Identification and Spatial Distribution of Bioactive Compounds in Seeds Vigna unguiculata (L.) Walp. by Laser Microscopy and Tandem Mass Spectrometry
Abstract
:1. Introduction
- -
- Analysis of bioactive compounds in seeds using high-performance liquid chromatography (HPLC) and tandem mass spectrometry (MS/MS) methods;
- -
- Visualization of the localization of phytochemical compounds in seed tissues using confocal laser microscopy;
- -
- Identification of differences in the content of bioactive compounds in seeds of vegetable and grain accessions (cultivar groups sesquipedalis and unguiculata).
2. Materials and Methods
2.1. Materials
2.2. Chemicals and Reagents
2.3. Maceration
2.4. Liquid Chromatography
2.5. Mass Spectrometry
2.6. Optical Microscopy
2.7. Statistical Data Processing
3. Results and Discussion
3.1. Tandem Mass Spectrometry
3.2. Confocal Laser Scanning Microscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burlyaeva, M.O.; Gurkina, M.V.; Chebukin, P.A.; Perchuk, I.N.; Miroshnichenko, E.V. New varieties of vegetable cowpea (Vigna unguiculata subsp. sesquipedalis (L.) Verdc.) and prospects of their cultivation in southern Russia. Veg. Crops Russ. 2019, 5, 33–37. (In Russian) [Google Scholar] [CrossRef]
- Burlyaeva, M.O.; Gurkina, M.V.; Miroshnichenko, E.V. Application of multivariate analysis to identify relationships among useful agronomic characters of cowpea and differentiation of cultivars for vegetable and grain uses. J. Proc. Appl. Bot. 2021, 182, 36–47. [Google Scholar] [CrossRef]
- Bouchenak, M.; Lamri-Senhadji, M.Y. Nutritional quality of legumes, and their role in cardiometabolic risk prevention: A review. J. Med. Food 2013, 16, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.; Goufo, P.; Barros, A.; Domínguez-Perles, R.; Trindade, H.; Rosa, E.A.S.; Ferreira, L.; Rodrigues, M. Cowpea (Vigna unguiculata L. Walp), a renewed multipurpose crop for a more sustainable agri-food system: Nutritional advantages and constraints. J. Sci. Food Agric. 2016, 96, 2941–2951. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Singh, J.P.; Shevkani, K.; Singh, N.; Kaur, A. Bioactive constituents in pulses and their health benefits. J. Food Sci. Technol. 2017, 54, 858–870. [Google Scholar] [CrossRef]
- Lazaridi, E.; Ntatsi, G.; Fernandez, J.A.; Karapanos, I.; Carnide, V.; Savvas, D.; Bebeli, P.J. Phenotypic diversity and evaluation of fresh pods of cowpea landraces from Southern Europe. J. Sci. Food Agric. 2017, 97, 4326–4333. [Google Scholar] [CrossRef]
- Collado, E.; Klug, T.V.; Artés-Hernández, F.; Aguayo, E.; Artés, F.; Fernández, J.A.; Gómez, P.A. Quality changes in nutritional traits of fresh-cut and then microwaved cowpea seeds and pods. Food Bioprocess Technol. 2019, 12, 338–346. [Google Scholar] [CrossRef]
- Awika, J.M.; Duodu, K.G. Bioactive polyphenols and peptides in cowpea (Vigna unguiculata) and their health promoting properties: A review. J. Func. Foods 2017, 38, 686–697. [Google Scholar] [CrossRef]
- Avanza, M.V.; Álvarez-Rivera, G.; Cifuentes, A.; Mendiola, J.A.; Ibáñez, E. Phytochemical and Functional Characterization of Phenolic Compounds from Cowpea (Vigna unguiculata (L.) Walp.) Obtained by Green Extraction Technologies. Agronomy 2021, 11, 162. [Google Scholar] [CrossRef]
- Fasuan, T.O.; Chukwu, C.T.; Uchegbu, N.N.; Olagunju, T.M.; Asadu, K.S.; Nwachukwu, M.C. Effects of pre-harvest synthetic chemicals on post-harvest bioactive profile and phytoconstituents of white cultivar of Vigna unguiculata grains. J. Food Process. Preserv. 2022, 46, e16187. [Google Scholar] [CrossRef]
- Grierson, C.S.; Barnes, S.R.; Chase, M.W.; Clarke, M.; Grierson, D.; Edwards, K.J.; Jellis, G.J.; Jones, J.D.; Knapp, S.; Oldroyd, G.; et al. One hundred important questions facing plant science research. New Phytol. 2011, 192, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Frank, T.; Engel, K. Metabolomic Analysis of Plants and Crops. In Metabolomics in Food and Nutrition; Elsevier: Amsterdam, The Netherlands, 2013; pp. 148–191. [Google Scholar]
- Puzanskiy, R.K.; Yemelyanov, V.V.; Gavrilenko, T.A.; Shishova, M.F. The perspectives of metabolomics studies of potato plants. Vavilov J. Genet. Breed. 2017, 21, 112–123. [Google Scholar] [CrossRef]
- Solovyeva, A.E.; Shelenga, T.V.; Shavarda, A.L.; Burlyaeva, M.O. Comparative analysis of wild and cultivated Lathyrus, L. spp. according to their primary and secondary metabolite contents. Vavilov J. Genet. Breed. 2019, 23, 667–674. [Google Scholar] [CrossRef]
- Solovyeva, A.E.; Shelenga, T.V.; Shavarda, A.L.; Burlyaeva, M.O. Comparative analysis of wild and cultivated Lathyrus, L. species to assess their content of sugars, polyols, free fatty acids, and phytosterols. Vavilov J. Genet. Breed. 2020, 24, 730–737. [Google Scholar] [CrossRef]
- Perchuk, I.; Shelenga, T.; Gurkina, M.; Miroshnichenko, E.; Burlyaeva, M. Composition of Primary and Secondary Metabolite Compounds in Seeds and Pods of Asparagus Bean (Vigna unguiculata (L.) Walp.) from China. Molecules 2020, 25, 3778. [Google Scholar] [CrossRef]
- Loskutov, I.G.; Shelenga, T.V.; Konarev, A.V.; Khoreva, V.I.; Kerv, Y.A.; Blinova, E.V.; Gnutikov, A.A.; Rodionov, A.V.; Malyshev, L.L. Assessment of oat varieties with different levels of breeding refinement from the Vavilov Institute’s collection applying the method of metabolomic profiling. Proc. Appl. Bot. Genet. Breed. 2022, 183, 104–117. [Google Scholar] [CrossRef]
- Porokhovinova, E.A.; Shelenga, T.V.; Kerv, Y.A.; Khoreva, V.I.; Konarev, A.V.; Yakusheva, T.V.; Pavlov, A.V.; Slobodkina, A.A.; Brutch, N.B. Features of Profiles of Biologically Active Compounds of Primary and Secondary Metabolism of Lines from VIR Flax Genetic Collection, Contrasting in Size and Color of Seeds. Plants 2022, 11, 750. [Google Scholar] [CrossRef]
- Meijering, E. Cell segmentation: 50 years down the road [life sciences]. IEEE Signal Process. Mag. 2012, 29, 140–145. [Google Scholar] [CrossRef]
- Hutzler, P.; Fischbach, R.; Heller, W.; Jungblut, T.P.; Reuber, S.; Schmitz, R.; Veit, M.; Weissenböck, G.; Schnitzler, J.-P. Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy. J. Exp. Bot. 1998, 49, 953–965. [Google Scholar] [CrossRef]
- Saboori-Robat, E.; Joshi, J.; Pajak, A.; Solouki, M.; Mohsenpour, M.; Renaud, J.; Marsolais, F. Common Bean (Phaseolus vulgaris L.) Accumulates Most S-Methylcysteine as Its γ-Glutamyl Dipeptide. Plants 2019, 8, 126. [Google Scholar] [CrossRef]
- Razgonova, M.; Zinchenko, Y.; Pikula, K.; Tekutyeva, L.; Son, O.; Zakharenko, A.; Kalenik, T.; Golokhvast, K. Spatial Distribution of Polyphenolic Compounds in Corn Grains (Zea mays L. var. Pioneer) Studied by Laser Confocal Microscopy and High-Resolution Mass Spectrometry. Plants 2022, 11, 630. [Google Scholar] [CrossRef] [PubMed]
- Oertel, A.; Matros, A.; Hartmann, A.; Arapitsas, P.; Dehmer, K.J.; Martens, S.; Mock, H.P. Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols. Planta 2017, 246, 281–297. [Google Scholar] [CrossRef]
- Hamed, A.R.; El-Hawary, S.S.; Ibrahim, R.M.; Abdelmohsen, U.R.; El-Halawany, A.M. Identification of Chemopreventive Components from Halophytes Belonging to Aizoaceae and Cactaceae Through LC/MS–Bioassay Guided Approach. J. Chromatogr. Sci. 2021, 59, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Qin, D.; Wang, Q.; Li, H.; Jiang, X.; Fang, K.; Wang, Q.; Li, B.; Pan, C.; Wu, H. Identification of key metabolites based on non-targeted metabolomics and chemometrics analyses provides insights into bitterness in Kucha [Camellia kucha (Chang et Wang) Chang]. Food Res. Int. 2020, 138, 109789. [Google Scholar] [CrossRef] [PubMed]
- Seukep, A.J.; Zhang, Y.-L.; Xu, Y.-B.; Guo, M.-Q. In Vitro Antibacterial and Antiproliferative Potential of Echinops lanceolatus Mattf. (Asteraceae) and Identification of Potential Bioactive Compounds. Pharmaceuticals 2020, 13, 59. [Google Scholar]
- Rodriguez-Perez, C.; Gomez-Caravaca, A.M.; Guerra-Hernandez, E.; Cerretani, L.; Garcia-Villanova, B.; Verardo, V. Comprehensive metabolite profiling of Solanum tuberosum L. (potato) leaves T by HPLC-ESI-QTOF-MS. Molecules 2018, 112, 390–399. [Google Scholar] [CrossRef]
- Chang, Q.; Wong, Y.-S. Identification of Flavonoids in Hakmeitau Beans (Vigna sinensis) by High-Performance Liquid Chromatography−Electrospray Mass Spectrometry (LC-ESI/MS). J. Agric. Food Chem. 2004, 52, 6694–6699. [Google Scholar] [CrossRef]
- Rafsanjany, N.; Senker, J.; Brandt, S.; Dobrindt, U.; Hensel, A. In Vivo Consumption of Cranberry Exerts ex Vivo Antiadhesive Activity against FimH-Dominated Uropathogenic Escherichia coli: A Combined in Vivo, ex Vivo, and in Vitro Study of an Extract from Vaccinium macrocarpon. J. Agric. Food Chem. 2015, 63, 8804–8818. [Google Scholar] [CrossRef]
- Belmehdi, O.; Bouyahya, A.; József, J.E.K.Ő.; Cziáky, Z.; Zengin, G.; Sotkó, G.; Elbaaboua, A.; Senhaji, N.S.; Abrini, J. Synergistic interaction between propolis extract, essential oils, and antibiotics against Staphylococcus epidermidis and methicillin resistant Staphylococcus aureus. Int. J. Second. Metab. 2021, 8, 195–213. [Google Scholar] [CrossRef]
- Okhlopkova, Z.M.; Razgonova, M.P.; Pikula, K.S.; Zakharenko, A.M.; Piekoszewski, W.; Manakov, Y.A.; Ercisli, S.; Golokhvast, K.S. Dracocephalum palmatum S. and Dracocephalum ruyschiana L. originating from Yakutia: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds. Appl. Sci. 2022, 12, 1766. [Google Scholar] [CrossRef]
- Razgonova, M.; Zakharenko, A.; Pikula, K.; Manakov, Y.; Ercisli, S.; Derbush, I.; Kislin, E.; Seryodkin, I.; Sabitov, A.; Kalenik, T.; et al. LC-MS/MS Screening of Phenolic Compounds in Wild and Cultivated Grapes Vitis amurensis Rupr. Molecules 2021, 26, 3650. [Google Scholar] [CrossRef] [PubMed]
- Zakharenko, A.M.; Razgonova, M.P.; Pikula, K.S.; Golokhvast, K.S. Simultaneous determination of 78 compounds of Rhodiola rosea extract using supercritical CO2-extraction and HPLC-ESI-MS/MS spectrometry. HINDAWY. Biochem. Res. Int. 2021, 2021, 9957490. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekara, A.; Shahidi, F. Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. J. Funct. Foods 2011, 3, 144–158. [Google Scholar] [CrossRef]
- Kim, S.; Oh, S.; Noh, H.B.; Ji, S.; Lee, S.H.; Koo, J.M.; Choi, C.W.; Jhun, H.P. In Vitro Antioxidant and Anti-Propionibacterium acnes Activities of Cold Water, Hot Water, and Methanol Extracts, and Their Respective Ethyl Acetate Fractions, from Sanguisorba officinalis L. Roots. Molecules 2018, 23, 3001. [Google Scholar] [CrossRef] [PubMed]
- Aita, S.E.; Capriotti, A.L.; Cavaliere, C.; Cerrato, A.; Giannelli Moneta, B.; Montone, C.M.; Piovesana, S.; Lagana, A. Andean Blueberry of the Genus Disterigma: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds. Separations 2021, 8, 58. [Google Scholar] [CrossRef]
- Jaiswal, R.; Muller, H.; Muller, A.; Karar, M.G.E.; Kuhnert, N. Identification and characterization of chlorogenic acids, chlorogenic acid glycosides and flavonoids from Lonicera henryi L. (Caprifoliaceae) leaves by LC–MSn. Phytochemistry 2014, 108, 252–263. [Google Scholar] [CrossRef]
- Xu, L.L.; Xu, J.J.; Zhong, K.R.; Shang, Z.P.; Wang, F.; Wang, R.F.; Liu, B. Analysis of non-volatile chemical constituents of Menthae Haplocalycis herba by ultra-high performance liquid chromatography—High resolution mass spectrometry. Molecules 2017, 22, 1756. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chirikova, N.K.; Okhlopkova, Z.M.; Zulfugarov, I.S. Chemical Composition and Antioxidant Activity of Tánara Ótó (Dracocephalum palmatum Stephan), a Medicinal Plant Used by the North-Yakutian Nomads. Molecules 2013, 18, 14105–14121. [Google Scholar] [CrossRef]
- Teles, Y.C.F.; Souza, M.S.R.; de Fatima Vanderlei de Souza, M. New Sulphated Flavonoids: Biosynthesis, Structures, and Biological Activities. Molecules 2018, 22, 480. [Google Scholar] [CrossRef]
- Marcia Fuentes, J.A.; Lopez-Salas, L.; Borras-Linares, I.; Navarro-Alarcon, M.; Segura-Carretero, A.; Lozano-Sanchez, J. Development of an Innovative Pressurized Liquid Extraction Procedure by Response Surface Methodology to Recover Bioactive Compounds from Carao Tree Seeds. Foods 2021, 10, 398. [Google Scholar] [CrossRef]
- Thomford, N.E.; Dzobo, K.; Chopera, D.; Wonkam, A.; Maroyi, A.; Blackhurst, D.; Dandara, C. In vitro reversible and time-dependent CYP450 inhibition profiles of medicinal herbal plant extracts Newbouldia laevis and Cassia abbreviata: Implications for herb-drug interactions. Molecules 2016, 21, 891. [Google Scholar] [CrossRef] [PubMed]
- Sobeh, M.; Mahmoud, M.F.; Abdelfattah, M.A.O.; Cheng, H.; El-Shazly, A.M.; Wink, M. A proanthocyanidin-rich extract from Cassia abbreviata exhibits antioxidant and hepatoprotective activities in vivo. J. Ethnopharmacol. 2018, 213, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.A.O.; Vilela, C.; Freire, C.S.R.; Neto, C.P.; Silvestre, A.J.D. Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood. J. Chromatogr. B 2013, 938, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Abeywickrama, G.; Debnath, S.C.; Ambigaipalan, P.; Shahidi, F. Phenolics of Selected Cranberry Genotypes (Vaccinium macrocarpon Ait.) and Their Antioxidant Efficacy. J. Agric. Food Chem. 2016, 64, 9342–9351. [Google Scholar] [CrossRef]
- Ojwang, L.O.; Yang, L.; Dykes, L.; Awika, J. Proanthocyanidin profile of cowpea (Vigna unguiculata) reveals catechin-O-glucoside as the dominant compound. Food Chem. 2013, 130, 35–43. [Google Scholar] [CrossRef]
- Sharma, M.; Sandhir, R.; Singh, A.; Kumar, P.; Mishra, A.; Jachak, S.; Singh, S.P.; Singh, J.; Roy, J. Comparison analysis of phenolic compound characterization and their biosynthesis genes between two diverse bread wheat (Triticum aestivum) varieties differing for chapatti (unleavened flat bread) quality. Front. Plant Sci. 2016, 7, 1870. [Google Scholar] [CrossRef]
- Yin, N.-W.; Wang, S.-X.; Jia, L.-D.; Zhu, M.-C.; Yang, J.; Zhou, B.-J.; Yin, J.-M.; Lu, K.; Wang, R.; Li, J.-N.; et al. Identification and Characterization of Major Constituents in Different-Colored Rapeseed Petals by UPLC−HESI-MS/MS. J. Agric. Food Chem. 2019, 67, 11053–11065. [Google Scholar] [CrossRef]
- Ruiz, A.; Hermosín-Gutiérrez, I.; Vergara, C.; von Baer, D.; Zapata, M.; Hitschfeld, A.; Obando, L.; Mardones, C. Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Res. Int. 2013, 51, 706–713. [Google Scholar] [CrossRef]
- Ha, T.J.; Lee, M.H.; Park, C.H.; Pae, S.B.; Shim, K.B.; Ko, J.M.; Shin, S.O.; Baek, I.Y.; Park, K.Y. Identification and Characterization of Anthocyanins in Yard-Long Beans (Vigna unguiculata ssp. sesquipedalis L.) by High-Performance Liquid Chromatography with Diode Array Detection and Electrospray Ionization/Mass Spectrometry (HPLC-DAD-ESI/MS) Analysis. J. Agric. Food Chem. 2010, 58, 2571–2576. [Google Scholar]
- Lago-Vanzela, E.S.; Da-Silva, R.; Gomes, E.; Garcia-Romero, E.; Hermosin-Gutierres, E. Phenolic Composition of the Edible Parts (Flesh and Skin) of Bordô Grape (Vitis labrusca) Using HPLC−DAD−ESI-MS/MS. J. Agric. Food Chem. 2011, 59, 13136–13146. [Google Scholar] [CrossRef]
- Chhon, S.; Jeon, J.; Kim, J.; Park, S.U. Phenolic Accumulation of Anthocyanins through Overexpression of AtPAP1 in Solanum nigrum Lin. (Black Nightshade). Biomolecules 2020, 10, 277. [Google Scholar] [CrossRef] [PubMed]
- Anari, Z.; Mai, C.; Sengupta, A.; Howard, L.; Brownmiller, C.; Wickramasinghe, S.R. Combined Osmotic and Membrane Distillation for Concentration of Anthocyanin from Muscadine Pomace Biomolecules. J. Food Sci. 2019, 84, 2199–2208. [Google Scholar] [CrossRef] [PubMed]
- Eklund, P.C.; Backman, M.J.; Kronberg, L.A.; Smeds, A.I.; Sjoholm, R.E. Identification of lignans by liquid chromatography-electrospray ionization ion-trap mass spectrometry. J. Mass Spectrom. 2008, 43, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Bonzanini, F.; Bruni, R.; Palla, G.; Serlataite, N.; Caligiani, A. Identification and distribution of lignans in Punica granatum L. fruit endocarp, pulp, seeds, wood knots and commercial juices by GC–MS. Food Chem. 2009, 117, 745–749. [Google Scholar] [CrossRef]
- Llorent-Martinez, E.J.; Spinola, V.; Gouveia, S.; Castilho, P.C. HPLC-ESI-MSn characterization of phenolic compounds, terpenoid saponins, and other minor compounds in Bituminaria bituminosa. Ind. Crops Prod. 2015, 69, 80–90. [Google Scholar] [CrossRef]
- Monthong, W.; Pitchuanchom, S.; Nuntasaen, N.; Pompimon, W. (+)-Syringaresinol Lignan from New Species Magnolia Thailandica. Am. J. Appl. Sci. 2011, 8, 1268–1271. [Google Scholar] [CrossRef]
- Pan, M.; Lei, Q.; Zang, N.; Zhang, H. A Strategy Based on GC-MS/MS, UPLC-MS/MS and Virtual Molecular Docking for Analysis and Prediction of Bioactive Compounds in Eucalyptus Globulus Leaves. Int. J. Mol. Sci. 2019, 20, 3875. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Wang, C.; Zou, L.; Liu, X.; Chen, J.; Tan, M.; Mei, Y.; Wei, L. Comparison of Multiple Bioactive Constituents in the Flower and the Caulis of Lonicera japonica Based on UFLC-QTRAP-MS/MS Combined with Multivariate Statistical Analysis. Molecules 2019, 24, 1936. [Google Scholar] [CrossRef]
- Quifer-Rada, P.; Vallverdu-Queralt, A.; Martinez-Huelamo, M.; Chiva-Blanch, G.; Jauregui, O.; Estruch, R.; Lamuela-Raventos, R. A comprehensive characterization of beer polyphenols by high resolution mass spectrometry (LC-ESI-LTQ-Orbitrap-MS). Food Chem. 2015, 169, 336–343. [Google Scholar] [CrossRef]
- Alvarez-Fernandez, M.; Cerezo, A.B.; Canete-Rodriguez, A.M.; Troncoso, A.M.; Garcia-Parrilla, M.C. Composition of nonanthocyanin polyphenols in alcoholic-fermented strawberry products using LC-MS (QTRAP), high-resolution MS (UHPLC-Orbitrap-MS), LC-DAD, and antioxidant activity. J. Agric. Food Chem. 2015, 63, 2041–2051. [Google Scholar] [CrossRef]
- Jiang, R.-W.; Lau, K.-M.; Hon, P.-M.; Mak, T.C.W.; Woo, K.-S.; Fung, K.-P. Chemistry and Biological Activities of Caffeic Acid Derivatives from Salvia miltiorrhiza. Curr. Med. Chem. 2005, 12, 237–246. [Google Scholar] [CrossRef]
- Razgonova, M.P.; Tikhonova, N.G.; Sabitov, A.S.; Mikhailova, N.M.; Luchko, S.R.; Zakharenko, A.M.; Pikula, K.S.; Golokhvast, K.S. Identification of phenolic constituents in Lonicera caerulea L. by HPLC with diode array detection electrospray ionisation tandem mass spectrometry. In BIO Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 32, p. 02010. [Google Scholar]
- Lang, R.; Dieminger, N.; Beusch, A.; Lee, Y.M.; Dunkel, A.; Suess, B.; Skurk, T.; Wahl, A.; Hauner, H.; Hofmann, T. Bioappearance and pharmacokinetics of bioactives upon coffee consumption). Anal. Bioanal. Chem. 2013, 405, 8487–8503. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.-J.; Yan, L.-L.; Yin, P.-P.; Shi, L.-L.; Zhang, J.-H.; Liu, J.-H.; Ma, C. Structural characterisation and antioxidant activity evaluation of phenolic compounds from cold-pressed Perilla frutescens var. arguta seed flour. Food Chem. 2014, 164, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.T.; Wu, X.; Rui, W.; Guo, J.; Feng, Y.F. UPLC/Q-TOF-MS analysis for identification of hydrophilic phenolics and lipophilic diterpenoids from Radix Salviae Miltiorrhizae. Acta Chromatogr. 2015, 27, 711–728. [Google Scholar] [CrossRef]
- Huang, Y.; Yao, P.; Leung, K.W.; Wang, H.; Kong, X.P.; Wang, L.; Dong, T.T.X.; Chen, Y.; Tsim, K.W.K. The Yin-Yang Property of Chinese Medicinal Herbs Relates to Chemical Composition but Not Anti-Oxidative Activity: An Illustration Using Spleen-Meridian Herbs. Front. Pharmacol. 2018, 9, 1304. [Google Scholar] [CrossRef]
- Ekeberg, D.; Flate, P.-O.; Eikenes, M.; Fongen, M.; Naess-Andresen, C.F. Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography. J. Chromatogr. A 2006, 1109, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Park, S.K.; Ha, J.S.; Kim, J.M.; Kang, J.Y.; Lee, D.S.; Guo, T.J.; Lee, U.; Kim, D.-O.; Heo, H.J. Antiamnesic Effect of Broccoli (Brassica oleracea var. italica) Leaves on Amyloid Beta (Aβ)1-42-Induced Learning and Memory Impairment. J. Agric. Food Chem. 2016, 64, 3353–3361. [Google Scholar] [CrossRef]
- Van Hoyweghen, L.; De Bosscher, K.; Haegeman, G.; Deforce, D.; Heyerick, A. In vitro inhibition of the transcription factor NF-κB and cyclooxygenase by Bamboo extracts. Phytother. Res. 2014, 28, 224–230. [Google Scholar] [CrossRef]
- Bianco, G.; Schmitt-Kopplin, P.; De Benedetto, G.; Kettrup, A.; Cataldi, T.R.I. Determination of glycoalkaloids and relative aglycones by nonaqueous capillary electrophoresis coupled with electrospray ionization-ion trap mass spectrometry. Electrophoresis 2002, 23, 2904–2912. [Google Scholar] [CrossRef]
- Hossain, M.B.; Brunton, N.P.; Rai, D.K. Effect of Drying Methods on the Steroidal Alkaloid Content of Potato Peels, Shoots and Berries. Molecules 2016, 21, 403. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, J.; He, Y.; Shi, M.; Han, X.; Li, W.; Zhang, X.; Wen, X. Metabolic Profiling of Pitaya (Hylocereus polyrhizus) during Fruit Development and Maturation. Molecules 2019, 24, 1114. [Google Scholar] [CrossRef]
- Razgonova, M.P.; Tekutyeva, L.A.; Podvolotskaya, A.B.; Stepochkina, V.D.; Zakharenko, A.M.; Golokhvast, K. Zostera marina L.: Supercritical CO2-extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Eelgrass. Separations 2022, 24, 1114. [Google Scholar] [CrossRef]
- Delgado-Pelayo, R.; Homero-Mendez, D. Identification and Quantitative Analysis of Carotenoids and Their Esters from Sarsaparilla (Smilax aspera L.) Berries. J. Agric. Food Chem. 2012, 60, 8225–8232. [Google Scholar] [CrossRef]
- Mercadante, A.Z.; Rodrigues, D.B.; Petry, F.C.; Barros Mariutti, L.R. Carotenoid esters in foods—A review and practical directions on analysis and occurrence. Food Res. Int. 2017, 99, 830–850. [Google Scholar] [CrossRef] [PubMed]
- Shakya, R.; Navarre, D.A. LC-MS Analysis of Solanidane Glycoalkaloid Diversity among Tubers of Four Wild Potato Species and Three Cultivars (Solanum tuberosum). J. Agric. Food Chem. 2008, 56, 6949–6958. [Google Scholar] [CrossRef]
- Steinert, K.; Hovelmann, Y.; Huber, F.; Humpf, H.-U. LC-MS Identification of Novel Iso-Esculeoside B from Tomato Fruits and LC−MS/MS-Based Food Screening for Major Dietary Steroidal Alkaloids Focused on Esculeosides. J. Agric. Food Chem. 2020, 68, 14492–14501. [Google Scholar] [CrossRef] [PubMed]
- Pollier, J.; Morreel, K.; Geelen, D.; Goossens, A. Metabolite Profiling of Triterpene Saponins in Medicago truncatula Hairy Roots by Liquid Chromatography Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Nat. Prod. 2011, 74, 1462–1476. [Google Scholar] [CrossRef]
- Deuber, H.; Guignard, C.; Hoffmann, L.; Evers, D. Polyphenol and glycoalkaloid contents in potato cultivars grown in Luxembourg. Food Chem. 2012, 135, 2814–2824. [Google Scholar]
- Huang, W.; Serra, O.; Dastmalchi, K.; Jin, L.; Yang, L.; Stark, R.E. Comprehensive MS and Solid-state NMR Metabolomic Profiling Reveals Molecular Variations in Native Periderms from Four Solanum tuberosum Potato Cultivars. J. Agric. Food Chem. 2017, 65, 2258–2274. [Google Scholar] [CrossRef] [PubMed]
- Corcel, M.; Devaux, M.-F.; Guillon, F.; Barron, C. Identification of tissular origin of particles based on autofluorescence multispectral image analysis at the macroscopic scale. In Proceedings of the EPJ Web of Conferences, Crete, Greece, 17–29 August 2017; p. 05012. [Google Scholar]
- Lichtenthaler, H.K.; Schweiger, J. Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants. J. Plant Physiol. 1998, 152, 272–282. [Google Scholar] [CrossRef]
- Donaldson, L. Softwood and hardwood lignin fluorescence spectra of wood cell walls in different mounting media. IAWA J. 2013, 34, 3–19. [Google Scholar] [CrossRef]
- Brillouet, J.M.; Riochet, D. Cell wall polysaccharides and lignin in cotyledons and hulls of seeds from various lupin (Lupinus, L.) species. J. Sci. Food Agric. 1983, 34, 861–868. [Google Scholar] [CrossRef]
- Krzyzanowski, F.C.; Franca Neto, J.D.B.; Mandarino, J.M.G.; Kaster, M. Evaluation of lignin content of soybean seed coat stored in a controlled environment. Rev. Bras. De Sementes 2008, 30, 220–223. [Google Scholar] [CrossRef]
- Brillouet, J.M.; Carré, B. Composition of cell walls from cotyledons of Pisum sativum, Vicia faba and Glycine max. Phytochemistry 1983, 22, 841–847. [Google Scholar] [CrossRef]
- Sudo, E.; Teranishi, M.; Hidema, J.; Taniuchi, T. Visualization of flavonol distribution in the abaxial epidermis of onion scales via detection of its autofluorescence in the absence of chemical processes. Biosci. Biotechnol. Biochem. 2009, 73, 2107–2109. [Google Scholar] [CrossRef]
- Monago-Maraña, O.; Durán-Merás, I.; Galeano-Díaz, T.; de la Peña, A.M. Fluorescence properties of flavonoid compounds. Quantification in paprika samples using spectrofluorimetry coupled to second order chemometric tools. Food Chem. 2016, 196, 1058–1065. [Google Scholar] [CrossRef]
- Roshchina, V.V.; Kuchin, A.V.; Yashin, V.A. Application of Autofluorescence for Analysis of Medicinal Plants. Spectrosc. Int. J. 2017, 2017, 7159609. [Google Scholar] [CrossRef]
- Talamond, P.; Verdeil, J.-L.; Conéjéro, G. Secondary metabolite localization by autofluorescence in living plant cells. Molecules 2015, 20, 5024–5037. [Google Scholar] [CrossRef]
- Collings, D.A. Anthocyanin in the vacuole of red onion epidermal cells quenches other fluorescent molecules. Plants 2019, 8, 596. [Google Scholar] [CrossRef]
- Mackon, E.; Ma, Y.; Jeazet Dongho Epse Mackon, G.C.; Li, Q.; Zhou, Q.; Liu, P. Subcellular Localization and Vesicular Structures of Anthocyanin Pigmentation by Fluorescence Imaging of Black Rice (Oryza sativa L.) Stigma Protoplast. Plants 2021, 10, 685. [Google Scholar] [CrossRef]
- Weber, H.; Borisjuk, L.; Wobus, U. Molecular physiology of legume seed development. Annu. Rev. Plant Biol. 2005, 56, 253–279. [Google Scholar] [CrossRef] [PubMed]
- Moïse, J.A.; Han, S.; Gudynaitę-Savitch, L.; Johnson, D.A.; Miki, B.L. Seed coats: Structure, development, composition, and biotechnology. In Vitro Cell. Dev. Biol.-Plant 2005, 41, 620–644. [Google Scholar] [CrossRef]
- Ndakidemi, P.A.; Dakora, F.D. Legume seed flavonoids and nitrogenous metabolites as signals and protectants in early seedling development. Funct. Plant Biol. 2003, 30, 729–745. [Google Scholar] [CrossRef]
- Salunkhe, D.K.; Jadhav, S.J.; Kadam, S.S.; Chavan, J.K. Chemical, biochemical, and biological significance of polyphenols in cereals and legumes. Crit. Rev. Food Sci. Nutr. 1982, 17, 277–305. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.A.; Paiva, N.L. Stress-induced phenylpropanoid metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef] [PubMed]
- Benitez, E.R.; Funatsuki, H.; Kaneko, Y.; Matsuzawa, Y.; Bang, S.W.; Takahashi, R. Soybean maturity gene effects on seed coat pigmentation and cracking in response to low temperatures. Crop Sci. 2004, 44, 2038–2042. [Google Scholar] [CrossRef]
- Nakamura, T.; Yang, D.; Kalaiselvi, S.; Uematsu, Y.; Takahashi, R. Genetic analysis of net-like cracking in soybean coats. Euphytica. 2003, 133, 179–184. [Google Scholar] [CrossRef]
No | VIR Catalogue Number | Name of Accessions | Country of Origin | Acqdate | Cultivar Groups |
---|---|---|---|---|---|
1 | k-6 | Cultivar “Clay” | USA | 1921 | unguiculata |
2 | k-640 | Landrace | China | 1929 | sesquipedalis |
3 | k-642 | Landrace | China | 1929 | sesquipedalis |
4 | k-1783 | Landrace | Germany | 1985 | unguiculata |
5 | k-632341 | Cultivar “Lyanchihe” | Far East, Russia | 2018 | sesquipedalis |
No | VIR Catalogue Number | Class of Compounds | Identified Compounds | Formula | Mass | Molecular Ion [M-H]- | Molecular Ion [M+H]+ | 2 Fragmentation MS/MS | 3 Fragmentation MS/MS | 4 Fragmentation MS/MS | References |
---|---|---|---|---|---|---|---|---|---|---|---|
Polyphenols | |||||||||||
1 | k-6(583); k-642 (582) | Flavonol | Dihydrokaempferol (Aromadendrin; Katuranin) | C15H12O6 | 288.25 | 287 | 151; 269 | Solanium tuberosum [23]; F. glaucescens [24]; Camellia kucha [25]; Echinops [26] | |||
2 | k-6(583); k-632341 (579) | Flavonol | Quercetin | C15H10O7 | 302.23 | 301 | 179; 273 | 151; | Potato leaves [27]; Vigna sinensis [28]; Vaccinium macrocarpon [29]; Propolis [30] | ||
3 | k-6(583); k-1783 (585); k-640 (589); k-640 (590) | Flavonol | Dihydroquercetin (Taxifolin; Taxifoliol) | C15H12O7 | 304.25 | 303 | 285; 177 | 241 | Dracocephalum palmatum [31]; Vitis amurensis [32]; Rhodiola rosea [33] | ||
4 | k-640 (590) | Flavonol | Myricetin | C15H10O8 | 318.23 | 317 | 273 | 260; 251 | Vaccinium macrocarpon [29]; F. glaucescens [24]; millet grains [34]; Sanguisorba officinalis [35] | ||
5 | k-6(584) | Flavonol | Quercetin 3-O-glucoside (Isoquercitrin; Hirsutrin) | C21H20O12 | 464.37 | 303 | 256; 165 | 229 | Potato [23]; Vigna sinensis [28]; Andean blueberry [36]; Lonicera Henryl [37] | ||
6 | k-640 (590) | Flavone | Acacetin (Linarigenin; Buddleoflavonol) | C16H12O5 | 284.26 | 285 | 257; 239; 177 | 248; 237; 216; 173 | Mentha [38]; Dracocephalum palmatum [39]; Wissadula periplocifolia [40] | ||
7 | k-6(583) | Tetrahydroxyflavane | Luteoliflavan-eriodictyol-O-hexoside | C36H34O16 | 722.64 | 723 | 587; 555; 499 | 543; 516; 499 | 499 | C. edulis [24] | |
8 | k-632341 (579) | Flavan-3-ol | Epiafzelechin ((epi)Afzelechin) | C15H14O5 | 274.26 | 275 | 195; 149 | 167 | 150 | Cassia granidis [41]; Cassia abbreviata [42,43]; A. cordifolia; F. glaucescens; F. herrerae [24] | |
9 | k-632341 (579); k-632341 (580); k-640 (590); k-642 (582) | Flavan-3-ol | Catechin (D-Catechol) | C15H14O6 | 290.26 | 289 | 245; 205 | 201 | 175 | Eucalyptus [44]; Vaccinium macrocarpon [45]; C. edulis [24]; Vigna inguiculata [46]; Triticum [47] | |
10 | k-632341 (579); k-640 (590); k-642 (582) | Flavan-3-ol | (Epi)afzelechin-4′-O-glucoside | C21H24O10 | 436.41 | 435 | 299; 191; 161 | 151; 117 | Vigna unguiculata [46] | ||
11 | k-632341 (580) | Flavan-3-ol | (Epi)afzelechin-3-O-glucoside | C21H24O10 | 436.41 | 435 | 313; 299; 273 | Vigna unguiculata [46]; Cassia abbreviata [42] | |||
12 | k-6(583); k-6(584); k-632341 (579); k-642 (582) | Flavan-3-ol | Chinchonain Ia | C24H20O9 | 452.41 | 451 | 289 | 245 | 203 | Andean blueberry [36] | |
13 | k-632341 (579); k-632341 (580); k-640 (590) | Flavan-3-ol | (epi)Catechin O-hexoside | C21H24O11 | 452.41 | 451 | 289; 269; 245 | 245; 231 | 227 | Andean blueberry [36] | |
14 | k-6(583); k-6(584); k-632341 (579); k-632341 (580); k-640 (589); k-640 (590); k-642 (582) | Anthocyanidin | Delphinidin 3-O-glucoside | C21H21O12+ | 465.39 | 463 | 300 | 151; 271 | 169 | Rapeseed petals [48]; Vigna sinensis [28]; Berberis ilicifolia; Berberis empetrifolia; Ribes maellanicum; Ribes cucullatum; Myrteola nummalaria [49]; Vigna unguiculata [50] | |
15 | k-632341 (579); k-632341 (580); k-642 (582) | Anthocyanidin | Delphinidin-3,5-O-diglucoside | C27H30O17 | 626.52 | 626 | 303; 465 | 257; 165 | 229; 157 | Vitis labrusca [51]; Solanium nigrum [52]; Muscadine pomace [53] | |
16 | k-1783 (585) | Lignan | Dimethylmatairesinol(Arctigenin Methyl Ether) | C22H26O6 | 386.44 | 387 | 205 | Lignans [54] | |||
17 | k-640 (590) | Lignan | Medioresinol | C21H24O7 | 388.41 | 387 | 207; 225; 179 | Lignans [54]; Punica granatum [55]; Bituminaria [56] | |||
18 | k-632341 (579) | Lignan | Syringaresinol | C22H26O8 | 418.44 | 419 | 326; 248; 151 | 298; 254; 218; 174 | 251; 182; 145 | Triticum aestivum L. [47]; Lignans [54]; Punica granatum [55]; Magnolia thailandica [57] | |
19 | k-632341 (579) | Hydroxybenzoic acid (Phenolic acid) | Protocatechuic acid | C7H6O4 | 154.12 | 155 | 126 | Vigna unguiculata [6]; Eucalyptus [44]; Eucalyptus Globulus [58]; Vaccinium macrocarpon [45]; Lonicera japonica [59] | |||
20 | k-640 (590) | Polyphenolic acid | Coumaroyl quinic acid methyl ester | C17H20O8 | 352.34 | 351 | 285; 267; 243 | 242; 200 | F. glaucescens [24] | ||
21 | k-640 (590) | Derivative of hydroxycinnamic acid | Ferulic acid-O-hexoside | C16H20O9 | 356.32 | 355 | 191;209; 174 | 173 | A. cordifolia [24]; millet grains [34]; Rapeseed petals [48]; beer [60]; strawberry [61] | ||
22 | k-632341 (579); k-640 (589) | Hydroxybenzoic acid | Salvianolic acid D | C20H18O10 | 418.35 | 417 | 373 | 347 | 303 | Salvia miltiorrhiza [62]; Lonicera caerulea [63] | |
23 | k-640 (590) | Phenolic acid | Trans-salvianolic acid J | C27H22O12 | 538.46 | 539 | 493; 479; 357 | 420 | Mentha [38] | ||
Others | |||||||||||
24 | k-642 (582) | Non-proteinogenic L-α-amino acid | L-Pyroglutamic acid (Pidolic acid; 5-Oxo-L-Proline) | C5H7NO3 | 129.11 | 130 | 112 | Potato leaves [27] | |||
25 | k-632341 (580) | Aminobenzoic acid | 4-Aminobenzoic acid (p-aminobenzoic acid) | C7H7NO2 | 137.14 | 138 | 119 | Solanum tuberosum [23] | |||
26 | k-632341 (579) k-632341 (580) k-640 (589); k-640 (590) k-642 (582) | Carboxylic acid | Indole-3-carboxylic acid | C10H9NO2 | 175.18 | 176 | 159; 130 | Beer [60] | |||
27 | k-632341 (579); k-632341 (580); k-640 (590) | Monocarboxylic acid | Dihydroferulic acid | C10H12O4 | 196.2 | 195 | 159; 129 | A. cordifolia [24]; Coffee [64] | |||
28 | k-632341 (579); k-632341 (580) | Amino acid | L-Tryptophan (Tryptophan; (S)-Tryptophan) | C11H12N2O2 | 204.23 | 205 | 188 | 146; 144 | 118 | Camellia kucha [25]; Vigna inguiculata [6,46]; Rapeseed petals [48]; Perilla frutescens [65] | |
29 | k-1783 (585) | Omega-5 fatty acid | Myristoleic acid (Cis-9-Tetradecanoic acid) | C14H26O2 | 226.36 | 227 | 209 | 139 | 122 | F. glaucescens [24] | |
30 | k-642 (582) | Purine | Adenosine | C10H13N5O4 | 267.24 | 268 | 136 | Lonicera japonica [59] | |||
31 | k-632341 (579) | Omega-3 fatty acid | Linoleic acid (Linolic acid; Telfairic acid) | C18H32O2 | 280.45 | 279 | 261; 205 | 205 | Salviae [66]; Angelicae sinensis Radix [67]; Pinus sylvestris [68] | ||
32 | k-640 (590) | Hydroperoxy fatty acid | Hydroperoxy-octadecadienoic acid | C18H32O4 | 312.44 | 311 | 183; 309 | Potato [23] | |||
33 | k-6(583); k-640 (589) | Unsaturated monocarboxylic acid | 9,10-Dihydroxy-8-oxooctadec-12-enoic acid (oxo-DHODE; oxo-Dihydroxy-octadecenoic acid) | C18H32O5 | 328.44 | 327 | 291; 269; 251; 233; 211; 195; 183 | 279; 258; 247; 236; 217; 195 | 177; 161 | Bituminaria [56]; Broccoli [69]; Phyllostachys nigra [70] | |
34 | k-6(583); k-632341 (580); k-640 (590) | Unsaturated monocarboxylic acid | Trihydroxyoctadecadienoic acid | C18H32O5 | 328.44 | 327 | 211; 183; 127 | 183; 167; 149 | Potato leaves [27] | ||
35 | k-640 (589) | Omega-hydroxy-long-chain fatty acid | Hydroxy docosanoic acid | C22H44O3 | 356.58 | 355 | 309 | 305; 132 | A. cordifolia [24] | ||
36 | k-1783 (585); k-640 (590) | Steroidal alkaloid | Solanidine | C27H43NO | 397.64 | 398 | 185; 272 | 167 | Potato [71,72] | ||
37 | k-6(583); k-640 (590) | Long-chain fatty acid | Nonacosanoic acid | C29H58O2 | 438.77 | 437 | 393 | C. edulis [24] | |||
38 | k-1783 (585); k-640 (590) | Steroid | Vebonol | C30H44O3 | 452.67 | 453 | 435; 336; 209 | 336; 226 | Hylocereus polyrhizus [73]; Zostera marina [74] | ||
39 | k-6(583) | Carotenoid | all-trans-β-cryptoxanthin caprate | 706.2 | 707 | 625; 587; 571 | 527 | Sarsaparilla [75] | |||
40 | k-640 (590) | Steroidal alkaloid | β-chaconine | C39H63NO10 | 705.92 | 706 | 690 | ||||
41 | k-6(583) | Carotenoid | (all-E)-violaxanthin myristate | 810.1 | 811 | 794; 748; 723; 675; 622; 602 | Carotenoids [76] | ||||
42 | k-6(583); k-1783 (585); k-640 (589); k-640 (590); k-642 (582) | Steroidal alkaloid | α-chaconine | C45H73NO14 | 852.06 | 852 | 706 | 704; 690 | Solanum tuberosum [72,77,78] | ||
43 | k-640 (589); k-642 (582) | Steroidal alkaloid | α-solanine | C45H73NO15 | 868.96 | 868 | 722 | 560; 398 | 398; 185 | Solanum tuberosum [72,77,78] | |
44 | k-6(583); k-640 (589); k-640 (590) | Steroidal alkaloid | Solanidenol chacotriose | C45H73NO15 | 868.96 | 868 | 850; 823; 765; 747; 722; 706 | 704 | 677 | Potato [77] | |
45 | k-1783 (585) | Steroidal alkaloid | Solanidadiene solatriose | C45H73NO15 | 868.96 | 868 | 706 | 722; 398; 560 | Potato [77] | ||
46 | k-6(583); k-640 (590) | Steroidal alkaloid | Solanidenediol chacotriose | C45H73NO16 | 884.06 | 884 | 866; 822; 800; 78; 720; 704 | 849; 822; 720; 704; 691 | Potato [77] | ||
47 | k-6(583); k-640 (589); k-640 (590) | Steroidal alkaloid | Leptinine II | C45H73NO16 | 884.06 | 884 | 866; 738; 722 | 720; 704; 677; 654 | Solanum tuberosum [77] | ||
48 | k-6(583); k-632341 (579); k-632341 (580); k-640 (589); k-640 (590); k-642 (582) | Sapogenin | 3-Rhamnose-galactose-glucuronic acid-soyasapogenol B | C48H78O18 | 943.12 | 941 | 615; 733; 795; 923 | 571 | Bituminaria bituminosa [56]; Medicago truncatula [79] | ||
49 | k-6(583); k-640 (589) k-640 (590); k-642 (582) | Sapogenin | 6-deoxyhexose-hexoside-uronic acid–soyasapogenol A | C48H78O19 | 959.12 | 957 | 525; 733; 939 | 457 | Bituminaria [56]; Medicago truncatula [79] |
No | Class of Compounds | Identified Compounds | Formula | VIR Catalogue Number | ||||
---|---|---|---|---|---|---|---|---|
k-642 | k-632341 | k-640 | k-1783 | k-6 | ||||
Polyphenols | ||||||||
1 | Flavonol | Dihydrokaempferol (Aromadendrin; Katuranin) | C15H12O6 | |||||
2 | Flavonol | Quercetin | C15H10O7 | |||||
3 | Flavonol | Dihydroquercetin (Taxifolin; Taxifoliol) | C15H12O7 | |||||
4 | Flavonol | Myricetin | C15H10O8 | |||||
5 | Flavonol | Quercetin 3-O-glucoside (Isoquercitrin; Hirsutrin) | C21H20O12 | |||||
6 | Flavan-3-ol | Epiafzelechin ((epi)Afzelechin) | C15H14O5 | |||||
7 | Flavan-3-ol | Catechin (D-Catechol) | C15H14O6 | |||||
8 | Flavan-3-ol | (Epi)afzelechin-4′-O-glucoside | C21H24O10 | |||||
9 | Flavan-3-ol | (Epi)afzelechin-3-O-glucoside | C21H24O10 | |||||
10 | Flavan-3-ol | Chinchonain Ia | C24H20O9 | |||||
11 | Flavan-3-ol | (epi)Catechin O-hexoside | C21H24O11 | |||||
12 | Flavone | Acacetin (Linarigenin; Buddleoflavonol) | C16H12O5 | |||||
13 | Tetrahydroxyflavan | Luteoliflavan-eriodictyol-O-hexoside | C36H34O16 | |||||
14 | Anthocyanidin | Delphinidin 3-O-glucoside | C21H21O12+ | |||||
15 | Anthocyanidin | Delphinidin-3,5-O-diglucoside | C27H30O17 | |||||
16 | Lignan | Dimethylmatairesinol (Arctigenin Methyl Ether) | C22H26O6 | |||||
17 | Lignan | Medioresinol | C21H24O7 | |||||
18 | Lignan | Syringaresinol | C22H26O8 | |||||
19 | Hydroxybenzoic acid (Phenolic acid) | Protocatechuic acid | C7H6O4 | |||||
20 | Hydroxybenzoic acid (Phenolic acid) | Salvianolic acid D | C20H18O10 | |||||
21 | Polyphenolic acid | Coumaroyl quinic acid methyl ester | C17H20O8 | |||||
22 | Derivative of hydroxycinnamic acid | Ferulic acid-O-hexoside | C16H20O9 | |||||
23 | Phenolic acid | Trans-salvianolic acid J | C27H22O12 | |||||
Others | ||||||||
24 | Non-proteinogenic L-α-amino acid | L-Pyroglutamic acid (Pidolic acid; 5-Oxo-L-Proline) | C5H7NO3 | |||||
25 | Aminobenzoic acid | 4-Aminobenzoic acid (p-aminobenzoic acid) | C7H7NO2 | |||||
26 | Monocarboxylic acid | Dihydroferulic acid | C10H12O4 | |||||
27 | Carboxylic acid | Indole-3-carboxylic acid | C10H9NO2 | |||||
28 | Amino acid | L-Tryptophan (Tryptophan; (S)-Tryptophan) | C11H12N2O2 | |||||
29 | Omega-5 fatty acid | Myristoleic acid (Cis-9-Tetradecanoic acid) | C14H26O2 | |||||
30 | Purine | Adenosine | C10H13N5O4 | |||||
31 | Omega-3 fatty acid | Linoleic acid (Linolic acid; Telfairic acid) | C18H32O2 | |||||
32 | Hydroperoxy fatty acid | Hydroperoxy-octadecadienoic acid | C18H32O4 | |||||
33 | Unsaturated monocarboxylic acid | 9,10-Dihydroxy-8-oxooctadec-12-enoic acid (oxo-DHODE; oxo-Dihydroxy-octadecenoic acid) | C18H32O5 | |||||
34 | Unsaturated monocarboxylic acid | Trihydroxyoctadecadienoic acid | C18H32O5 | |||||
35 | Omega-hydroxy-long-chain fatty acid | Hydroxy docosanoic acid | C22H44O3 | |||||
36 | Long-chain fatty acid | Nonacosanoic acid | C29H58O2 | |||||
37 | Steroid | Vebonol | C30H44O3 | |||||
38 | Carotenoid | all-trans-β-cryptoxanthin caprate | ||||||
39 | Carotenoid | (all-E)-violaxanthin myristate | ||||||
40 | Steroidal alkaloid | Solanidine | C27H43NO | |||||
41 | Steroidal alkaloid | β-chaconine | C39H63NO10 | |||||
42 | Steroidal alkaloid | α-chaconine | C45H73NO14 | |||||
43 | Steroidal alkaloid | α-solanine | C45H73NO15 | |||||
44 | Steroidal alkaloid | Solanidenol chacotriose | C45H73NO15 | |||||
45 | Steroidal alkaloid | Solanidadiene solatriose | C45H73NO15 | |||||
46 | Steroidal alkaloid | Solanidenediol chacotriose | C45H73NO16 | |||||
47 | Steroidal alkaloid | Leptinine II | C45H73NO16 | |||||
48 | Sapogenin | 3-Rhamnose-galactose-glucuronic acid-soyasapogenol B | C48H78O18 | |||||
49 | Sapogenin | 6-deoxyhexose-hexoside-uronic acid–soyasapogenol A | C48H78O19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razgonova, M.P.; Burlyaeva, M.O.; Zinchenko, Y.N.; Krylova, E.A.; Chunikhina, O.A.; Ivanova, N.M.; Zakharenko, A.M.; Golokhvast, K.S. Identification and Spatial Distribution of Bioactive Compounds in Seeds Vigna unguiculata (L.) Walp. by Laser Microscopy and Tandem Mass Spectrometry. Plants 2022, 11, 2147. https://doi.org/10.3390/plants11162147
Razgonova MP, Burlyaeva MO, Zinchenko YN, Krylova EA, Chunikhina OA, Ivanova NM, Zakharenko AM, Golokhvast KS. Identification and Spatial Distribution of Bioactive Compounds in Seeds Vigna unguiculata (L.) Walp. by Laser Microscopy and Tandem Mass Spectrometry. Plants. 2022; 11(16):2147. https://doi.org/10.3390/plants11162147
Chicago/Turabian StyleRazgonova, Mayya P., Marina O. Burlyaeva, Yulia N. Zinchenko, Ekaterina A. Krylova, Olga A. Chunikhina, Natalia M. Ivanova, Alexander M. Zakharenko, and Kirill S. Golokhvast. 2022. "Identification and Spatial Distribution of Bioactive Compounds in Seeds Vigna unguiculata (L.) Walp. by Laser Microscopy and Tandem Mass Spectrometry" Plants 11, no. 16: 2147. https://doi.org/10.3390/plants11162147
APA StyleRazgonova, M. P., Burlyaeva, M. O., Zinchenko, Y. N., Krylova, E. A., Chunikhina, O. A., Ivanova, N. M., Zakharenko, A. M., & Golokhvast, K. S. (2022). Identification and Spatial Distribution of Bioactive Compounds in Seeds Vigna unguiculata (L.) Walp. by Laser Microscopy and Tandem Mass Spectrometry. Plants, 11(16), 2147. https://doi.org/10.3390/plants11162147