Responses of Soil Carbon Pools and Carbon Management Index to Nitrogen Substitution Treatments in a Sweet Maize Farmland in South China
Abstract
:1. Introduction
2. Results
2.1. Soil Organic Carbon Accumulation
2.2. Soil Organic Carbon Components and Carbon Sequestration Index in the Low-SR Experiment
2.2.1. Soil Organic Carbon Components
2.2.2. Soil Carbon Sequestration Index
2.3. Soil Organic Carbon Components and Carbon Sequestration Index in the High-SR Experiment
2.3.1. Soil Organic Carbon Components
2.3.2. Soil Carbon Sequestration Index
2.4. Effects of Nitrogen Replacement on Soil Carbon Pool Management Index
2.5. Effect of Substitution Ratios
3. Discussion
3.1. Effects on SOC Accumulation Derived from Different NSS Practices
3.2. Effects on SOC Stability Derived from Different NSS Practices
3.3. Effect of Substitution Ratio
4. Materials and Methods
4.1. Study Site
4.2. Experiment Design
4.3. Field Management
4.4. Data Measurement
4.4.1. Soil Sampling
4.4.2. Determination of Soil Bulk Density and Organic Carbon Content
4.5. Indicators
4.5.1. Soil Organic Carbon Storage
4.5.2. Soil Active Carbon Pool, Soil Inert Carbon Pool, and Soil Carbon Sequestration Index
4.5.3. Soil Carbon Pool Management Index
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Available online: http://faostat.fao.org (accessed on 27 April 2022).
- IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, Y.; He, R.; Guan, Y.; Gu, Y. Crop production pushes up greenhouse gases emissions in China: Evidence from carbon footprint analysis based on National Statistics Data. Sustainability 2019, 11, 4931. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/RFN (accessed on 11 May 2022).
- Chen, G.Q.; Zhang, B. Greenhouse gas emissions in China 2007: Inventory and input–output analysis. Energy Policy 2010, 38, 6180–6193. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Huang, J.; Chen, Y.; Pan, J.; Liu, W.; Yang, G.; Xiao, X.; Zheng, H.; Tang, W.; Tang, H.; Zhou, L. Carbon footprint of different agricultural systems in China estimated by different evaluation metrics. J. Clean. Prod. 2019, 225, 939–948. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, N.; Xu, M.; Zhang, W.; Li, J. Soil organic carbon in agricultural soils in China under global climate change. Sci. Agric. Sin. 2014, 47, 4648–4657. [Google Scholar] [CrossRef]
- Huang, R.; Tian, D.; Liu, J.; Lv, S.; He, X.; Gao, M. Responses of soil carbon pool and soil aggregates associated organic carbon to straw and straw-derived biochar addition in a dryland cropping mesocosm system. Agric. Ecosyst. Environ. 2018, 265, 576–586. [Google Scholar] [CrossRef]
- Chaker, R.; Gargouri, K.; Ben Mbarek, H.; Maktouf, S.; Palese, A.M.; Celani, G.; Bouzid, J. Carbon and nitrogen balances and CO2 emission after exogenous organic matter application in arid soil. Carbon Manag. 2019, 10, 23–36. [Google Scholar] [CrossRef]
- Kowalska, A.; Grobelak, A.; Almås, Å.R.; Singh, B.R. Effect of biowastes on soil remediation, plant productivity and soil organic carbon sequestration: A review. Energies 2020, 13, 5813. [Google Scholar] [CrossRef]
- Pan, G.; Xu, X.; Smith, P.; Pan, W.; Lal, R. An increase in topsoil SOC stock of China’s croplands between 1985 and 2006 revealed by soil monitoring. Agric. Ecosyst. Environ. 2010, 136, 133–138. [Google Scholar] [CrossRef]
- Sun, H.; Wang, E.; Li, X.; Cui, X.; Guo, J.; Dong, R. Potential biomethane production from crop residues in China: Contributions to carbon neutrality. Renew. Sustain. Energy Rev. 2021, 148, 111360. [Google Scholar] [CrossRef]
- Du, H.; Cui, J.; Xu, Y.; Zhao, Y.; Chen, L.; Li, Z.; Sui, P.; Gao, W.; Chen, Y. Nitrogen footprint of a recycling system integrated with cropland and livestock in the North China Plain. Plants 2022, 11, 842. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Li, Y.; Tao, X.; Peng, X.; Li, N.; Zhu, Z. China greenhouse gas emissions from agricultural activities and its mitigation strategy. Trans. CSAE 2008, 24(10), 269–273. [Google Scholar]
- Di, J.; Liu, X.; Du, Z.; Xiao, X.; Yang, G.; Ren, T. Influences of long-term organic and chemical fertilization on soil aggregation and associated organic carbon fractions in a red paddy soil. Chin. J. Eco-Agric. 2014, 22, 1129–1138. [Google Scholar] [CrossRef]
- Siedt, M.; Schäffer, A.; Smith, K.E.C.; Nabel, M.; Roß-Nickoll, M.; van Dongen, J.T. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci. Total Environ. 2021, 751, 141607. [Google Scholar] [CrossRef] [PubMed]
- Brar, B.S.; Singh, J.; Singh, G.; Kaur, G. Effects of Long term application of inorganic and organic fertilizers on soil organic carbon and physical properties in maize-wheat rotation. Agronomy 2015, 5, 220–238. [Google Scholar] [CrossRef]
- Cai, A.; Xu, H.; Duan, Y.; Zhang, X.; Ashraf, M.N.; Zhang, W.; Xu, M. Changes in mineral-associated carbon and nitrogen by long-term fertilization and sequestration potential with various cropping across China dry croplands. Soil Till. Res. 2021, 205, 104725. [Google Scholar] [CrossRef]
- Xu, H.; Cai, A.; Zhou, H.; Colinet, G.; Zhang, W.; Xu, M. Long-term straw incorporation significantly reduced subsoil organic carbon stock in cinnamon soil. J. Plant Nutr. Fertil. 2021, 27, 768–776. [Google Scholar] [CrossRef]
- Meng, T.; Liu, J. Effects of bio-organic fertilizers on soil organic carbon components and biomass of shamrock. Bangladesh J. Bot. 2021, 50, 911–916. [Google Scholar] [CrossRef]
- Sodhi, G.P.S.; Beri, V.; Benbi, D.K. Using carbon management index to assess the impact of compost application on changes in soil carbon after ten years of rice-wheat cropping. Commun. Soil Sci. Plan 2009, 40, 3491–3502. [Google Scholar] [CrossRef]
- Das, B.; Chakraborty, D.; Singh, V.K.; Aggarwal, P.; Singh, R.; Dwivedi, B.S. Effect of organic inputs on strength and stability of soil aggregates under rice-wheat rotation. Int. Agrophysics 2014, 28, 163–168. [Google Scholar] [CrossRef]
- Moharana, P.C.; Biswas, D.R.; Ghosh, A.; Sarkar, A.; Bhattacharyya, R.; Meena, M.D. Effects of crop residues composts on the fractions and forms of organic carbon and nitrogen in subtropical Indian conditions. Soil Res. 2020, 58, 95. [Google Scholar] [CrossRef]
- Yang, X.; Wang, D.; Lan, Y.; Meng, J.; Jiang, L.; Sun, Q.; Cao, D.; Sun, Y.; Chen, W. Labile organic carbon fractions and carbon pool management index in a 3-year field study with biochar amendment. J. Soils Sediments 2018, 18, 1569–1578. [Google Scholar] [CrossRef]
- Revilla, P.; Anibas, C.M.; Tracy, W.F. Sweet corn research around the World 2015–2020. Agronomy 2021, 11, 534. [Google Scholar] [CrossRef]
- Guo, Q.; Liang, S.; Kan, Y.; Huang, B.; Lei, Z.; Li, Y.; Du, J. Yield Effect of sweet corn and characteristics of farmland nitrogen and phosphorus runoff losses under reduced fertilizer rate. Chin. Agric. Sci. Bull. 2021, 37, 71–78. [Google Scholar]
- Luo, J.; Wan, Z.; Tan, J.; Hu, J.; Yin, Y. Development situation and countermeasures of Guangdong sweet corn industry in 2013. Guangdong Agric. Sci. 2014, 41, 42–45. [Google Scholar] [CrossRef]
- Cheng, X.; Liang, X.; Hu, M. Effect of different nitrogen application levels on yield traits of fall super-sweet maize. Chin. Agric. Sci. Bull. 2011, 27, 291–294. [Google Scholar]
- Liu, H.; Hua, L.; Zhang, X. Effect of different N application methods on yield, N2O emission of maize. J. Agric. Resour. Environ. 2013, 30, 76–80. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, M.; Wang, X.; Huang, Q.; Nie, J.; Li, Z.; Li, S.; Hwang, S.W.; Lee, K.B. Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China. J. Soils Sediments 2012, 12, 457–470. [Google Scholar] [CrossRef]
- Tang, Y.; Luo, L.; Carswell, A.; Misselbrook, T.; Shen, J.; Han, J. Changes in soil organic carbon status and microbial community structure following biogas slurry application in a wheat-rice rotation. Sci. Total Environ. 2021, 757, 143786. [Google Scholar] [CrossRef]
- Tsachidou, B.; Hissler, C.; Noo, A.; Lemaigre, S.; Daigneux, B.; Gennen, J.; Pacaud, S.; George, I.F.; Delfosse, P. Biogas residues in the battle for terrestrial carbon sequestration: A comparative decomposition study in the grassland soils of the Greater Region. J. Environ. Manag. 2021, 286, 112272. [Google Scholar] [CrossRef]
- Cenini, V.L.; Fornara, D.A.; McMullan, G.; Ternan, N.; Lajtha, K.; Crawley, M.J. Chronic nitrogen fertilization and carbon sequestration in grassland soils: Evidence of a microbial enzyme link. Biogeochemistry 2015, 126, 301–313. [Google Scholar] [CrossRef]
- Prescott, C.E. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 2010, 101, 133–149. [Google Scholar] [CrossRef]
- Zhang, W.J.; Wang, X.J.; Xu, M.G.; Huang, S.M.; Liu, H.; Peng, C. Soil organic carbon dynamics under long-term fertilizations in arable land of northern China. Biogeosciences 2010, 7, 409–425. [Google Scholar] [CrossRef]
- Ding, X.; Yuan, Y.; Liang, Y.; Li, L.; Han, X. Impact of long-term application of manure, crop residue, and mineral fertilizer on organic carbon pools and crop yields in a Mollisol. J. Soils Sediments 2014, 14, 854–859. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, S.; Zhao, Y.; Jing, M.; Xu, Y.; Chen, J. A field experiment on enhancement of crop yield by rice straw and corn stalk-derived biochar in Northern China. Sustainability 2015, 7, 13713–13725. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Liu, X. Long-term fertilization effects on crop yield and desalinized soil properties. Agron. J. 2020, 112, 4321–4331. [Google Scholar] [CrossRef]
- Fan, X.; Chen, Z.; Niu, Z.; Zeng, R.; Ou, J.; Liu, X.; Wang, X. Replacing synthetic nitrogen fertilizer with different types of organic materials improves grain yield in China: A meta-analysis. Agronomy 2021, 11, 2429. [Google Scholar] [CrossRef]
- Wei, Z.; Ying, H.; Guo, X.; Zhuang, M.; Cui, Z.; Zhang, F. Substitution of mineral fertilizer with organic fertilizer in maize systems: A meta-analysis of reduced nitrogen and carbon emissions. Agronomy 2020, 10, 1149. [Google Scholar] [CrossRef]
- Liang, Y.; Al-Kaisi, M.; Yuan, J.; Liu, J.; Zhang, H.; Wang, L.; Cai, H.; Ren, J. Effect of chemical fertilizer and straw-derived organic amendments on continuous maize yield, soil carbon sequestration and soil quality in a Chinese Mollisol. Agric. Ecosyst. Environ. 2021, 314, 107403. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Ren, X.; Li, D.; Wu, D.; Chen, X. Effects of straw and biochar on soil carbon pool management index and organic carbon mineralization. J. Soil Water Conserv. 2019, 33, 153–159. [Google Scholar] [CrossRef]
- Yang, X.; Meng, J.; Lan, Y.; Chen, W.; Yang, T.; Yuan, J.; Liu, S.; Han, J. Effects of maize stover and its biochar on soil CO2 emissions and labile organic carbon fractions in Northeast China. Agric. Ecosyst. Environ. 2017, 240, 24–31. [Google Scholar] [CrossRef]
- Latifmanesh, H.; Deng, A.; Li, L.; Chen, Z.; Zheng, Y.; Bao, X.; Zheng, C.; Zhang, W. How incorporation depth of corn straw affects straw decomposition rate and C&N release in the wheat-corn cropping system. Agric. Ecosyst. Environ. 2020, 300, 107000. [Google Scholar] [CrossRef]
- Li, X.; Wang, T.; Chang, S.X.; Jiang, X.; Song, Y. Biochar increases soil microbial biomass but has variable effects on microbial diversity: A meta-analysis. Sci. Total Environ. 2020, 749, 141593. [Google Scholar] [CrossRef]
- Luan, H.; Gao, W.; Huang, S.; Tang, J.; Li, M.; Zhang, H.; Chen, X.; Masiliūnas, D. Substitution of manure for chemical fertilizer affects soil microbial community diversity, structure and function in greenhouse vegetable production systems. PLoS ONE 2020, 15, e214041. [Google Scholar] [CrossRef]
- Shi, D.; Wang, X.; Duan, J.; Liu, A.; Luo, A.; Li, R.; Hou, Z. Effects of chemical N fertilizer reduction combined with biochar application on soil organic carbon active components and mineralization in paddy fields of yellow soil. Chin. J. Appl. Ecol. 2020, 31, 4117–4124. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, F.; Li, L.; Liu, T. Soil C and aggregate stability were promoted by bio-fertilizer on the North China Plain. J. Soil Sci. Plant Nutr. 2021, 21, 2355–2363. [Google Scholar] [CrossRef]
- Singh, B. Are nitrogen fertilizers deleterious to soil health? Agronomy 2018, 8, 48. [Google Scholar] [CrossRef]
- Liang, G.; Cai, A.; Wu, H.; Wu, X.; Houssou, A.A.; Ren, C.; Wang, Z.; Gao, L.; Wang, B.; Li, S.; et al. Soil biochemical parameters in the rhizosphere contribute more to changes in soil respiration and its components than those in the bulk soil under nitrogen application in croplands. Plant Soil 2019, 435, 111–125. [Google Scholar] [CrossRef]
- Nyamadzawo, G.; Chikowo, R.; Nyamugafata, P.; Nyamangara, J.; Giller, K.E. Soil organic carbon dynamics of improved fallow-maize rotation systems under conventional and no-tillage in Central Zimbabwe. Nutr. Cycl. Agroecosystems 2008, 81, 85–93. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, Y.; Xu, M.; Li, W.; Wu, H.; Wen, S. Effect of long-term fallow on soil organic carbon fractions in black soil. Soil Fertil. China 2021, 4, 11–18. [Google Scholar] [CrossRef]
- Datta, A.; Basak, N.; Chaudhari, S.K.; Sharma, D.K. Soil properties and organic carbon distribution under different land uses in reclaimed sodic soils of North-West India. Geoderma Reg. 2015, 4, 134–146. [Google Scholar] [CrossRef]
- Zhang, F.; Yue, S.; Li, S. Chemical methods to determine soil organic carbon fractions and carbon indexes: A review. J. Agro-Environ. Sci. 2021, 40, 252–259. [Google Scholar] [CrossRef]
- Majumder, B.; Mandal, B.; Bandyopadhyay, P.K.; Chaudhury, J. Soil organic carbon pools and productivity relationships for a 34 year old rice-wheat-jute agroecosystem under different fertilizer treatments. Plant Soil 2007, 297, 53–67. [Google Scholar] [CrossRef]
Experiment | Treatments | Bulk Density (Mg·m−3) | SOCc (g·kg−1) | SOCs (Mg·ha−1) |
---|---|---|---|---|
Low-SR experiment | Conventional N (CK) | 1.36 ± 0.002 a | 19.23 ± 1.77 b | 52.36 ± 4.83 b |
50% N + Maize straw (TMS) | 1.31 ± 0.043 a | 21.31 ± 0.65 b | 55.75 ± 1.69 b | |
50% N + Biochar (TCB) | 1.25 ± 0.058 a | 39.06 ± 4.26 a | 97.82 ± 10.67 a | |
50% N + Biogas residue (TBR) | 1.36 ± 0.024 a | 21.28 ± 0.63 b | 58.07 ± 1.73 b | |
50% N + Cow dung (TCD) | 1.35 ± 0.029 a | 22.69 ± 3.22 b | 61.26 ± 8.70 b | |
High-SR experiment | Conventional N (CK) | 1.36 ± 0.002 a | 19.23 ± 1.77 c | 52.36 ± 4.83 c |
20% N + Maize straw (FMS) | 1.27 ± 0.056 ab | 35.01 ± 4.22 b | 89.19 ± 10.76 b | |
20% N + Biochar (FCB) | 1.07 ± 0.065 c | 69.03 ± 3.56 a | 148.19 ± 7.63 a | |
20% N + Biogas residue (FBR) | 1.22 ± 0.080 b | 34.46 ± 2.03 b | 83.88 ± 4.94 b | |
20% N + Cow dung (FCD) | 1.30 ± 0.024 ab | 18.95 ± 0.35 c | 49.12 ± 0.91 c |
Treatment | AC (Mg·ha−1) | PC (Mg·ha−1) | RI |
---|---|---|---|
CK | 25.08 ± 3.06 b | 27.28 ± 3.71 b | 1.20 ± 0.58 b |
TBR | 30.63 ± 3.12 ab | 25.12 ± 2.66 b | 0.91 ± 0.44 b |
TCB | 31.24 ± 1.70 ab | 66.58 ± 10.17 a | 2.14 ± 0.86 a |
TCD | 35.05 ± 3.13 a | 23.02 ± 2.47 b | 0.74 ± 0.46 b |
TMS | 35.10 ± 0.77 a | 26.16 ± 8.19 b | 0.73 ± 0.53 b |
Treatment | AC (Mg·ha−1) | PC (Mg·ha−1) | RI |
---|---|---|---|
CK | 25.08 ± 3.06 c | 27.28 ± 3.71 bc | 1.20 ± 0.58 bc |
FBR | 35.89 ± 2.16 bc | 53.31 ± 12.20 b | 1.60 ± 1.14 b |
FCB | 37.46 ± 3.07 b | 110.72 ± 7.82 a | 3.07 ± 0.87 a |
FCD | 52.89 ± 4.78 a | 30.99 ± 3.25 bc | 0.62 ± 0.27 bc |
FMS | 33.71 ± 0.60 bc | 15.41 ± 1.38 c | 0.46 ± 0.12 c |
Experiment | Treatment | CPI | LI | CMI |
---|---|---|---|---|
Low-SR experiment | CK | 1.00 ± 0.00 c | 1.36 ± 0.19 ab | 135.76 ± 19.25 ab |
TBR | 1.06 ± 0.03 c | 1.55 ± 0.13 a | 164.43 ± 13.20 a | |
TCB | 1.87 ± 0.20 a | 0.96 ± 0.08 bc | 171.14 ± 9.27 a | |
TCD | 1.11 ± 0.03 c | 1.49 ± 0.08 ab | 165.92 ± 13.13 a | |
TMS | 1.17 ± 0.17 bc | 1.65 ± 0.16 a | 180.09 ± 6.76 a | |
High-SR experiment | CK | 1.00 ± 0.00 d | 1.36 ± 0.19 bc | 135.76 ± 19.25 c |
FBR | 1.70 ± 0.21 b | 1.29 ± 0.17 bc | 202.90 ± 11.24 b | |
FCB | 2.83 ± 0.15 a | 0.73 ± 0.05 a | 206.46 ± 14.81 b | |
FCD | 1.60 ± 0.09 bc | 1.79 ± 0.10 c | 286.45 ± 22.52 a | |
FMS | 0.94 ± 0.02 d | 1.86 ± 0.12 c | 173.34 ± 8.97 bc |
Experiment | Treatment | Mineral Fertilizer Inputs (kg·ha−1) | Organic Materials (kg·ha−1) * | N Input (kg·ha−1) | ||
---|---|---|---|---|---|---|
N | P2O5 | K2O | ||||
High-SR experiment | CK | 300 | 150 | 300 | 0 | 300 |
TBR | 150 | 150 | 300 | 27,227 | 300 | |
TCB | 150 | 150 | 300 | 30,086 | 300 | |
TCD | 150 | 150 | 300 | 46,617 | 300 | |
TMS | 150 | 150 | 300 | 45,966 | 300 | |
Low-SR experiment | CK | 300 | 150 | 300 | 0 | 300 |
FBR | 240 | 150 | 300 | 10,891 | 300 | |
FCB | 240 | 150 | 300 | 12,035 | 300 | |
FCD | 240 | 150 | 300 | 18,647 | 300 | |
FMS | 240 | 150 | 300 | 18,386 | 300 |
Organic Material | 2020 Summer | 2020 Autumn | 2021 Spring | 2021 Summer |
---|---|---|---|---|
Cow dung | 0.81% | 0.60% | 1.50% | 1.88% |
Biogas residue | 1.07% | 1.51% | 1.22% | 2.57% |
Maize straw | 1.16% | 1.02% | 1.38% | 1.62% |
Straw-derived biochar | 0.51% | 0.56% | 0.86% | 0.83% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Liu, F.; Cai, G.; Peng, X.; Wang, X. Responses of Soil Carbon Pools and Carbon Management Index to Nitrogen Substitution Treatments in a Sweet Maize Farmland in South China. Plants 2022, 11, 2194. https://doi.org/10.3390/plants11172194
Chen Z, Liu F, Cai G, Peng X, Wang X. Responses of Soil Carbon Pools and Carbon Management Index to Nitrogen Substitution Treatments in a Sweet Maize Farmland in South China. Plants. 2022; 11(17):2194. https://doi.org/10.3390/plants11172194
Chicago/Turabian StyleChen, Zekai, Fangdan Liu, Guangyuan Cai, Xiaoshan Peng, and Xiaolong Wang. 2022. "Responses of Soil Carbon Pools and Carbon Management Index to Nitrogen Substitution Treatments in a Sweet Maize Farmland in South China" Plants 11, no. 17: 2194. https://doi.org/10.3390/plants11172194
APA StyleChen, Z., Liu, F., Cai, G., Peng, X., & Wang, X. (2022). Responses of Soil Carbon Pools and Carbon Management Index to Nitrogen Substitution Treatments in a Sweet Maize Farmland in South China. Plants, 11(17), 2194. https://doi.org/10.3390/plants11172194