Assessment of Temperature-Independent Resistance against Bacterial Wilt Using Major QTL in Cultivated Tomato (Solanum lycopersicum L.)
Abstract
:1. Introduction
2. Results
2.1. Effect of Temperature for Bacterial Wilt Resistance
2.2. Genotyping of Tomato Varieties for Major QTL
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Seedling Assay for Evaluation of Bacterial Wilt Resistance
4.3. High Resolution Melting Analysis for Genotyping
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hayward, A. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 1991, 29, 65–87. [Google Scholar] [CrossRef]
- Denny, T. Plant pathogenic Ralstonia species. In Plant-Associated Bacteria; Springer: Berlin/Heidelberg, Germany, 2007; pp. 573–644. [Google Scholar]
- Fegan, M.; Prior, P. How complex is the Ralstonia solanacearum species complex. Bact. Wilt Dis. Ralstonia solanacearum Species Complex 2005, 1, 449–461. [Google Scholar]
- Carmeille, A.; Caranta, C.; Dintinger, J.; Prior, P.; Luisetti, J.; Besse, P. Identification of QTLs for Ralstonia solanacearum race 3-phylotype II resistance in tomato. Theor. Appl. Genet. 2006, 113, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, D.; Kim, B.-S.; Iyer-Pascuzzi, A.S. Ralstonia solanacearum differentially colonizes roots of resistant and susceptible tomato plants. Phytopathology 2017, 107, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Vasse, J.; Frey, P.; Trigalet, A. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas Solanacearum. Mol. Plant-Microbe Interact. 1995, 8, 241–251. [Google Scholar] [CrossRef]
- Huet, G. Breeding for resistances to Ralstonia solanacearum. Front. Plant Sci. 2014, 5, 715. [Google Scholar] [CrossRef]
- Burk, L.; Dropkin, V. Response of Nicotiana Repanda, N sylvestris, and Their Amphidiploid Hybrid to Root-Knot Nematodes. Plant Disease Reporter 1961, 45, 734–735. [Google Scholar]
- Ho, F.-I.; Chen, Y.-Y.; Lin, Y.-M.; Cheng, C.-P.; Wang, J.-F. A tobacco rattle virus-induced gene silencing system for a soil-borne vascular pathogen Ralstonia solanacearum. Bot. Stud. 2009, 50, 413–424. [Google Scholar]
- Bittner, R.; Arellano, C.; Mila, A. Effect of temperature and resistance of tobacco cultivars to the progression of bacterial wilt, caused by Ralstonia solanacearum. Plant Soil 2016, 408, 299–310. [Google Scholar] [CrossRef]
- Lee, H.-J.; Jo, E.-J.; Kim, N.-H.; Chae, Y.; Lee, S.-W. Disease responses of tomato pure lines against Ralstonia solanacearum strains from Korea and susceptibility at high temperature. Res. Plant Dis. 2011, 17, 326–333. [Google Scholar] [CrossRef]
- Mew, T.; Ho, W. Effect of soil temperature on resistance of tomato cultivars to bacterial wilt. Phytopathology 1977, 67, 909–911. [Google Scholar] [CrossRef]
- Singh, D.; Yadav, D.; Sinha, S.; Choudhary, G. Effect of temperature, cultivars, injury of root and inoculums load of Ralstonia solanacearum to cause bacterial wilt of tomato. Arch. Phytopathol. Plant Prot. 2014, 47, 1574–1583. [Google Scholar] [CrossRef]
- Danesh, D.; Aarons, S.; McGill, G.; Young, N. Genetic dissection of oligogenic resistance to bacterial wilt in tomato. Mol. Plant-Microbe Interact. MPMI 1994, 7, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-F.; Hanson, P.; Barnes, J. Worldwide evaluation of an international set of resistance sources to bacterial wilt in tomato. In Bacterial Wilt Disease; Springer: Berlin/Heidelberg, Germany, 1998; pp. 269–275. [Google Scholar]
- Dannon, E.A.; Wydra, K. Interaction between silicon amendment, bacterial wilt development and phenotype of Ralstonia solanacearum in tomato genotypes. Physiol. Mol. Plant Pathol. 2004, 64, 233–243. [Google Scholar] [CrossRef]
- Kim, B.; Hwang, I.S.; Lee, H.J.; Lee, J.M.; Seo, E.; Choi, D.; Oh, C.-S. Identification of a molecular marker tightly linked to bacterial wilt resistance in tomato by genome-wide SNP analysis. Theor. Appl. Genet. 2018, 131, 1017–1030. [Google Scholar] [CrossRef]
- Thoquet, P.; Olivier, J.; Sperisen, C.; Rogowsky, P.; Laterrot, H.; Grimsley, N. Quantitative trait loci determining resistance to bacterial wilt in tomato cultivar Hawaii7996. Mol. Plant-Microbe Interact. MPMI 1996, 9, 826–836. [Google Scholar] [CrossRef]
- Thoquet, P.; Olivier, J.; Sperisen, C.; Rogowsky, P.; Prior, P.; Anais, G.; Mangin, B.; Bazin, B.; Nazer, R.; Grimsley, N. Polygenic resistance of tomato plants to bacterial wilt in the French West Indies. Mol. Plant-Microbe Interact. 1996, 9, 837–842. [Google Scholar] [CrossRef]
- Wang, J.-F.; Ho, F.-I.; Truong, H.T.H.; Huang, S.-M.; Balatero, C.H.; Dittapongpitch, V.; Hidayati, N. Identification of major QTLs associated with stable resistance of tomato cultivar ‘Hawaii7996’to Ralstonia solanacearum. Euphytica 2013, 190, 241–252. [Google Scholar] [CrossRef]
- Wang, J.-F.; Olivier, J.; Thoquet, P.; Mangin, B.; Sauviac, L.; Grimsley, N.H. Resistance of tomato line Hawaii7996 to Ralstonia solanacearum Pss4 in Taiwan is controlled mainly by a major strain-specific locus. Mol. Plant-Microbe Interact. 2000, 13, 6–13. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Le, N.T.; Sim, S.-C. Genome-wide association study and marker development for bacterial wilt resistance in tomato (Solanum lycopersicum L.). Sci. Hortic. 2021, 289, 110418. [Google Scholar] [CrossRef]
- Truong, H.T.H.; Kim, S.; Tran, H.N.; Nguyen, T.T.T.; Nguyen, L.T.; Hoang, T.K. Development of a SCAR marker linked to bacterial wilt (Ralstonia solanacearum) resistance in tomato line Hawaii7996 using bulked-segregant analysis. Hortic. Environ. Biotechnol. 2015, 56, 506–515. [Google Scholar] [CrossRef]
- Kelman, A. The bacterial wilt caused by Pseudomonas solanacearum. Tech. Bull. North Carol. Agric. Exp. Stn. 1953, 99, 20057008001. [Google Scholar]
- Kabelka, E.; Franchino, B.; Francis, D. Two loci from Lycopersicon hirsutum LA407 confer resistance to strains of Clavibacter michiganensis subsp. michiganensis. Phytopathology 2002, 92, 504–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group a | No. of Variety | Temperature (°C) | Mean of Disease Severity ± SD b | LSD Grouping c |
---|---|---|---|---|
R | 25 | 24 | 1.23 ± 0.23 | a |
28 | 1.16 ± 0.24 | a | ||
36 | 1.44 ± 0.39 | a | ||
R/S | 15 | 24 | 1.84 ± 0.35 | b |
28 | 2.16 ± 0.52 | b | ||
36 | 4.20 ± 0.50 | c | ||
S | 10 | 24 | 4.37 ± 0.29 | cd |
28 | 4.73 ± 0.41 | d | ||
36 | 4.70 ± 0.29 | d | ||
Resistant control | 1 | 24 | 1.00 ± 0.00 | a |
28 | 1.00 ± 0.00 | a | ||
36 | 1.00 ± 0.00 | a | ||
Susceptible control | 1 | 24 | 5.00 ± 0.00 | d |
28 | 5.00 ± 0.00 | d | ||
36 | 5.00 ± 0.00 | d |
Temperature | Pearson Correlation Coefficient | |
---|---|---|
28 °C | 36 °C | |
24 °C | 0.952 | 0.713 |
28 °C | - | 0.765 |
Variety | Group | Mean of Disease Severity ± SD a | Major QTL Genotype b | ||||
---|---|---|---|---|---|---|---|
24 °C | 28 °C | 36 °C | Bwr-4 | Bwr-6 | Bwr-12 | ||
BP1151 | R | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.33 ± 0.47 | R | R | R |
BP1165 | R | 1.33 ± 0.47 | 1.33 ± 0.47 | 1.00 ± 0.00 | R | R | S |
BP1189 | R | 1.33 ± 0.47 | 1.00 ± 0.00 | 1.00 ± 0.00 | R | R | R |
BP1198 | R | 1.33 ± 0.47 | 1.00 ± 0.00 | 1.33 ± 0.47 | R | R | S |
BP1206 | R | 1.33 ± 0.47 | 1.33 ± 0.47 | 1.33 ± 0.47 | R | S | R |
BP1207 | R | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.33 ± 0.47 | R | S | R |
BP1208 | R | 1.33 ± 0.47 | 1.33 ± 0.47 | 1.67 ± 0.94 | R | S | R |
BP1209 | R | 1.00 ± 0.00 | 1.00 ± 0.00 | 2.00 ± 0.82 | S | S | S |
BP1215 | R | 1.67 ± 0.47 | 1.33 ± 0.47 | 1.33 ± 0.47 | R | S | R |
BP1216 | R | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | R | S | R |
BP1223 | R | 1.00 ± 0.00 | 1.33 ± 0.47 | 1.33 ± 0.47 | R | S | R |
BP1227 | R | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.67 ± 0.47 | R | S | R |
BP1233 | R | 1.33 ± 0.47 | 1.00 ± 0.00 | 2.00 ± 0.82 | R | S | R |
BP1234 | R | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.67 ± 0.94 | R | S | R |
BP1246 | R | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.33 ± 0.47 | R | S | R |
BP1249 | R | 1.33 ± 0.47 | 1.00 ± 0.00 | 1.33 ± 0.47 | R | S | R |
BP1250 | R | 1.33 ± 0.47 | 1.67 ± 0.47 | 1.33 ± 0.47 | R | S | R |
BP1258 | R | 1.33 ± 0.47 | 1.67 ± 0.94 | 1.67 ± 0.94 | S | S | S |
BP1261 | R | 1.67 ± 0.94 | 1.00 ± 0.00 | 1.00 ± 0.00 | R | S | R |
BP1278 | R | 1.33 ± 0.47 | 1.00 ± 0.00 | 2.33 ± 0.94 | R | S | R |
BP1296 | R | 1.00 ± 0.00 | 1.67 ± 0.47 | 2.33 ± 1.25 | R | S | R |
BP1299 | R | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.33 ± 0.47 | R | R | R |
BP1300 | R | 1.33 ± 0.47 | 1.33 ± 0.47 | 1.00 ± 0.00 | R | R | R |
BP1342 | R | 1.67 ± 0.94 | 1.00 ± 0.00 | 1.33 ± 0.47 | R | S | R |
BP1344 | R | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | R | S | R |
BP1163 | R/S | 1.33 ± 0.47 | 2.00 ± 0.82 | 4.33 ± 0.94 | S | S | S |
BP1187 | R/S | 1.67 ± 0.47 | 2.33 ± 0.47 | 3.67 ± 0.47 | S | S | S |
BP1195 | R/S | 1.67 ± 0.47 | 1.67 ± 0.94 | 4.00 ± 0.00 | R | S | S |
BP1200 | R/S | 2.33 ± 0.94 | 1.67 ± 0.47 | 4.00 ± 0.82 | R | S | S |
BP1201 | R/S | 2.00 ± 1.41 | 3.00 ± 0.82 | 4.67 ± 0.47 | R | R | S |
BP1202 | R/S | 2.33 ± 0.47 | 2.33 ± 0.47 | 3.67 ± 0.94 | S | S | S |
BP1210 | R/S | 1.67 ± 0.94 | 2.67 ± 0.47 | 3.67 ± 0.47 | S | S | S |
BP1219 | R/S | 2.00 ± 0.00 | 3.00 ± 0.82 | 4.00 ± 0.00 | S | R | S |
BP1225 | R/S | 1.67 ± 0.47 | 2.33 ± 0.47 | 5.00 ± 0.00 | R | S | S |
BP1251 | R/S | 2.00 ± 0.82 | 1.67 ± 0.94 | 4.33 ± 0.94 | S | S | S |
BP1280 | R/S | 2.00 ± 0.00 | 2.00 ± 0.82 | 4.67 ± 0.47 | R | S | R |
BP1287 | R/S | 1.33 ± 0.47 | 2.00 ± 0.82 | 4.67 ± 0.47 | S | S | S |
BP1316 | R/S | 2.00 ± 0.82 | 2.67 ± 1.70 | 3.67 ± 0.47 | S | S | S |
BP1340 | R/S | 1.33 ± 0.47 | 1.33 ± 0.47 | 3.67 ± 0.47 | S | S | S |
BP1341 | R/S | 2.33 ± 0.47 | 1.67 ± 0.47 | 5.00 ± 0.00 | S | S | S |
BP1161 | S | 4.67 ± 0.47 | 5.00 ± 0.00 | 4.33 ± 0.94 | S | S | S |
BP1217 | S | 4.33 ± 0.47 | 4.67 ± 0.47 | 5.00 ± 0.00 | S | S | S |
BP1241 | S | 4.00 ± 0.82 | 4.00 ± 0.00 | 4.67 ± 0.47 | S | S | S |
BP1267 | S | 4.33 ± 0.47 | 5.00 ± 0.00 | 4.33 ± 0.94 | S | S | S |
BP1268 | S | 4.33 ± 0.47 | 5.00 ± 0.00 | 5.00 ± 0.00 | S | S | S |
BP1269 | S | 4.33 ± 0.47 | 4.67 ± 0.47 | 5.00 ± 0.00 | S | S | S |
BP1312 | S | 4.33 ± 0.47 | 5.00 ± 0.00 | 4.33 ± 0.47 | S | S | S |
BP1321 | S | 5.00 ± 0.00 | 5.00 ± 0.00 | 4.67 ± 0.47 | S | S | S |
BP1334 | S | 4.00 ± 0.82 | 4.00 ± 0.82 | 4.67 ± 0.47 | S | S | S |
BP1339 | S | 4.33 ± 0.47 | 5.00 ± 0.00 | 5.00 ± 0.00 | S | S | S |
Ha7981 | Resistant control | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | R | R | R |
L390 | Susceptible control | 5.00 ± 0.00 | 5.00 ± 0.00 | 5.00 ± 0.00 | S | S | S |
QTL | Number of Variety a | ||
---|---|---|---|
R | R/S | S | |
Bwr-4 | 0 | 3 | 0 |
Bwr-6 | 0 | 1 | 0 |
Bwr-12 | 0 | 0 | 0 |
Bwr-4 & 6 | 2 | 1 | 0 |
Bwr-4 & 12 | 17 | 1 | 0 |
Bwr-6 & 12 | 0 | 0 | 0 |
Bwr-4, 6, & 12 | 4 | 0 | 0 |
None | 2 | 9 | 10 |
Total | 25 | 15 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeon, J.; Le, N.T.; Sim, S.-C. Assessment of Temperature-Independent Resistance against Bacterial Wilt Using Major QTL in Cultivated Tomato (Solanum lycopersicum L.). Plants 2022, 11, 2223. https://doi.org/10.3390/plants11172223
Yeon J, Le NT, Sim S-C. Assessment of Temperature-Independent Resistance against Bacterial Wilt Using Major QTL in Cultivated Tomato (Solanum lycopersicum L.). Plants. 2022; 11(17):2223. https://doi.org/10.3390/plants11172223
Chicago/Turabian StyleYeon, Jeyun, Ngoc Thi Le, and Sung-Chur Sim. 2022. "Assessment of Temperature-Independent Resistance against Bacterial Wilt Using Major QTL in Cultivated Tomato (Solanum lycopersicum L.)" Plants 11, no. 17: 2223. https://doi.org/10.3390/plants11172223
APA StyleYeon, J., Le, N. T., & Sim, S. -C. (2022). Assessment of Temperature-Independent Resistance against Bacterial Wilt Using Major QTL in Cultivated Tomato (Solanum lycopersicum L.). Plants, 11(17), 2223. https://doi.org/10.3390/plants11172223