Network Pharmacology-Based Investigation on Therapeutic Mechanisms of the Angelica dahurica Radix and Ligusticum chuanxiong Rhizoma Herb Pair for Anti-Migraine Effect
Abstract
:1. Introduction
2. Results
2.1. Identification of the Main Active Compounds and Corresponding Targets
2.2. Identification of Target Genes Related to Migraines and the Overlapping Targets
2.3. Construction of a Herb–Compound–Target–Disease Network
2.4. Establishing PPI Network of Overlapping Targets and Selection of Hub Targets
2.5. GO Enrichment and KEGG Pathway Analysis
2.6. Construction of Gene Target—Pathway Network
2.7. Molecular Docking of the Bioactive Compounds of ALHP and Core Protein Targets
3. Discussion
4. Materials and Methods
4.1. Collection of ALHP Active Compounds and Their Corresponding Targets
4.2. Collection of Migraine-Related Targets
4.3. Construction of Herb–Compound–Target–Disease Network and PPI Network
4.4. Functional Enrichment Analysis of GO and KEGG Pathway
4.5. Molecular Docking of the Main Bioactive Compounds of ALHP and Core Target Proteins
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashina, M.; Hansen, J.M.; Do, T.P.; Melo-Carrillo, A.; Burstein, R.; Moskowitz, M.A. Migraine and the Trigeminovascular System—40 Years and Counting. Lancet Neurol. 2019, 18, 795–804. [Google Scholar] [CrossRef]
- Feigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Culpepper, W.J.; Dorsey, E.R.; Elbaz, A.; Ellenbogen, R.G.; et al. Global, Regional, and National Burden of Neurological Disorders, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 459–480. [Google Scholar] [CrossRef]
- World Health Organization. General Guidelines for Methodologies on Research and Evaluation of Traditional Medicine; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Feigin, V.L.; Krishnamurthi, R.V.; Theadom, A.M.; Abajobir, A.A.; Mishra, S.R.; Ahmed, M.B.; Abate, K.H.; Mengistie, M.A.; Wakayo, T.; Abd-Allah, F.; et al. Global, Regional, and National Burden of Neurological Disorders during 1990–2015: A Systematic Analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 2017, 16, 877–897. [Google Scholar] [CrossRef]
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef]
- Olesen, J. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd Edition. Cephalalgia 2018, 38, 1–211. [Google Scholar] [CrossRef]
- Dodick, D.W. Migraine. Lancet 2018, 391, 1315–1330. [Google Scholar] [CrossRef]
- Dodick, D.W.; Lipton, R.B.; Ailani, J.; Lu, K.; Finnegan, M.; Trugman, J.M.; Szegedi, A. Ubrogepant for the Treatment of Migraine. N. Engl. J. Med. 2019, 381, 2230–2241. [Google Scholar] [CrossRef] [PubMed]
- Marmura, M.J.; Silberstein, S.D.; Schwedt, T.J. The Acute Treatment of Migraine in Adults: The American Headache Society Evidence Assessment of Migraine Pharmacotherapies. Headache 2015, 55, 3–20. [Google Scholar] [CrossRef]
- Silberstein, S.D.; Edlund, W. Practice Parameter: Evidence-Based Guidelines for Migraine Headache (an Evidence-Based Review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2000, 55, 754–762. [Google Scholar] [CrossRef]
- Peters, G.L. Migraine Overview and Summary of Current and Emerging Treatment Options. Am. J. Manag. Care 2019, 25, S23–S34. [Google Scholar]
- Singh, A.; Gupta, D.; Sahoo, A.K. Acute Migraine: Can the New Drugs Clinically Outpace? SN Compr. Clin. Med. 2020, 2, 1132–1138. [Google Scholar] [CrossRef]
- May, A.; Schulte, L.H. Chronic Migraine: Risk Factors, Mechanisms and Treatment. Nat. Rev. Neurol. 2016, 12, 455–464. [Google Scholar] [CrossRef]
- Huang, Y.; Ni, N.; Hong, Y.; Lin, X.; Feng, Y.; Shen, L. Progress in Traditional Chinese Medicine for the Treatment of Migraine. Am. J. Chin. Med. 2020, 48, 1731–1748. [Google Scholar] [CrossRef]
- Yu, S.; Hu, Y.; Wan, Q.; Zhou, J.; Liu, X.; Qiao, X.; Yang, X.; Feng, J.; Chen, K.; Pan, X.; et al. A Multicenter, Double-Blind, Randomized, Placebo-Controlled Trial to Evaluate the Efficacy and Safety of Duliang Soft Capsule in Patients with Chronic Daily Headache. Evid. Based Complement. Altern. Med. 2015, 2015, 694061. [Google Scholar] [CrossRef]
- Wang, N.H.; Huang, L.Q.; Yang, B.; Baba, K.; Taniguchi, M.; Yuan, C.Q.; Qin, H.Z.; Shu, P. Studies on Original Plant of Traditional Chinese Drug “Bai Zhi” (Radix Angelicae Dahuricae) and Its Closely Related Wild Plants. IV. Discussion on Original Plant and Cultivation History of Traditional Chinese Drug “Bai Zhi” and Evolution of Its Closely Re. China J. Chin. Mater. Med. 2001, 26, 733–736. [Google Scholar]
- Sarker, S.; Nahar, L. Natural Medicine: The Genus Angelica. Curr. Med. Chem. 2004, 11, 1479–1500. [Google Scholar] [CrossRef]
- Li, X.; Zeng, X.; Sun, J.; Li, H.; Wu, P.; Fung, K.P.; Liu, F. Imperatorin Induces Mcl-1 Degradation to Cooperatively Trigger Bax Translocation and Bak Activation to Suppress Drug-Resistant Human Hepatoma. Cancer Lett. 2014, 348, 146–155. [Google Scholar] [CrossRef]
- Le, J.; Lin, Z.; Song, L.; Wang, H.; Hong, Z. LC-MS/MS Combined with in Vivo Microdialysis Sampling from Conscious Rat Striatum for Simultaneous Determination of Active Constituents of Yuanhu- Baizhi Herb Pair and Endogenous Neurotransmitters: Application to Pharmacokinetic and Pharmacodynamic Study. J. Pharm. Biomed. Anal. 2019, 176, 112807. [Google Scholar] [CrossRef]
- Kang, O.H.; Chae, H.S.; Oh, Y.C.; Choi, J.G.; Lee, Y.S.; Jang, H.J.; Kim, J.H.; Kim, Y.C.; Sohn, D.H.; Park, H.; et al. Anti-Nociceptive and Anti-Inflammatory Effects of Angelicae Dahuricae Radix through Inhibition of the Expression of Inducible Nitric Oxide Synthase and NO Production. Am. J. Chin. Med. 2008, 36, 913–928. [Google Scholar] [CrossRef]
- Shan Feng, J.H. Herbal Textual Research on Origin and Development of Chuanxiong. China J. Chin. Mater. Med. 2011, 36, 2306–2310. [Google Scholar]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China 2020—Part I; Chinese Medical Science and Technology Press: Beijing, China, 2020. [Google Scholar]
- Hopkins, A.L. Network Pharmacology. Nat. Biotechnol. 2007, 25, 1110–1111. [Google Scholar] [CrossRef]
- Li, S.; Zhang, B. Traditional Chinese Medicine Network Pharmacology: Theory, Methodology and Application. Chin. J. Nat. Med. 2013, 11, 110–120. [Google Scholar] [CrossRef]
- Zhang, G.-B.; Li, Q.-Y.; Chen, Q.-L.; Su, S.-B. Network Pharmacology: A New Approach for Chinese Herbal Medicine Research. Evid.-Based Complement. Altern. Med. 2013, 2013, 621423. [Google Scholar] [CrossRef]
- Muhammad, J.; Khan, A.; Ali, A.; Fang, L.; Yanjing, W.; Xu, Q.; Wei, D.-Q. Network Pharmacology: Exploring the Resources and Methodologies. Curr. Top. Med. Chem. 2018, 18, 949–964. [Google Scholar] [CrossRef]
- Wu, X.-M.; Wu, C.-F. Network Pharmacology: A New Approach to Unveiling Traditional Chinese Medicine. Chin. J. Nat. Med. 2015, 13, 1–2. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, X.; Bai, H.; Ning, K. Network Pharmacology Databases for Traditional Chinese Medicine: Review and Assessment. Front. Pharmacol. 2019, 10, 123. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Zhang, L.; Chen, X.; Pan, Y.; Chen, S.S.; Zhang, S.; Wang, Z.; Xiao, W.; Yang, L.; et al. Systems Pharmacology to Decipher the Combinational Anti-Migraine Effects of Tianshu Formula. J. Ethnopharmacol. 2015, 174, 45–56. [Google Scholar] [CrossRef]
- Yabe, T.; Hirahara, H.; Harada, N.; Ito, N.; Nagai, T.; Sanagi, T.; Yamada, H. Ferulic Acid Induces Neural Progenitor Cell Proliferation In Vitro and In Vivo. Neuroscience 2010, 165, 515–524. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, D.; Lu, L.; Yin, Y.; Wang, M.; Li, C.; Diao, J.; Wang, Y.; Wei, L. Ligustilide Prevents the Apoptosis Effects of Tumour Necrosis Factor-Alpha during C2C12 Cell Differentiation. Int. Immunopharmacol. 2014, 19, 358–364. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, X.; Wu, J.; Xiao, R.; Chen, Y.; Lu, Y.; Lang, H. Ligustilide Enhances Hippocampal Neural Stem Cells Activation to Restore Cognitive Function in the Context of Postoperative Cognitive Dysfunction. Eur. J. Neurosci. 2021, 54, 5000–5015. [Google Scholar] [CrossRef]
- Gong, S.; Zhang, J.; Guo, Z.; Fu, W. Senkyunolide A Protects Neural Cells against Corticosterone-Induced Apoptosis by Modulating Protein Phosphatase 2A and α-Synuclein Signaling. Drug Des. Dev. Ther. 2018, 12, 1865. [Google Scholar] [CrossRef] [PubMed]
- Bader, G.D.; Hogue, C.W.V. An Automated Method for Finding Molecular Complexes in Large Protein Interaction Networks. BMC Bioinform. 2003, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and Validation of a Genetic Algorithm for Flexible Docking. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; He, X.; Zhong, P.; Zhao, J.; Huang, C.; Hu, Z. A Metabolism-Based Synergy for Total Coumarin Extract of Radix Angelicae Dahuricae and Ligustrazine on Migraine Treatment in Rats. Molecules 2018, 23, 1004. [Google Scholar] [CrossRef]
- Deng, M.; Xie, L.; Zhong, L.; Liao, Y.; Liu, L.; Li, X. Imperatorin: A Review of Its Pharmacology, Toxicity and Pharmacokinetics. Eur. J. Pharmacol. 2020, 879, 173124. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Wang, Y. Role of Herbal Medicine for Prevention and Treatment of Migraine. Phytother. Res. 2022, 36, 730–760. [Google Scholar] [CrossRef]
- Ma, Z.; Bai, L. The Anti-Inflammatory Effect of Z-Ligustilide in Experimental Ovariectomized Osteopenic Rats. Inflammation 2012, 35, 1793–1797. [Google Scholar] [CrossRef]
- Shen, L.; Lin, X.; Hong, Y.; Liang, S.; Yuan, Y.; Feng, Y.; Xu, D.; Ruan, K. Study on HPLC Characteristic Fingerprint of Active Components of Dachuanxiong Fang in Plasma and Cerebrospinal Fluid. China J. Chin. Mater. Med. 2012, 37, 2017–2021. [Google Scholar]
- Tronvik, E.; Stovner, L.J.; Bovim, G.; White, L.R.; Gladwin, A.J.; Owen, K.; Schrader, H. Angiotensin-Converting Enzyme Gene Insertion/Deletion Polymorphism in Migraine Patients. BMC Neurol. 2008, 8, 4. [Google Scholar] [CrossRef]
- Jacobs, B.; Dussor, G. Neurovascular Contributions to Migraine: Moving beyond Vasodilation. Neuroscience 2016, 338, 130. [Google Scholar] [CrossRef]
- Buzzi, M.G.; Moskowitz, M.A. The Pathophysiology of Migraine: Year 2005. J. Headache Pain 2005, 6, 105–111. [Google Scholar] [CrossRef]
- Blacque, O.E.; Leroux, M.R. Bardet-Biedl Syndrome: An Emerging Pathomechanism of Intracellular Transport. Cell. Mol. Life Sci. 2006, 63, 2145–2161. [Google Scholar] [CrossRef]
- Durham, P.L.; Russo, A.F. Stimulation of the Calcitonin Gene-Related Peptide Enhancer by Mitogen-Activated Protein Kinases and Repression by an Antimigraine Drug in Trigeminal Ganglia Neurons. J. Neurosci. 2003, 23, 807–815. [Google Scholar] [CrossRef]
- Della Vedova, C.; Cathcart, S.; Dohnalek, A.; Lee, V.; Hutchinson, M.R.; Immink, M.A.; Hayball, J. Peripheral Interleukin-1ß Levels Are Elevated in Chronic Tension-Type Headache Patients. Pain Res. Manag. 2013, 18, 301–306. [Google Scholar] [CrossRef]
- Oliveira, A.B.; Bachi, A.L.L.; Ribeiro, R.T.; Mello, M.T.; Tufik, S.; Peres, M.F.P. Unbalanced Plasma TNF-α and IL-12/IL-10 Profile in Women with Migraine Is Associated with Psychological and Physiological Outcomes. J. Neuroimmunol. 2017, 313, 138–144. [Google Scholar] [CrossRef]
- De Kloet, E.R.; Vreugdenhil, E.; Oitzl, M.S.; Joëls, M.; Joëls, J. Brain Corticosteroid Receptor Balance in Health and Disease. Endocr. Rev. 1998, 19, 269–301. [Google Scholar]
- Pujols, L.; Mullol, J.; Roca-Ferrer, J.; Torrego, A.; Xaubet, A.; Cidlowski, J.A.; Picado, C. Expression of Glucocorticoid Receptor α- and β-Isoforms in Human Cells and Tissues. Am. J. Physiol.-Cell Physiol. 2002, 283, 1324–1331. [Google Scholar] [CrossRef]
- Reuter, U.; Chiarugi, A.; Bolay, H.; Moskowitz, M.A. Nuclear Factor-KappaB as a Molecular Target for Migraine Therapy. Ann. Neurol. 2002, 51, 507–516. [Google Scholar] [CrossRef]
- Shabab, T.; Khanabdali, R.; Moghadamtousi, S.Z.; Kadir, H.A.; Mohan, G. Neuroinflammation Pathways: A General Review. Int. J. Neurosci. 2017, 127, 624–633. [Google Scholar] [CrossRef]
- Goadsby, P.J. Can We Develop Neurally Acting Drugs for the Treatment of Migraine? Nat. Rev. Drug Discov. 2005, 4, 741–750. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Jiao, Z.Y.; Li, W.; Tian, Q. PI3K/AKT Signaling Pathway Activation in a Rat Model of Migraine. Mol. Med. Rep. 2017, 16, 4849–4854. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, J.; Charles, A. Glutamate and Its Receptors as Therapeutic Targets for Migraine. Neurotherapeutics 2018, 15, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Noble, E.P. D2 Dopamine Receptor Gene in Psychiatric and Neurologic Disorders and Its Phenotypes. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2003, 116B, 103–125. [Google Scholar] [CrossRef] [PubMed]
- Marmura, M.J. Use of Dopamine Antagonists in Treatment of Migraine. Curr. Treat. Options Neurol. 2012, 14, 27–35. [Google Scholar] [CrossRef]
- Hamel, E. Serotonin and Migraine: Biology and Clinical Implications. Cephalalgia 2007, 27, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Al Asoom, L.I.; Al Sunni, A.; Rafique, N.; Latif, R.; Al Saif, S.; Almandil, N.B.; Almohazey, D.; AbdulAzeez, S.; Borgio, J.F. Genetics, Pathophysiology, Diagnosis, Treatment, Management, and Prevention of Migraine. Biomed. Pharmacother. 2021, 139, 111557. [Google Scholar] [CrossRef] [PubMed]
- Kursun, O.; Yemisci, M.; van den Maagdenberg, A.M.J.M.; Karatas, H. Migraine and Neuroinflammation: The Inflammasome Perspective. J. Headache Pain 2021, 22, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Pusic, A.D.; Grinberg, Y.Y.; Mitchell, H.M.; Kraig, R.P. Modeling Neural Immune Signaling of Episodic and Chronic Migraine Using Spreading Depression In Vitro. J. Vis. Exp. 2011, 52, e2910. [Google Scholar] [CrossRef]
- Eskandari, F.; Webster, J.I.; Sternberg, E.M. Neural Immune Pathways and Their Connection to Inflammatory Diseases. Arthritis Res. Ther. 2003, 5, 251. [Google Scholar] [CrossRef]
- Duan, J.; Yu, Y.; Li, Y.; Li, Y.; Liu, H.; Jing, L.; Yang, M.; Wang, J.; Li, C.; Sun, Z. Low-Dose Exposure of Silica Nanoparticles Induces Cardiac Dysfunction via Neutrophil-Mediated Inflammation and Cardiac Contraction in Zebrafish Embryos. Nanotoxicology 2016, 10, 575–585. [Google Scholar] [CrossRef]
- Xu, L.-M.; Li, J.-R.; Huang, Y.; Zhao, M.; Tang, X.; Wei, L. AutismKB: An Evidence-Based Knowledgebase of Autism Genetics. Nucleic Acids Res. 2012, 40, D1016–D1022. [Google Scholar] [CrossRef]
- Smith, S.S. Female Sex Steroid Hormones: From Receptors to Networks to Performance—Actions on the Sensorimotor System. Prog. Neurobiol. 1994, 44, 55–86. [Google Scholar] [CrossRef]
- Al-Karagholi, M.A.M.; Hansen, J.M.; Severinsen, J.; Jansen-Olesen, I.; Ashina, M. The K ATP Channel in Migraine Pathophysiology: A Novel Therapeutic Target for Migraine. J. Headache Pain 2017, 18, 90. [Google Scholar] [CrossRef]
- Li, N.-N.; Xiang, S.-Y.; Huang, X.-X.; Li, Y.-T.; Luo, C.; Ju, P.-J.; Xu, Y.-F.; Chen, J.-H. Network Pharmacology-Based Exploration of Therapeutic Mechanism of Liu-Yu-Tang in Atypical Antipsychotic Drug-Induced Metabolic Syndrome. Comput. Biol. Med. 2021, 134, 104452. [Google Scholar] [CrossRef]
- Zeng, Y.; Xiao, S.; Yang, L.; Ma, K.; Shang, H.; Gao, Y.; Wang, Y.; Zhai, F.; Xiang, R. Systematic Analysis of the Mechanism of Xiaochaihu Decoction in Hepatitis B Treatment via Network Pharmacology and Molecular Docking. Comput. Biol. Med. 2021, 138, 104894. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, W.; Huang, C.; Li, Y.; Yu, H.; Wang, Y.; Duan, J.; Ling, Y. A Novel Chemometric Method for the Prediction of Human Oral Bioavailability. Int. J. Mol. Sci. 2012, 13, 6964–6982. [Google Scholar] [CrossRef]
- Zheng, C.; Pei, T.; Huang, C.; Chen, X.; Bai, Y.; Xue, J.; Wu, Z.; Mu, J.; Li, Y.; Wang, Y. A Novel Systems Pharmacology Platform to Dissect Action Mechanisms of Traditional Chinese Medicines for Bovine Viral Diarrhea Disease. Eur. J. Pharm. Sci. 2016, 94, 33–45. [Google Scholar] [CrossRef]
- Yuan, H.; Liu, L.; Zhou, J.; Zhang, T.; Daily, J.W.; Park, S. Bioactive Components of Houttuynia Cordata Thunb and Their Potential Mechanisms Against COVID-19 Using Network Pharmacology and Molecular Docking Approaches. J. Med. Food 2022, 25, 355–366. [Google Scholar] [CrossRef]
- Zeng, L.; Hou, J.; Ge, C.; Li, Y.; Gao, J.; Zhang, C.; Li, C.; Liu, Y.; Zeng, Z. Network Pharmacological Study on the Mechanism of Cynanchum Paniculatum (Xuchangqing) in the Treatment of Bungarus Multicinctus Bites. BioMed Res. Int. 2022, 2022, 3887072. [Google Scholar] [CrossRef]
- Feng, W.; Liu, J.; Zhang, D.; Tan, Y.; Cheng, H.; Peng, C. Revealing the Efficacy-Toxicity Relationship of Fuzi in Treating Rheumatoid Arthritis by Systems Pharmacology. Sci. Rep. 2021, 11, 23083. [Google Scholar] [CrossRef]
- Gu, S.; Xue, Y.; Gao, Y.; Shen, S.; Zhang, Y.; Chen, K.; Xue, S.; Pan, J.; Tang, Y.; Zhu, H.; et al. Mechanisms of Indigo Naturalis on Treating Ulcerative Colitis Explored by GEO Gene Chips Combined with Network Pharmacology and Molecular Docking. Sci. Rep. 2020, 10, 15204. [Google Scholar] [CrossRef]
- Nam, H.H.; Kim, J.S.; Lee, J.; Seo, Y.H.; Kim, H.S.; Ryu, S.M.; Choi, G.; Moon, B.C.; Lee, A.Y. Pharmacological Effects of Agastache Rugosa against Gastritis Using a Network Pharmacology Approach. Biomolecules 2020, 10, 1298. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated Data and New Features for Efficient Prediction of Protein Targets of Small Molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef]
- Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Iny Stein, T.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H.; et al. GeneCards Version 3: The Human Gene Integrator. Database 2010, 2010, baq020. [Google Scholar] [CrossRef]
- Batool, S.; Javed, M.R.; Aslam, S.; Noor, F.; Javed, H.M.F.; Seemab, R.; Rehman, A.; Aslam, M.F.; Paray, B.A.; Gulnaz, A. Network Pharmacology and Bioinformatics Approach Reveals the Multi-Target Pharmacological Mechanism of Fumaria Indica in the Treatment of Liver Cancer. Pharmaceuticals 2022, 15, 654. [Google Scholar] [CrossRef]
- Hamosh, A.; Scott, A.F.; Amberger, J.S.; Bocchini, C.A.; McKusick, V.A. Online Mendelian Inheritance in Man (OMIM), a Knowledgebase of Human Genes and Genetic Disorders. Nucleic Acids Res. 2005, 33, D514. [Google Scholar] [CrossRef]
- Wahid, M.; Saqib, F.; Akhtar, S.; Ali, A.; Wilairatana, P.; Mubarak, M.S. Possible Mechanisms Underlying the Antispasmodic, Bronchodilator, and Antidiarrheal Activities of Polarity-Based Extracts of Cucumis sativus L. Seeds in In Silico, In Vitro, and In Vivo Studies. Pharmaceuticals 2022, 15, 641. [Google Scholar] [CrossRef]
- Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET Knowledge Platform for Disease Genomics: 2019 Update. Nucleic Acids Res. 2020, 48, D845–D855. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING Database in 2021: Customizable Protein-Protein Networks, and Functional Characterization of User-Uploaded Gene/Measurement Sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Wang, J.; Zhong, J.; Chen, G.; Li, M.; Wu, F.-X.; Pan, Y. ClusterViz: A Cytoscape APP for Cluster Analysis of Biological Network. IEEE/ACM Trans. Comput. Biol. Bioinform. 2015, 12, 815–822. [Google Scholar] [CrossRef]
- Zeng, P.; Wang, X.-M.; Ye, C.-Y.; Su, H.-F.; Tian, Q. The Main Alkaloids in Uncaria Rhynchophylla and Their Anti-Alzheimer’s Disease Mechanism Determined by a Network Pharmacology Approach. Int. J. Mol. Sci. 2021, 22, 3612. [Google Scholar] [CrossRef] [PubMed]
- MotieGhader, H.; Safavi, E.; Rezapour, A.; Amoodizaj, F.F.; Iranifam, R.a. Drug Repurposing for Coronavirus (SARS-CoV-2) Based on Gene Co-Expression Network Analysis. Sci. Rep. 2021, 11, 21872. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Sherman, B.T.; Huang, D.W.; Stephens, R.; Baseler, M.W.; Lane, H.C.; Lempicki, R.A. DAVID-WS: A Stateful Web Service to Facilitate Gene/Protein List Analysis. Bioinformatics 2012, 28, 1805–1806. [Google Scholar] [CrossRef] [PubMed]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeerschd, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Bateman, A. UniProt: A Worldwide Hub of Protein Knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [Google Scholar] [CrossRef]
- Rahman, N.; Basharat, Z.; Yousuf, M.; Castaldo, G.; Rastrelli, L.; Khan, H. Virtual Screening of Natural Products against Type II Transmembrane Serine Protease (TMPRSS2), the Priming Agent of Coronavirus 2 (SARS-CoV-2). Molecules 2020, 25, 2271. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Tejero, R.; Montelione, G.T. Evaluating Protein Structures Determined by Structural Genomics Consortia. Proteins Struct. Funct. Bioinform. 2007, 66, 778–795. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Oyebamiji, A.K.; Josiah, O.M.; Akintelu, S.A.; Adeoye, M.D.; Sabitu, B.O.; Latona, D.F.; Esan, A.O.; Soetan, E.A.; Semire, B. Dataset on Insightful Bio-Evaluation of 2-(Quinoline-4-Yloxy)Acetamide Analogues as Potential Anti-Mycobacterium Tuberculosis Catalase-Peroxidase Agents via In Silico Mechanisms. Data Brief 2021, 38, 107441. [Google Scholar] [CrossRef]
- Saeed, M.; Shoaib, A.; Tasleem, M.; Alabdallah, N.M.; Alam, M.J.; El Asmar, Z.; Jamal, Q.M.S.; Bardakci, F.; Alqahtani, S.S.; Ansari, I.A.; et al. Assessment of Antidiabetic Activity of the Shikonin by Allosteric Inhibition of Protein-Tyrosine Phosphatase 1B (PTP1B) Using State of Art: An In Silico and In Vitro Tactics. Molecules 2021, 26, 3996. [Google Scholar] [CrossRef]
No. | Herb | MOL ID | Molecule Name | OB | DL | Smiles |
---|---|---|---|---|---|---|
1 | A. dahurica | MOL003791 | 2-linoleoylglycerol | 37.28 | 0.30 | OCC(CO)OC(CCCCCCC/C=C\C/C=C\CCCCC)=O |
2 | A. dahurica | MOL001939 | alloisoimperatorin | 34.80 | 0.22 | O=C1C=CC2=C(O)C3=C(OC=C3)C(C/C=C(C)\C)=C2O1 |
3 | A. dahurica | MOL000358 | beta-sitosterol | 36.91 | 0.75 | CCC(CCC(C)C1CCC2C1(CCC3C2CC=C4C3(CCC(C4)O)C)C)C(C)C |
4 | A. dahurica | MOL005800 | byakangelicol | 41.42 | 0.36 | CC1(C(O1)COC2=C3C(=C(C4=C2OC(=O)C=C4)OC)C=CO3)C |
5 | A. dahurica | MOL000953 | cholesterol | 37.87 | 0.68 | CC(C)CCCC(C)C1CCC2C1(CCC3C2CC=C4C3(CCC(C4)O)C)C |
6 | A. dahurica | MOL001956 | cnidilin | 32.69 | 0.28 | O=C1C=CC2=C(OC/C=C(C)/C)C3=C(OC=C3)C(OC)=C2O1 |
7 | A. dahurica | MOL002883 | ethyl oleate | 32.40 | 0.19 | CCCCCCCC/C=C\CCCCCCCC(OCC)=O |
8 | A. dahurica | MOL001941 | imperatorin | 34.55 | 0.22 | O=C1C=CC2=CC3=C(OC=C3)C(OC/C=C(C)/C)=C2O1 |
9 | A. dahurica | MOL001942 | isoimperatorin | 45.46 | 0.23 | O=C(C=C1)OC2=C1C(OC/C=C(C)/C)=C(C=CO3)C3=C2 |
10 | A. dahurica | MOL007514 | methyl icosa-11,14-dienoate | 39.67 | 0.23 | CCCCC/C=C/C/C=C/CCCCCCCCCC(OC)=O |
11 | A. dahurica | MOL013430 | oxyimperatorin | 43.60 | 0.29 | O=C1C=CC2=CC3=C(OC=C3)C(OCC4C(C)(C)O4)=C2O1 |
12 | A. dahurica | MOL002644 | phellopterin | 40.19 | 0.28 | O=C1OC2=C(OC/C=C(C)/C)C3=C(C=CO3)C(OC)=C2C=C1 |
13 | A. dahurica | MOL003588 | prangenidin | 36.31 | 0.22 | O=C1C=CC2=C(C/C=C(C)\C)C3=C(OC=C3)C(O)=C2O1 |
14 | A. dahurica | MOL005802 | propyleneglycol monoleate | 37.60 | 0.26 | CCCCCCCCCC=CCCCCCCC(=O)OCCCO |
15 | A. dahurica | MOL005807 | sen-byakangelicol | 58.00 | 0.61 | O=C1C=CC2=C(OCC3OC3(C)C)C4=C(OC=C4)C(OCC5OC5(C)C)=C2O1 |
16 | A. dahurica | MOL000449 | stigmasterol | 43.83 | 0.76 | CCC(C=CC(C)C1CCC2C1(CCC3C2CC=C4C3(CCC(C4)O)C)C)C(C)C |
17 | A. dahurica | MOL001506 | supraene | 33.55 | 0.42 | C/C(CC/C=C(C)/CC/C=C(C)/C)=C\CC/C=C(C)\CC/C=C(C)/CC/C=C(C)/C |
18 | A. dahurica | MOL001749 | zinc3860434 | 43.59 | 0.35 | CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC O=C(C1=CC=CC=C1C(OC[C@H](CC)CCCC)=O)OC[C@H](CC)CCCC |
19 | A. dahurica/ L. chuanxiong | MOL001494 | mandenol | 42.0 | 0.19 | CCCCC/C=C\C/C=C\CCCCCCCC(OCC)=O |
20 | L. chuanxiong | MOL000433 | folic acid | 69.0 | 0.71 | C1=CC(=CC=C1C(=O)NC(CCC(=O)O)C(=O)O)NCC2=CN=C3C(=N2)C(=O)N=C(N3)N |
21 | L. chuanxiong | MOL002135 | myricanone | 40.6 | 0.51 | COC1=C(OC)C(O)=C2CCCCC(CCC3=CC(C1=C2)=C(O)C=C3)=O |
22 | L. chuanxiong | MOL002151 | senkyunone | 47.7 | 0.24 | O=C1C(C)=CC(C=C1C/C=C(C)/CC/C=C(C)/CC/C=C(C)\C)=O |
23 | L. chuanxiong | MOL000359 | sitosterol | 36.9 | 0.75 | CCC(CCC(C)C1CCC2C1(CCC3C2CC=C4C3(CCC(C4)O)C)C)C(C)C |
24 | L. chuanxiong | MOL002157 | wallichilide | 42.3 | 0.71 | CCCCC(=O)C12CCC(C=C1C(=O)OC)C3C2C4=C(CC3)C(=CCCC)OC4=O |
25 | L. chuanxiong | MOL000085 | daucosterol | 20.63 | 0.63 | CCC(CCC(C)C1CCC2C1(CCC3C2CC=C4C3(CCC(C4)OC5C(C(C(C(O5)CO)O)O)O)C)C)C(C)C |
26 | L. chuanxiong | MOL000360 | ferulic acid | 55.14 | 0.06 | COC1=CC(/C=C/C(O)=O)=CC=C1O |
27 | L. chuanxiong | MOL002201 | ligustilide | 51.3 | 0.07 | CCCC=C1C2=C(C=CCC2)C(=O)O1 |
28 | L. chuanxiong | MOL002208 | senkynolide A | 26.6 | 0.07 | CCCCC1C2=C(C=CCC2)C(=O)O1 |
CA14 | PGR | STAT6 | HTR2A | ICAM1 | PDE2A | SLC6A3 | HTR1B |
AR | PPARA | TRPM8 | HTR6 | MMP9 | PDE5A | CSNK1D | NOS1 |
SHBG | PPARD | TYMS | HTR7 | SELE | PIK3CB | MAPK1 | CALCRL |
RORA | PPARG | ACHE | MAOB | TRPV1 | TBXAS1 | P2RY12 | CCR2 |
ESR1 | PTGS2 | CHRM2 | MMP1 | UTS2R | VCAM1 | PIK3CA | PPOX |
ESR2 | ROCK2 | NOS2 | MMP3 | MMP2 | BACE1 | SCN10A | OPRK1 |
FAAH | ADORA1 | NR1I3 | SCN9A | APP | CYP1A1 | SCN2A | OPRM1 |
CYP19A1 | DRD3 | SLC6A4 | SLC2A1 | KCNK2 | CYP1A2 | STK10 | CXCL8 |
CYP2C19 | EGFR | VDR | TACR1 | TLR4 | F3 | TRPA1 | FGFR2 |
SLC6A2 | EPHB2 | ADRA1B | TGFBR2 | ADRA2B | RELA | ACE | GRIA2 |
ADORA2A | JAK2 | DRD4 | ABCB1 | CCR5 | SLC16A1 | AGTR1 | GRIN1 |
CASR | KCNMA1 | GABRA3 | ACACA | CES1 | TTR | KCNK9 | GRIN2A |
CNR1 | MAP2K2 | GABRA5 | DKK1 | EDNRA | CCR1 | TRPV4 | ITGAL |
F2R | PIK3CD | GABRG2 | DRD2 | IL1B | F2 | STS | PGK1 |
HRH3 | PIK3CG | GRM5 | HTR1A | MGLL | MAOA | PTPRC | REN |
NLRP3 | PRKCG | HCRTR1 | HTR2C | P2RX7 | PDGFRB | INSR | TBK1 |
NR3C1 | RET | HCRTR2 |
ID | Term | p-Value | Genes |
---|---|---|---|
hsa04080 | Neuroactive ligand–receptor interaction | 1.14 × 10−8 | GRIA2, HTR1A, HTR2C, TRPV1, HTR2A, OPRM1, F2, NR3C1, GRIN1, GRM5, GRIN2A, ADORA2A, CNR1, AGTR1, DRD2 |
hsa05022 | Pathways of neurodegeneration—multiple diseases | 9.62 × 10−5 | GRIA2, APP, GRM5, GRIN2A, NOS2, IL1B, MAPK1, NOS1, PTGS2, RELA, SLC6A3, GRIN1 |
hsa05417 | Lipid and atherosclerosis | 4.62 × 10−7 | VCAM1, CXCL8, PIK3CA, IL1B, CYP1A1, MAPK1, PPARG, JAK2, TLR4, MMP9, RELA |
hsa05010 | Alzheimer disease | 7.87 × 10−5 | APP, GRM5, GRIN2A, PIK3CA, NOS2, IL1B, MAPK1, NOS1, PTGS2, RELA, GRIN1 |
hsa04024 | cAMP signaling pathway | 5.59 × 10−6 | GRIA2, GRIN2A, ADORA2A, PIK3CA, HTR1A, MAPK1, DRD2, PPARA, RELA, GRIN1 |
hsa04020 | Calcium signaling pathway | 1.09 × 10−5 | GRM5, GRIN2A, ADORA2A, NOS2, AGTR1, HTR2C, NOS1, HTR2A, EGFR, GRIN1 |
hsa04915 | Estrogen signaling pathway | 1.43 × 10−6 | PIK3CA, MMP2, MAPK1, PGR, OPRM1, ESR1, MMP9, EGFR, ESR2 |
hsa04726 | Serotonergic synapse | 5.03 × 10−6 | APP, HTR1A, MAPK1, HTR2C, HTR2A, CYP2C19, PTGS2, SLC6A4 |
hsa04926 | Relaxin signaling pathway | 1.08 × 10−5 | PIK3CA, NOS2, MMP2, MAPK1, NOS1, MMP9, RELA, EGFR |
hsa04015 | Rap1 signaling pathway | 2.40 × 10−4 | GRIN2A, ADORA2A, PIK3CA, CNR1, MAPK1, DRD2, EGFR, GRIN1 |
hsa04668 | TNF signaling pathway | 5.22 × 10−5 | VCAM1, PIK3CA, IL1B, MAPK1, PTGS2, MMP9, RELA |
hsa04072 | Phospholipase D signaling pathway | 2.44 × 10−4 | GRM5, CXCL8, PIK3CA, AGTR1, MAPK1, F2, EGFR |
hsa05030 | Cocaine addiction | 1.02 × 10−5 | GRIA2, GRIN2A, DRD2, RELA, SLC6A3, GRIN1 |
hsa04917 | Prolactin signaling pathway | 5.88 × 10−5 | PIK3CA, MAPK1, JAK2, ESR1, RELA, ESR2 |
hsa04540 | Gap junction | 1.75 × 10−4 | GRM5, MAPK1, HTR2C, HTR2A, DRD2, EGFR |
hsa04657 | IL-17 signaling pathway | 2.39 × 10−4 | CXCL8, IL1B, MAPK1, PTGS2, MMP9, RELA |
hsa04750 | Inflammatory mediator regulation of TRP channels | 2.91 × 10−4 | PIK3CA, TRPA1, IL1B, HTR2C, TRPV1, HTR2A |
hsa04064 | NF-kappa B signaling pathway | 3.83 × 10−4 | VCAM1, CXCL8, IL1B, PTGS2, TLR4, RELA |
hsa04620 | Toll-like receptor signaling pathway | 3.83 × 10−4 | CXCL8, PIK3CA, IL1B, MAPK1, TLR4, RELA |
hsa04066 | HIF-1 signaling pathway | 4.76 × 10−4 | PIK3CA, NOS2, MAPK1, TLR4, RELA, EGFR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thanh, C.D.; Men, C.V.; Kim, H.M.; Kang, J.S. Network Pharmacology-Based Investigation on Therapeutic Mechanisms of the Angelica dahurica Radix and Ligusticum chuanxiong Rhizoma Herb Pair for Anti-Migraine Effect. Plants 2022, 11, 2196. https://doi.org/10.3390/plants11172196
Thanh CD, Men CV, Kim HM, Kang JS. Network Pharmacology-Based Investigation on Therapeutic Mechanisms of the Angelica dahurica Radix and Ligusticum chuanxiong Rhizoma Herb Pair for Anti-Migraine Effect. Plants. 2022; 11(17):2196. https://doi.org/10.3390/plants11172196
Chicago/Turabian StyleThanh, Chu Duc, Chu Van Men, Hyung Min Kim, and Jong Seong Kang. 2022. "Network Pharmacology-Based Investigation on Therapeutic Mechanisms of the Angelica dahurica Radix and Ligusticum chuanxiong Rhizoma Herb Pair for Anti-Migraine Effect" Plants 11, no. 17: 2196. https://doi.org/10.3390/plants11172196
APA StyleThanh, C. D., Men, C. V., Kim, H. M., & Kang, J. S. (2022). Network Pharmacology-Based Investigation on Therapeutic Mechanisms of the Angelica dahurica Radix and Ligusticum chuanxiong Rhizoma Herb Pair for Anti-Migraine Effect. Plants, 11(17), 2196. https://doi.org/10.3390/plants11172196