||
6′ | 8.00 d (8.08) | 130.9 |
Compound | M. WT | HB-A | HB-D | R-B | R | A-R | MFPSA | Minimum Distance |
---|---|---|---|---|---|---|---|---|
Remdesivir | 371.243 | 11 | 5 | 4 | 3 | 2 | 0.612 | 0.811009 |
K3G-A | 490.414 | 12 | 6 | 6 | 4 | 2 | 0.429 | - |
Total Energy a | Binding Energy a | HOMO Energy a | LUMO Energy a | Dipole Mag | Band Gap Energy a | |
---|---|---|---|---|---|---|
Remdesivir | −1595.39 | −6.7804 | −0.2001 | −0.1547 | 0.8313 | 0.0454 |
K3G-A | −1777.81 | −11.4455 | −0.1548 | −0.0841 | 2.0613 | 0.0707 |
Compound | BBB Level | Sol. Level | Abs. Level | CYP2D6 Inhibition | PPB Binding |
---|---|---|---|---|---|
Remdesivir | V. low | Low | V. poor | Not inhibitor | lower than 90%, |
K3G-A | V. low | Low | V. poor | Not inhibitor | lower than 90%, |
Comp. | FDA Rat Carcinogenic Potential (Female Mice) | Carcinogenic Potential TD50 (in Rats) a | Maximum Tolerated Dose (in Rats) b | Oral LD50 b (in Rats) | Chronic LOAEL b (in Rats) | Ocular Irritation | Skin Irritation |
---|---|---|---|---|---|---|---|
Remdesivir | Not carcinogen | 1.012 | 0.235 | 0.309 | 0.004 | Mild | Mild |
K3G-A | Not carcinogen | 0.544 | 0.718 | 1.041 | 0.080 | Moderate | None |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suleimen, Y.M.; Jose, R.A.; Mamytbekova, G.K.; Suleimen, R.N.; Ishmuratova, M.Y.; Dehaen, W.; Alsfouk, B.A.; Elkaeed, E.B.; Eissa, I.H.; Metwaly, A.M. Isolation and In Silico Inhibitory Potential against SARS-CoV-2 RNA Polymerase of the Rare Kaempferol 3-O-(6″-O-acetyl)-Glucoside from Calligonum tetrapterum. Plants 2022, 11, 2072. https://doi.org/10.3390/plants11152072
Suleimen YM, Jose RA, Mamytbekova GK, Suleimen RN, Ishmuratova MY, Dehaen W, Alsfouk BA, Elkaeed EB, Eissa IH, Metwaly AM. Isolation and In Silico Inhibitory Potential against SARS-CoV-2 RNA Polymerase of the Rare Kaempferol 3-O-(6″-O-acetyl)-Glucoside from Calligonum tetrapterum. Plants. 2022; 11(15):2072. https://doi.org/10.3390/plants11152072
Chicago/Turabian StyleSuleimen, Yerlan M., Rani A. Jose, Gulnur K. Mamytbekova, Raigul N. Suleimen, Margarita Y. Ishmuratova, Wim Dehaen, Bshra A. Alsfouk, Eslam B. Elkaeed, Ibrahim H. Eissa, and Ahmed M. Metwaly. 2022. "Isolation and In Silico Inhibitory Potential against SARS-CoV-2 RNA Polymerase of the Rare Kaempferol 3-O-(6″-O-acetyl)-Glucoside from Calligonum tetrapterum" Plants 11, no. 15: 2072. https://doi.org/10.3390/plants11152072
APA StyleSuleimen, Y. M., Jose, R. A., Mamytbekova, G. K., Suleimen, R. N., Ishmuratova, M. Y., Dehaen, W., Alsfouk, B. A., Elkaeed, E. B., Eissa, I. H., & Metwaly, A. M. (2022). Isolation and In Silico Inhibitory Potential against SARS-CoV-2 RNA Polymerase of the Rare Kaempferol 3-O-(6″-O-acetyl)-Glucoside from Calligonum tetrapterum. Plants, 11(15), 2072. https://doi.org/10.3390/plants11152072