Genome-Wide Identification and Analysis of the Aureochrome Gene Family in Saccharina japonica and a Comparative Analysis with Six Other Algae
Abstract
:1. Introduction
2. Results
2.1. Identification and Characterizing of Aureochrome in Seven Algae
2.2. Characteristics of Structural Domain and Gene Structure Evolution of Aureochrome
2.3. Phylogenetic Analysis and Classification of the AUREO Gene Family
2.4. Analysis of Cis-Acting Elements of AUREO Gene Upstream
2.5. Expression Analysis of AUREO Genes at Different Developmental Stages of S. japonica Gametophyte
2.6. Circadian Rhythm of AUREO Expression in S. japonica
3. Discussion
3.1. Characteristics of AUREO Domain and Gene Structure Evolution in Algae
3.2. Evolution and Number of AUREOs from Laminariales and Other Stramenopiles
3.3. Rhythmic Expression Pattern of AUREOs and the Possible Function in S. japonica
4. Materials and Methods
4.1. Data Collection
4.2. Structural and Phylogenetic Analysis of AUREO
4.3. S. japonica Materials Culture and Expression Analysis of Sj AUREOs
4.4. Expression Pattern of AUREOs during Gametophyte Development
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUREO | Aureochrome |
BL | Blue light |
bZIP | Basic leucine zipper |
LOV | Light-oxygen-voltage |
Pt AUREO | Phaeodactylum tricornutum AUREO |
Sj AUREO | S. japonica AUREO |
Ec AUREO | Ectocarpus siliculosus AUREO |
Up AUREO | Undaria pinnatifida AUREO |
Nd AUREO | Nemacystus decipiens AUREO |
Co AUREO | Cladosiphon okamuranus AUREO |
References
- Kianianmomeni, A.; Hallmann, A. Algal Photobiology: A Rich Source of Unusual Light Sensitive Proteins for Synthetic Biology and Optogenetics. In Methods in Molecular Biology; Optogenetics; Kianianmomeni, A., Ed.; Humana Press: New York, NY, USA, 2016; Volume 1408. [Google Scholar] [CrossRef]
- Matiiv, A.B.; Chekunova, E.M. Aureochromes-Blue Light Receptors. Biochemistry 2018, 83, 662–673. [Google Scholar] [CrossRef]
- Kianianmomeni, A.; Hallmann, A. Algal photoreceptors: In vivo functions and potential applications. Planta 2014, 239, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cock, J.M.; Sterck, L.; Rouzé, P.; Scornet, D.; Allen, A.; Amoutzias, G.; Anthouard, V.; Artiguenave, F.; Aury, J.-M.; Badger, J.H.; et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 2010, 465, 617–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartsch, I.; Wiencke, C.; Bischof, K.; Buchholz, C.M.; Buck, B.H.; Eggert, A.; Feuerpfeil, P.; Hanelt, D.; Jacobsen, S.; Karez, R.; et al. The genus Laminaria sensu lato: Recent insights and developments. Eur. J. Phycol. 2008, 43, 1–86. [Google Scholar] [CrossRef]
- Keeling, P.J. The Number, Speed, and Impact of Plastid Endosymbioses in Eukaryotic Evolution. Annu. Rev. Plant Biol. 2013, 64, 583–607. [Google Scholar] [CrossRef] [Green Version]
- Bringloe, T.T.; Starko, S.; Wade, R.M.; Vieira, C.; Kawai, H.; De Clerck, O.; Cock, J.M.; Coelho, S.M.; Destombe, C.; Valero, M.; et al. Phylogeny and Evolution of the Brown Algae. Crit. Rev. Plant Sci. 2020, 39, 281–321. [Google Scholar] [CrossRef]
- Teagle, H.; Hawkins, S.J.; Moore, P.J.; Smale, D.A. The role of kelp species as biogenic habitat formers in coastal marine ecosystems. J. Exp. Mar. Biol. Ecol. 2017, 492, 81–98. [Google Scholar] [CrossRef]
- Schiel, D.R.; Foster, M.S. The Population Biology of Large Brown Seaweeds: Ecological Consequences of Multiphase Life Histories in Dynamic Coastal Environments. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 343–372. Available online: https://www.jstor.org/stable/30033836 (accessed on 10 September 2021). [CrossRef] [Green Version]
- Lüning, K. CRITICAL LEVELS OF LIGHT AND TEMPERATURE REGULATING THE GAMETOGENESIS OF THREE LAMINARIA SPECIES (PHAEOPHYCEAE). J. Phycol. 1980, 16, 1–15. [Google Scholar] [CrossRef]
- Lüning, K.; Dieck, I.T. Environmental Triggers in Algal Seasonality. Bot. Mar. 1989, 32, 389–398. [Google Scholar] [CrossRef]
- Ahmad, M.; Cashmore, A.R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 1993, 366, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Huala, E.; Oeller, P.W.; Liscum, E.; Han, I.-S.; Larsen, E.; Briggs, W.R. Arabidopsis NPH1: A Protein Kinase with a Putative Redox-Sensing Domain. Science 1997, 278, 2120–2123. Available online: https://www.science.org/doi/10.1126/science.278.5346.2120 (accessed on 10 September 2021). [CrossRef] [PubMed]
- Christie, J.M.; Reymond, P.; Powell, G.K.; Bernasconi, P.; Raibekas, A.A.; Liscum, E.; Briggs, W.R. Arabidopsis NPH1: A Flavoprotein with the Properties of a Photoreceptor for Phototropism. Science 1998, 282, 1698–1701. Available online: https://www.science.org/doi/10.1126/science.282.5394.1698 (accessed on 10 September 2021). [CrossRef] [PubMed]
- Wang, Q.; Lin, C. Mechanisms of Cryptochrome-Mediated Photoresponses in Plants. Annu. Rev. Plant Biol. 2020, 71, 103–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somers, D.E.; Devlin, P.F.; Kay, S.A. Phytochromes and Cryptochromes in the Entrainment of the Arabidopsis Circadian Clock. Science 1998, 282, 1488–1490. Available online: https://www.science.org/doi/10.1126/science.282.5393.1488 (accessed on 10 September 2021). [CrossRef] [PubMed] [Green Version]
- Baldauf, S.L. The Deep Roots of Eukaryotes. Science 2003, 300, 1703–1706. Available online: https://www.science.org/doi/10.1126/science.1085544 (accessed on 10 September 2021). [CrossRef] [PubMed]
- Han, X.; Chang, X.; Zhang, Z.; Chen, H.; He, H.; Zhong, B.; Deng, X.W. Origin and Evolution of Core Components Responsible for Monitoring Light Environment Changes during Plant Terrestrialization. Mol. Plant 2019, 12, 847–862. [Google Scholar] [CrossRef]
- Chaves, I.; Pokorny, R.; Byrdin, M.; Hoang, N.; Ritz, T.; Brettel, K.; Essen, L.-O.; van der Horst, G.T.J.; Batschauer, A.; Ahmad, M. The cryptochromes: Blue light photoreceptors in plants andanimals. Annu. Rev. Plant Biol. 2011, 62, 335–364. Available online: https://hal.archives-ouvertes.fr/hal-00720048 (accessed on 10 September 2021). [CrossRef] [PubMed]
- Jaubert, M.; Bouly, J.P.; d’Alcalà, M.R.; Falciatore, A. Light Sensing and Responses in Marine Microalgae. Curr. Opin. Plant Biol. 2017, 37, 70–77. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1369526617300079 (accessed on 10 September 2021). [CrossRef]
- Takahashi, F.; Yamagata, D.; Ishikawa, M.; Fukamatsu, Y.; Ogura, Y.; Kasahara, M.; Kiyosue, T.; Kikuyama, M.; Wada, M.; Kataoka, H. AUREOCHROME, a photoreceptor required for photomorphogenesis in stramenopiles. Proc. Natl. Acad. Sci. USA 2007, 104, 19625–19630. Available online: https://www.pnas.org/doi/full/10.1073/pnas.0707692104 (accessed on 10 September 2021). [CrossRef] [Green Version]
- Ishikawa, M.; Takahashi, F.; Nozaki, H.; Nagasato, C.; Motomura, T.; Kataoka, H. Distribution and phylogeny of the blue light receptors aureochromes in eukaryotes. Planta 2009, 230, 543–552. [Google Scholar] [CrossRef]
- Costa, B.S.; Sachse, M.; Jungandreas, A.; Bartulos, C.R.; Gruber, A.; Jakob, T.; Kroth, P.; Wilhelm, C. Aureochrome 1a Is Involved in the Photoacclimation of the Diatom Phaeodactylum tricornutum. PLoS ONE 2013, 8, e74451. [Google Scholar] [CrossRef] [Green Version]
- Valentin, K.; Zetsche, K. Rubisco genes indicate a close phylogenetic relation between the plastids of Chromophyta and Rhodophyta. Plant Mol. Biol. 1990, 15, 575–584. [Google Scholar] [CrossRef]
- Davis, R.H. The age of model organisms. Nat. Rev. Genet. 2004, 5, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Charrier, B.; Coelho, S.M.; Le Bail, A.; Tonon, T.; Michel, G.; Potin, P.; Kloareg, B.; Boyen, C.; Peters, A.F.; Cock, J.M. Development and physiology of the brown alga Ectocarpus siliculosus: Two centuries of research. New Phytol. 2008, 177, 319–332. [Google Scholar] [CrossRef]
- Banerjee, A.; Herman, E.; Serif, M.; Maestre-Reyna, M.; Hepp, S.; Pokorny, R.; Kroth, P.G.; Essen, L.-O.; Kottke, T. Allosteric communication between DNA-binding and light-responsive domains of diatom class I aureochromes. Nucleic Acids Res. 2016, 44, 5957–5970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, M.; Serif, M.; Jakob, T.; Kroth, P.G.; Wilhelm, C. PtAUREO1a and PtAUREO1b knockout mutants of the diatom Phaeodactylum tricornutum are blocked in photoacclimation to blue light. J. Plant Physiol. 2017, 217, 44–48. [Google Scholar] [CrossRef] [Green Version]
- Mann, M.; Serif, M.; Wrobel, T.; Eisenhut, M.; Madhuri, S.; Flachbart, S.; Weber, A.P.; Lepetit, B.; Wilhelm, C.; Kroth, P.G. The Aureochrome Photoreceptor PtAUREO1a Is a Highly Effective Blue Light Switch in Diatoms. iScience 2020, 23, 101730. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Yao, J.; Wang, X.; Guo, H.; Duan, D. Transcriptome Sequencing and Comparative Analysis of Saccharina japonica (Laminariales, Phaeophyceae) under Blue Light Induction. PLoS ONE 2012, 7, e39704. [Google Scholar] [CrossRef]
- Luan, H.; Yao, J.; Chen, Z.; Duan, D. The 40S Ribosomal Protein S6 Response to Blue Light by Interaction with SjAUREO in Saccharina japonica. Int. J. Mol. Sci. 2019, 20, 2414. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wang, X.; Yao, J.; Li, W.; Duan, D. MiR8181 is involved in the cell growth regulation of Saccharina japonica. J. Plant Physiol. 2021, 260, 153394. [Google Scholar] [CrossRef]
- Kroth, P.G.; Wilhelm, C.; Kottke, T. An update on aureochromes: Phylogeny-mechanism-function. J. Plant Physiol. 2017, 217, 20–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowler, C.; Allen, A.E.; Badger, J.H.; Grimwood, J.; Jabbari, K.; Kuo, A.; Maheswari, U.; Martens, C.; Maumus, F.; Otillar, R.P.; et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 2008, 456, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Ye, N.; Zhang, X.; Miao, M.; Fan, X.; Zheng, Y.; Xu, D.; Wang, J.; Zhou, L.; Wang, D.; Gao, Y.; et al. Saccharina genomes provide novel insight into kelp biology. Nat. Commun. 2015, 6, 6986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishitsuji, K.; Arimoto, A.; Iwai, K.; Sudo, Y.; Hisata, K.; Fujie, M.; Arakaki, N.; Kushiro, T.; Konishi, T.; Shinzato, C.; et al. A draft genome of the brown alga, Cladosiphon okamuranus, S-strain: A platform for future studies of ‘mozuku’ biology. DNA Res. 2016, 23, 561–570. [Google Scholar] [CrossRef] [Green Version]
- Nishitsuji, K.; Arimoto, A.; Higa, Y.; Mekaru, M.; Kawamitsu, M.; Satoh, N.; Shoguchi, E. Draft genome of the brown alga, Nemacystus decipiens, Onna-1 strain: Fusion of genes involved in the sulfated fucan biosynthesis pathway. Sci. Rep. 2019, 9, 4607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, T.; Yuan, J.; Su, L.; Li, J.; Leng, X.; Zhang, Y.; Gao, H.; Pang, S. First Genome of the Brown Alga Undaria pinnatifida: Chromosome-Level Assembly Using PacBio and Hi-C Technologies. Front. Genet. 2020, 11, 140. [Google Scholar] [CrossRef] [Green Version]
- Graf, L.; Shin, Y.; Yang, J.H.; Choi, J.W.; Hwang, I.K.; Nelson, W.; Bhattacharya, D.; Viard, F.; Yoon, H.S. A genome-wide investigation of the effect of farming and human-mediated introduction on the ubiquitous seaweed Undaria pinnatifida. Nat. Ecol. Evol. 2021, 5, 360–368. [Google Scholar] [CrossRef]
- Foster, R.; Izawa, T.; Chua, N. Plant bZIP proteins gather at ACGT elements. FASEB J. 1994, 8, 192–200. [Google Scholar] [CrossRef]
- Izawa, T.; Foster, R.; Chua, N.H. Plant bZIP Protein DNA Binding Specificity. J. Mol. Biol. 1993, 230, 1131–1144. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, L.G.G.; Pachón, D.M.R.; Schrago, C.; Dos Santos, R.V.; Mueller-Roeber, B.; Vincentz, M. The Role of bZIP Transcription Factors in Green Plant Evolution: Adaptive Features Emerging from Four Founder Genes. PLoS ONE 2008, 3, e2944. [Google Scholar] [CrossRef] [PubMed]
- Dröge-Laser, W.; Snoek, B.L.; Snel, B.; Weiste, C. The Arabidopsis bZIP transcription factor family—An update. Curr. Opin. Plant Biol. 2018, 45, 36–49. [Google Scholar] [CrossRef]
- Jakoby, M.; Weisshaar, B.; Dröge-Laser, W.; Vicente-Carbajosa, J.; Tiedemann, J.; Kroj, T.; Parcy, F. bZIP transcription factors in Arabidopsis. Trends Plant Sci. 2002, 7, 106–111. [Google Scholar] [CrossRef]
- Han, M.V.; Demuth, J.P.; McGrath, C.L.; Casola, C.; Hahn, M.W. Adaptive Evolution of Young Gene Duplicates in Mammals. Genome Res. 2009, 19, 859–867. Available online: http://www.genome.org/cgi/doi/10.1101/gr.085951.108 (accessed on 10 September 2021). [CrossRef] [PubMed] [Green Version]
- Paaby, A.B.; Rockman, M.V. Cryptic genetic variation: Evolution’s hidden substrate. Nat. Rev. Genet. 2014, 15, 247–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trujillo, A.P.; Harold, V.T. Essentials of Oceanography, 12th ed.; Pearson Education (US): Upper Saddle River, NJ, USA, 2017; ISBN 9780321668127. [Google Scholar]
- De Martino, A.; Meichenin, A.; Shi, J.; Pan, K.; Bowler, C. Genetic and phenotypic characterization of Phaeodactylum tricornutum (Bacillariophyceae) accessions. J. Phycol. 2007, 43, 992–1009. [Google Scholar] [CrossRef]
- Castro, P.; Huber, M.E. Chemical and physical features of seawater and the world ocean. Marine biology. Mc Graw-Hill High. Educ. 2004, 2, 48–50. [Google Scholar]
- Jumars, P.A. Biological Oceanography: An Introduction; Lalli, C.M., Parsons, T.R., Eds.; Limnology & Oceanography: Waco, TX, USA, 2003; Volume 39, p. 982. [Google Scholar] [CrossRef]
- Edwards, P. Field and cultural studies on the seasonal periodicity of growth and reproduction of selected Texas benthic marine algae. Contrib. Mar. Sci. Univ. 1969, 14, 59–114. [Google Scholar]
- Lüning, K. Egg release in gametophytes of Laminaria saccharina: Induction by darkness and inhibition by blue light and u.v. Br. Phycol. J. 1981, 16, 379–393. [Google Scholar] [CrossRef] [Green Version]
- Ebbing, A.; Pierik, R.; Bouma, T.; Kromkamp, J.C.; Timmermans, K. How light and biomass density influence the reproduction of delayed Saccharina latissima gametophytes (Phaeophyceae). J. Phycol. 2020, 56, 709–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, M.; Guan, Y.; Ren, H.; Zhang, F.; Chen, F. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol. Biol. 2008, 66, 675–683. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, J.; Zhang, B.; Vanitha, J.; Ramachandran, S.; Jiang, S.-Y. Genome-wide Expansion and Expression Divergence of the Basic Leucine Zipper Transcription Factors in Higher Plants with an Emphasis on SorghumF. J. Integr. Plant Biol. 2011, 53, 212–231. [Google Scholar] [CrossRef] [PubMed]
- Baloglu, M.C.; Eldem, V.; Hajyzadeh, M.; Unver, T. Genome-Wide Analysis of the bZIP Transcription Factors in Cucumber. PLoS ONE 2014, 9, e96014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.J.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.H.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Jin, J.; Guo, A.-Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geourjon, C.; Deléage, G. SOPM: A self-optimized method for protein secondary structure prediction. Protein Eng. Des. Sel. 1994, 7, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Blom, N.S.; Gammeltoft, S.; Brunak, S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 1999, 294, 1351–1362, ISSN 0022-2836. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Zhang, P.; Liang, Z.; Yuan, Y.; Duan, M.; Liu, Y.; Zhang, D.; Liu, F. Genome-Wide Identification and Analysis of the Aureochrome Gene Family in Saccharina japonica and a Comparative Analysis with Six Other Algae. Plants 2022, 11, 2088. https://doi.org/10.3390/plants11162088
Wu Y, Zhang P, Liang Z, Yuan Y, Duan M, Liu Y, Zhang D, Liu F. Genome-Wide Identification and Analysis of the Aureochrome Gene Family in Saccharina japonica and a Comparative Analysis with Six Other Algae. Plants. 2022; 11(16):2088. https://doi.org/10.3390/plants11162088
Chicago/Turabian StyleWu, Yukun, Pengyan Zhang, Zhourui Liang, Yanmin Yuan, Maohong Duan, Yi Liu, Di Zhang, and Fuli Liu. 2022. "Genome-Wide Identification and Analysis of the Aureochrome Gene Family in Saccharina japonica and a Comparative Analysis with Six Other Algae" Plants 11, no. 16: 2088. https://doi.org/10.3390/plants11162088
APA StyleWu, Y., Zhang, P., Liang, Z., Yuan, Y., Duan, M., Liu, Y., Zhang, D., & Liu, F. (2022). Genome-Wide Identification and Analysis of the Aureochrome Gene Family in Saccharina japonica and a Comparative Analysis with Six Other Algae. Plants, 11(16), 2088. https://doi.org/10.3390/plants11162088