Spatial Autocorrelation Analysis of Land Use and Ecosystem Service Value in the Huangshui River Basin at the Grid Scale
Abstract
:1. Introduction
2. Overview of the Study Area
3. Data Sources and Research Methods
3.1. Data Sources and Preprocessing
3.2. Research Methods
3.2.1. Classification System and Classification Method
3.2.2. The Grid Processing Method of LU
3.2.3. The Grid Processing Method of LU Degree
3.2.4. Grid-Based Estimation of the ESV
3.2.5. Spatial Analysis of the Mutual Feedback Relationship between LU and ESV
4. Results and Analysis
4.1. LU Classification Accuracy and Distribution Characteristics
4.2. Characteristics of LU Spatial Patterns
4.2.1. Analysis of the Spatial Autocorrelation of LU
4.2.2. Analysis of the Spatial Autocorrelation of LU Degree
4.3. Characteristics of ESV Spatial Pattern
4.3.1. Analysis of ESV for Each LU Type
4.3.2. ESV Spatial Autocorrelation Analysis
4.4. Spatial Feedback Relationship between LU Degree and ESV Intensity
5. Discussion
5.1. LU Classification and Gridding Method
5.2. Patterns of Spatial Distribution of LU and ESV
5.3. Response of ESV to LU and Implications for Landscape Planning
6. Conclusions
- (1)
- With the support of the GEE cloud platform, in combination with Sentinel-1/2 active and passive remote-sensing data and other auxiliary classification features, the gradient tree-boosting ensemble learning classifier was used to efficiently obtain LU data with a spatial resolution of 10 m for the Huangshui River Basin in 2020. The OA reached 88% and the K coefficient was 0.86, which indicated that the comprehensive application of cloud computing, multisensor data, and ensemble learning can generate relatively accurate LU data.
- (2)
- The LU types in the Huangshui River Basin showed significant positive spatial autocorrelations and the spatial agglomeration of cropland was the strongest. The LU degree in the basin also had a strong positive spatial correlation, while the LU degree in urban and agricultural areas showed H-H agglomerations. The basin ESV exhibited a significant positive spatial correlation and areas with high ESVs were woodlands, grasslands, reservoirs, and wetlands, showing H-H agglomerations.
- (3)
- There was a significant negative spatial correlation between the LU degree and ESV in the Huangshui River Basin, and the enhancement of the LU degree in the basin could cause negative spatial spillover effects to the ESV of the surrounding areas.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xia, M.; Jia, K.; Zhao, W.; Liu, S.; Wei, X.; Wang, B. Spatio-temporal changes of ecological vulnerability across the Qinghai-Tibetan Plateau. Ecol. Indic. 2021, 123, 107274. [Google Scholar] [CrossRef]
- Xian, J.; Xia, C.; Cao, S. Cost-benefit analysis for China’s Grain for Green Program. Ecol. Eng. 2020, 151, 105850. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Y. Spatiotemporal changes of ecosystem services value by incorporating planning policies: A case of the Pearl River Delta, China. Ecol. Model. 2021, 461, 109777. [Google Scholar] [CrossRef]
- Liu, M.; Fan, J.; Wang, Y.; Hu, C. Study on Ecosystem Service Value (ESV) spatial transfer in the Central Plains Urban Agglomeration in the Yellow River Basin, China. Int. J. Environ. Res. Public Health 2021, 18, 9751. [Google Scholar] [CrossRef]
- Wood, S.L.R.; Jones, S.K.; Johnson, J.A.; Brauman, K.A.; Chaplin-Kramer, R.; Fremier, A.; Girvetz, E.; Gordon, L.J.; Kappel, C.V.; Mandle, L.; et al. Distilling the role of ecosystem services in the sustainable development goals. Ecosyst. Serv. 2018, 29, 70–82. [Google Scholar] [CrossRef]
- Costanza, R.; Déarge, R.; Groot, R.D.; Farber, S.; Grasso, M.; Hannon, B.; Karin, L.; Shahid, N.; Robert, V.O.; Jose, P.; et al. The total value of the World’s Ecosystem Services and Natural Capital. Nature 1996, 387, 253–260. [Google Scholar] [CrossRef]
- Ouyang, Z.; Wang, X.; Miao, H. A primary study on Chinese terrestrial ecosystem services and their ecological-economic values. Acta Ecol. Sin. 1999, 19, 607–613. [Google Scholar]
- Xie, G.; Lu, C.; Leng, Y.; Zheng, D.; Li, S. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar]
- Fu, B. Ecosystem Service and Ecological Security; Higher Education Press: Beijing, China, 2013; pp. 1–6. [Google Scholar]
- Li, M.; Liu, S.; Wang, F.; Liu, H.; Liu, Y.; Wang, Q. Cost-benefit analysis of ecological restoration based on land use scenario simulation and ecosystem service on the Qinghai-Tibet Plateau. Glob. Ecol. Conserv. 2022, 34, e02006. [Google Scholar] [CrossRef]
- Dai, W.; Jiang, F.; Huang, W.; Liao, L.; Jiang, K. Study on transition of land use function and ecosystem service value based on the conception of production, living and ecological space: A case study of the Fuzhou New Area. J. Nat. Resour. 2018, 33, 2098–2109. [Google Scholar]
- Lei, J.; Chen, Z.; Wu, T.; Li, W.; Yang, Q.; Chen, X. Spatial autocorrelatoin pattern analysis of land use and the value of ecosystem services in northeast Hainan island. Acta Ecol. Sin. 2019, 39, 2366–2377. [Google Scholar]
- Xu, N.; Guo, L.; Xue, D.; Sun, S. Land use structure and the dynamic evolution of ecosystem service value in Gannan region, China. Acta Ecol. Sin. 2019, 39, 1969–1978. [Google Scholar]
- Li, L.; Wang, X.; Luo, L.; Ji, X.; Zhao, Y.; Zhao, Y.; Nabil, B. A systematic review on the methods of ecosystem services value assessment. Chin. J. Ecol. 2018, 37, 1233–1245. [Google Scholar]
- Liu, Z.; Liu, S.; Qi, W.; Jin, H. The settlement intention of floating population and the factors in Qinghai-Tibet Plateau: An analysis from the perspective of short-distance and long-distance migrants. Acta Geogr. Sin. 2022, 76, 1907–1919. [Google Scholar]
- Fang, C. Special thinking and green development path of urbanization in Qinghai-Tibet Plateau. Acta Geogr. Sin. 2021, 77, 2142–2156. [Google Scholar]
- Sun, H.; Zheng, D.; Yao, T.; Zhang, Y. Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geogr. Sin. 2012, 67, 3–12. [Google Scholar]
- Zhang, Y.; Liu, L.; Wang, Z.; Bai, W.; Ding, M.; Wang, X. Spatial and temporal characteristics of land use and cover changes in the Tibetan Plateau. Chin. Sci. Bull. 2019, 64, 2865–2875. [Google Scholar]
- Shi, F.; Gao, X.; Yang, L.; He, L.; Jia, W. Research on typical crop classification based on HJ-1A hyperspectral data in Huangshui river Basin. Remote Sens. Technol. Appl. 2017, 32, 206–217. [Google Scholar]
- Tang, M. Land Use/Land Cover Information Extraction from SPOT6 Imagery with Object-Oriented and Random Forest Methods in the Huangshui River Basin. Master’s Thesis, Qinghai Normal University, Xining, China, 2020. [Google Scholar]
- Qinghai Provincial Bureau of Statistics. Qinghai Statistical Yearbook 2020; China Statistics Press: Beijing, China, 2020; pp. 1–23. [Google Scholar]
- Zhao, Q.; Yu, L.; Li, X.; Peng, D.; Zhang, Y.; Gong, P. Progress and trends in the application of google earth and google earth engine. Remote Sens. 2021, 13, 3778. [Google Scholar] [CrossRef]
- Yang, C.; Wei, Y.; Xu, Q.; Liu, R.; Liu, Y. Large-area ground deformation investigation over Taiyuan Basin, China 2007–2011 revealed by ALOS PALSAR imagery. Arab. J. Geosci. 2021, 14, 2055. [Google Scholar] [CrossRef]
- Parente, L.; Mesquita, V.; Miziara, F.; Baumann, L.; Ferreira, L. Assessing the pasturelands and livestock dynamics in Brazil, from 1985 to 2017: A novel approach based on high spatial resolution imagery and Google Earth Engine cloud computing. Remote Sens. Environ. 2019, 232, 111301. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Chi, W. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Z.; Zeng, F.; Song, P.; Baffour, B.A.; Wang, P.; Li, L. Volcanic lithology identification based on parameter-optimized GBDT algorithm: A case study in the Jilin Oilfield, Songliao Basin, NE China. J. Appl. Geophys. 2021, 194, 104443. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Pontius, J.R.G.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Stumpf, R. Seamless retrievals of chlorophyll-a from sentinel-2 (MSI) and sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach. Remote Sens. Environ. 2020, 240, 111604–111625. [Google Scholar] [CrossRef]
- Guha, S.; Govil, H.; Diwan, P. Monitoring LST-NDVI relationship using premonsoon landsat datasets. Adv. Meteorol. 2020, 2, 4539684. [Google Scholar] [CrossRef]
- Mcfeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Wu, H.; Jiang, J.; Zhang, H.; Zhang, L.; Zhou, J. Application of ratio resident-area index to retrieve urban residential areas based on landsat TM data. J. Nanjing Norm. Univ. Nat. Sci. 2006, 3, 118–121. [Google Scholar]
- Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89–100. [Google Scholar] [CrossRef]
- Lapini, A.; Pettinato, S.; Santi, E.; Paloscia, S.; Fontanelli, G.; Garzelli, A. Comparison of machine learning methods applied to SAR images for forest classification in mediterranean areas. Remote Sens. 2020, 12, 369. [Google Scholar] [CrossRef] [Green Version]
- Nedkov, R. Orthogonal transformation of segmented images from the satellite Sentinel-2. Comptes Rendus L’académie Bulg. Sci. Sci. Mathématiques Nat. 2017, 70, 687–692. [Google Scholar]
- Zhuang, D.; Liu, J. Research on the regional differentiation model of land use degree in China. J. Nat. Resour. 1997, 12, 105–111. [Google Scholar]
- Wang, X.; Pan, T.; Pan, R.; Chi, W.; Ma, C.; Ning, L.; Wang, X.; Zhang, J. Impact of land transition on landscape and ecosystem service value in Northeast Region of China from 2000–2020. Land 2022, 11, 696–714. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Qiao, B.; Zhu, C.; Cao, X.; Xiao, J.; Shi, F. Spatial autocorrelation analysis of land use and ecosystem service value in Maduo County, Qinghai Province, China at the grid scale. Chin. J. Appl. Ecol. 2020, 31, 1660–1672. [Google Scholar]
- Xu, J. Quantitative Geography, 2nd ed.; Higher Education Press: Beijing, China, 2020; pp. 158–164. [Google Scholar]
- Oliver, M.A.; Webster, R. A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena 2014, 113, 56–69. [Google Scholar] [CrossRef]
- Dong, X. Study on the Ecological Protection and Construction Development Strategy of Huangshui Basin in Qinghai Province; China Forestry Press: Beijing, China, 2008; pp. 101–169. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Moore, R. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Erinjery, J.J.; Singh, M.; Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the western ghats using multispectral sentinel-2 and sar sentinel-1 satellite imagery. Remote Sens. Environ. 2018, 216, 345–354. [Google Scholar] [CrossRef]
- Tavares, P.; Beltrão, N.; Guimarães, U.; Teodoro, A. Integration of sentinel-1 and sentinel-2 for classification and LULC mapping in the urban area of Belém, Eastern Brazilian Amazon. Sensors 2019, 19, 1140. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; He, E.; Jia, X.; Bao, H.; Zhou, X.; Ghosh, R.; Ravirathinam, P. A Statistically-guided deep network transformation and moderation framework for data with spatial heterogeneity. In Proceedings of the IEEE International Conference on Data Mining (ICDM), Auckland, New Zealand, 7–10 December 2021; pp. 767–776. [Google Scholar]
- Kotchen, M.J.; Young, O.R. Meeting the challenges of the anthropocene: Towards a science of coupled human-biophysical systems. Glob. Environ. Chang. 2007, 17, 149–151. [Google Scholar] [CrossRef]
- Verburg, P.H.; Schot, P.P.; Dijst, M.J.; Veldkamp, A. Land use change modelling: Current practice and research priorities. GeoJournal 2004, 61, 309–324. [Google Scholar] [CrossRef]
- Zhan, T.; Yu, Y.; Wu, X. Supply-demand spatial matching of ecosystem services in the Huangshui River Basin. Acta Ecol. Sin. 2021, 41, 7260–7272. [Google Scholar]
- Zhang, T.; Zhu, X.; Wang, Y.; Li, H.; Liu, C. The impact of climate variability and human activaty on runoff changes in the Huangshui River Basin. Resour. Sci. 2014, 36, 2256–2262. [Google Scholar]
- Li, T.; Gan, D.; Yang, Z.; Wang, K.; Qi, Z.; Li, H.; Chen, X. Spatial-temporal evolvement of ecosystem service value of Dongting Lake area influenced by changes of land use. J. Appl. Ecol. 2016, 27, 3787–3796. [Google Scholar]
- Yang, N.; Mo, W.; Li, M.; Zhang, X.; Chen, M.; Li, F.; Gao, W. A Study on the Spatio-temporal Land-Use changes and ecological response of the Dongting Lake Catchment. SPRS Int. J. Geo-Inf. 2021, 10, 716. [Google Scholar] [CrossRef]
- Day, J.; Lewis, B. Beyond univariate measurement of spatial autocorrelation: Disaggregated spillover effects for Indonesia. Ann. GIS 2013, 19, 169–185. [Google Scholar] [CrossRef]
- Xie, Y.; Emre, E.; Reem, Y.; Xun, T.; Yan, L.; Ruhi, D.; Shashi, S. Transdisciplinary foundations of geospatial data science. ISPRS Int. J. Geo-Inf. 2017, 6, 395. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Xian, Y. Xining Green Development Model City Construction Report; Science and Social Literature Press: Beijing, China, 2019; pp. 1–12. [Google Scholar]
- Zhang, X.; Lu, L.; Yu, H.; Zhang, X.; Li, D. Multi-scenario simulation of the impacts of land-use change on ecosystem service value on the Qinghai-Tibet Plateau. Chin. J. Ecol. 2021, 40, 887–898. [Google Scholar]
- Han, Y.; Yu, D.; Chen, K. Evolution and prediction of landscape patterns in the Qinghai Lake Basin. Land 2021, 10, 921. [Google Scholar] [CrossRef]
- Xuan, M. Ecological Service Assessment of Lhasa River Basin Based on SWAT Model. Master’s Thesis, North China Electric Power University, Beijing, China, 2020. [Google Scholar]
- Abd-Elmabod, S.; Fitch, A.; Zhang, Z.; Ali, R.; Jones, L. Rapid urbanisation threatens fertile agricultural land and soil carbon in the Nile delta. J. Environ. Manag. 2019, 252, 109668. [Google Scholar] [CrossRef] [PubMed]
- Ramachandra, T.; Bharath, A.; Sowmyashree, M. Monitoring urbanization and its implications in a mega city from space: Spatiotemporal patterns and its indicators. J. Environ. Manag. 2015, 148, 67–81. [Google Scholar] [CrossRef] [PubMed]
Type | Classification Features | Description | References |
---|---|---|---|
Spectral bands | Blue band Green band Red band NIR band | Using the 2nd, 3rd, 4th, and 8th bands of the Sentinel-2 MSI data for calculation, with a spatial resolution of 10 m | [30] |
Spectral indices | Normalized differential vegetation index (NDVI) Normalized differential water index (NDWI) Ratio resident-area index (RRI) | Calculated from the Sentinel-2 MSI data, with the enhancement of vegetation, water bodies, and urban and rural industrial/mining/residential lands. Spatial resolution is 10 m | [31,32,33] |
Texture information | Contrast Variance Mean Entropy | After performing the principal component analysis (PCA) on the 2nd, 3rd, 4th, and 8th bands of the Sentinel-2 MSI data, the first principal component was used to calculate the gray-level cooccurrence matrix (GLCM) to reflect the information on the distance, grayscale level, and direction in the image. Spatial resolution is 10 m | [34] |
Terrain information | DEM Slope Aspect Hill shade | The 12.5 m ALOS DEM data, which mainly display the topographic information, were used for the calculation, and finally resampled to 10 m | [34] |
Polarization bands | VV + VH polarization data for ascending and descending orbits | Sentinel-1 SAR data were used to extract the surface-scattering characteristics. Spatial resolution is 10 m | [35] |
Tasseled cap changes | Brightness Greenness Wetness | The 3rd, 4th, and 8th bands in the Sentinel-2 MSI data, which mainly reflect the moisture and brightness of soil and vegetation, were used for calculation. Spatial resolution is 10 m | [36] |
Ecosystem Service Functions | Cropland | Forestland | Other Forestland | High-Coverage Grassland | Medium-Coverage Grassland | Low-Coverage Grassland | Water | Wetland | Unutilized Land | |
---|---|---|---|---|---|---|---|---|---|---|
Supply | Food production | 0.85 | 0.27 | 0.19 | 0.23 | 0.00 | 0.00 | 0.80 | 0.51 | 0.01 |
Raw material production | 0.40 | 0.63 | 0.43 | 0.34 | 0.29 | 0.20 | 0.23 | 0.50 | 0.02 | |
Water supply | 0.02 | 0.33 | 0.22 | 0.19 | 0.16 | 0.00 | 8.29 | 2.59 | 0.01 | |
Regulation | Gas regulation | 0.67 | 2.07 | 1.41 | 1.21 | 1.03 | 0.73 | 0.77 | 1.90 | 0.07 |
Climate regulation | 0.36 | 6.20 | 4.23 | 3.19 | 2.71 | 1.91 | 2.29 | 3.60 | 0.05 | |
Environment purification | 0.10 | 1.80 | 1.28 | 1.05 | 0.89 | 0.63 | 5.55 | 3.60 | 0.21 | |
Hydrological regulation | 0.27 | 3.86 | 3.35 | 2.34 | 1.99 | 1.40 | 102.24 | 24.23 | 0.12 | |
Soil conservation | 1.03 | 2.52 | 1.72 | 1.47 | 1.25 | 0.00 | 0.93 | 2.31 | 0.08 | |
Support | Nutrient cycling | 0.12 | 0.19 | 0.13 | 0.11 | 0.00 | 0.00 | 0.07 | 0.18 | 0.01 |
Biodiversity | 0.13 | 2.30 | 1.57 | 1.34 | 1.14 | 0.80 | 2.55 | 7.87 | 0.07 | |
Culture | Aesthetic landscape | 0.06 | 1.01 | 0.69 | 0.59 | 0.50 | 0.35 | 1.89 | 4.73 | 0.03 |
Index | Urban | Crop Land | Forest Land | Other Forest Land | High-Coverage Grassland | Medium-Coverage Grassland | Low-Coverage Grassland | Water | Wetland | Unutilized Land |
---|---|---|---|---|---|---|---|---|---|---|
Moran’s I | 0.76 | 0.89 | 0.65 | 0.84 | 0.85 | 0.87 | 0.77 | 0.40 | 0.57 | 0.75 |
Z score | 137.40 | 152.87 | 117.90 | 150.88 | 150.98 | 159.95 | 135.70 | 73.15 | 108.25 | 132.06 |
p | <0.001 |
Type | Cropland | Forest Land | Other Forest Land | High-Coverage Grassland | Medium-Coverage Grassland | Low-Coverage Grassland | Water | Wetland | Unutilized Land | Total |
---|---|---|---|---|---|---|---|---|---|---|
Value/CNY billion | 3.55 | 0.70 | 13.63 | 7.54 | 3.95 | 0.95 | 2.19 | 0.60 | 0.07 | 33.18 |
Value percentage/% | 10.71 | 2.11 | 41.09 | 22.73 | 11.90 | 2.85 | 6.60 | 1.81 | 0.20 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, F.; Zhou, B.; Zhou, H.; Zhang, H.; Li, H.; Li, R.; Guo, Z.; Gao, X. Spatial Autocorrelation Analysis of Land Use and Ecosystem Service Value in the Huangshui River Basin at the Grid Scale. Plants 2022, 11, 2294. https://doi.org/10.3390/plants11172294
Shi F, Zhou B, Zhou H, Zhang H, Li H, Li R, Guo Z, Gao X. Spatial Autocorrelation Analysis of Land Use and Ecosystem Service Value in the Huangshui River Basin at the Grid Scale. Plants. 2022; 11(17):2294. https://doi.org/10.3390/plants11172294
Chicago/Turabian StyleShi, Feifei, Bingrong Zhou, Huakun Zhou, Hao Zhang, Hongda Li, Runxiang Li, Zhuanzhuan Guo, and Xiaohong Gao. 2022. "Spatial Autocorrelation Analysis of Land Use and Ecosystem Service Value in the Huangshui River Basin at the Grid Scale" Plants 11, no. 17: 2294. https://doi.org/10.3390/plants11172294
APA StyleShi, F., Zhou, B., Zhou, H., Zhang, H., Li, H., Li, R., Guo, Z., & Gao, X. (2022). Spatial Autocorrelation Analysis of Land Use and Ecosystem Service Value in the Huangshui River Basin at the Grid Scale. Plants, 11(17), 2294. https://doi.org/10.3390/plants11172294