Foliarly Applied 24-Epibrassinolide Modulates the Electrical Conductivity of the Saturated Rhizospheric Soil Extracts of Soybean under Salinity Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Trial Management
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Soil Analysis
3.2. Principal Component Analysis
3.2.1. Effects of Salinity Levels, 24-Epibrassinolide and Weeks after the Commencement of Irrigation with Saline Water (WAST) on the Electrical Conductivity of the Saturated Soil Extracts in the Rhizosphere (ECse)
3.2.2. Interaction Effects of Growth Stages of Application of BR and Salinity Concentrations on Electrical Conductivity of the Saturated Soil Extracts (ECses) in Rhizospheric Soil
3.2.3. Interaction Effects of Growth Stages of BR Application and Weeks after Commencement of Irrigation with Saline Water (WAST) on ECse
3.2.4. Interaction Effects of Salinity Levels and Weeks after Commencement of Irrigation with Saline Water
3.2.5. Three-Way Interaction Effects of BR Application Stages, Salinity Levels and Weeks after Commencement of Irrigation with Saline Water on the Electrical Conductivity of the Rhizospheric Saturated Soil Extracts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mando, A.; Ouattara, B.; Sedogo, M.; Stroosnijder, L.; Ouattara, K.; Brussaard, L.; Vanlauwe, B. Long-Term Effect of Tillage and Manure Application on Soil Organic Fractions and Crop Performance Under Sudano-Sahelian Conditions. Soil Till. Res. 2005, 80, 95–101. [Google Scholar] [CrossRef]
- United Nation Population Division. World Population Prospects (Sustaining Water); The United Nations: New York, NY, USA, 1994. [Google Scholar]
- An, P.; Kajiwara, T.; Inoue, T.; Li, X.; Inanaga, S. Cultivation of Halophytes in Saline Soils: A Case Study of the Saline Soils Around Bohai Bay, China. Sand Dune Res. 2013, 60, 9–18. [Google Scholar]
- United Nations. Department of Economic and Social Affairs, Population Division. In World Population Prospects: Comprehensive Tables ST/ESA/SER.A/336; United Nations: New York, NY, USA, 2012; Volume 1. [Google Scholar]
- Topoliantz, S.; Ponge, J.F.; Ballof, S. Manioc Peel and Charcoal: A Potential Organic Amendment for Sustainable Soil Fertility in the Tropics. Biol. Fert. Soils 2005, 41, 15–21. [Google Scholar] [CrossRef]
- Fariduddin, Q.; Ahmed, M.; Mir, B.A.; Yusuf, M.; Khan, T.A. 24-Epibrassinolide Mitigates the Adverse Effects of Manganese Induced Toxicity Through Improved Antioxidant System and Photosynthetic Attributes in Brassica juncea. Environ. Sci. Pollut. Res. 2015, 22, 11349–11359. [Google Scholar] [CrossRef]
- Otie, V.; Ping, A.; Udo, I.; Eneji, E.A. Brassinolide Effects on Maize (Zea Mays L.) Growth and Yield Under Waterlogged Conditions. J. Plant. Nutr. 2019, 42, 954–969. [Google Scholar] [CrossRef]
- Otie, V.; An, P.; Ali, I.; Eneji, E.A. Plant Growth Regulator-Brassinolide for Mitigating Field Waterlogging Stress on Maize. Int. J. Plant Soil Sci. 2019, 30, 1–14. [Google Scholar] [CrossRef]
- Lu, J.; Zong, X.F.; Ahmad, A.S.; Wu, X.; Wu, C.; Li, Y.P.; Wang, S.G. Alteration in Morpho-Physiological Attributes of Leymus Chinensis (Trin.) Tzvelev By Exogenous Application of Brassinolide Under Varying Levels of Drought Stress. Chil. J. Agric. Res. 2020, 80, 61–71. [Google Scholar] [CrossRef]
- Otie, V.; Udo, I.; Shao, Y.; Itam, M.O.; Okamoto, H.; An, P.; Eneji, E.A. Salinity Effects on Morpho-Physiological and Yield Traits of Soybean (Glycine Max L.) As Mediated by Foliar Spray with Brassinolide. Plants 2021, 10, 541. [Google Scholar] [CrossRef]
- Bajguz, A. Effect of Brassinosteroids on Nucleic Acids and Protein Content in Cultured Cells of Chlorella vulgaris. Plant Physiol. Biochem. 2000, 38, 209–215. [Google Scholar] [CrossRef]
- Jones, D.L.; Nguyen, C.; Finlay, R.D. Carbon Flow in the Rhizosphere: Carbon Trading at the Soil-Root Interface. Plant Soil 2009, 321, 5–33. [Google Scholar] [CrossRef]
- Lȇ, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Cuevas, J.; Daliakopoulos, I.N.; del Moral, F.; Hueso, J.J.; Tsanis, I.K. A review of Soil-Improving Cropping Systems for Soil Salinization. Agron. 2019, 9, 295. [Google Scholar] [CrossRef]
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soils, 15th ed.; Pearson Education: Colunbus, OH, USA, 2016; pp. 421–438. [Google Scholar]
- Litalien, A.; Zeeb, B. Curing the Earth: A review of Anthropogenic Soil Salinization and Plant-Based Strategies for Sustainable Mitigation. Sci. Total Environ. 2020, 698, 134235. [Google Scholar] [CrossRef] [PubMed]
- Hasana, R.; Mayake, H. Salinity Stress Alters Nutrient Uptake and Causes the Damage of Root and Leaf Anatomy in Maize. KnE Life Sci. 2017, 3, 219–225. [Google Scholar] [CrossRef]
- Jamil, A.; Riaz, S.; Ashraf, M.; Foolad, M.R. Gene Expression Profiling of Plants Under Salt Stress. Crit. Rev. Plant Sci. 2011, 30, 435–458. [Google Scholar] [CrossRef]
- Anjum, S.A.; Tanveer, M.; Hussain, S.; Tung, S.A.; Samad, R.A.; Wang, L.; Khan, I.; Rehman, N.; Shah, A.N.; Shahzad, B. Exogenously Applied Methyl Jasmonate Improves the Drought Tolerance in Wheat Imposed at Early and Late Developmental Stages. Acta Physiol. Plant. 2016, 38, 25. [Google Scholar] [CrossRef]
- Shahzad, B.; Tanveer, M.; Che, Z.; Rehman, A.; Cheema, S.A.; Sharma, A.; Song, H.; Rehman, S.; Zhaorong, D. Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review. Ecotoxicol. Environ. Safety 2018, 147, 935–944. [Google Scholar] [CrossRef]
- Hussain, M.A.; Fahad, S.; Sharif, R.; Jan, M.F.; Mujtaba, M.; Ali, Q.; Ahmad, A.; Ahmad, H.; Amin, N.; Ajayo, B.S.; et al. Multifunctional Role of Brassinosteroid and Its Analogues in Plants. Plant Growth Regul. 2020, 92, 141–156. [Google Scholar] [CrossRef]
- Pandey, C.B.; Kumar, P.; Chaudhari, S.K. Root Exudates Reduce Electrical Conductivity and Water Potential of Rhizospheres and Facilitate Non-Halophytes to Survive in Dry Land Saline Soils. Trop. Ecol. 2017, 58, 705–716. [Google Scholar]
- Sasse, J.; Martinoia, E.; Northen, T. Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? Trends Plant Sci. 2018, 23, 25–41. [Google Scholar] [CrossRef]
- Tawaraya, K.; Horie, R.; Saito, S.; Wagatsuma, T.; Saito, K.; Oikawa, A. Metabolite Profiling of Root Exudates of Common Bean Under Phosphorus Deficiency. Metabolites 2014, 4, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Tawaraya, K.; Horie, R.; Shinano, T.; Wagatsuma, T.; Saito, K.; Oikawa, A. Metabolite Profiling of Soybean Root Exudates Under Phosphorus Deficiency. Soil Sci. Plant Nutr. 2014, 60, 679–694. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chen, H.Z.; Xiang, J.; Zhang, Y.K.; Wang, Z.G.; Zhu, D.F.; Wang, J.K.; Zhang, Y.P.; Wang, Y.L. Rice Spikelet Formation Inhibition Caused by Decreased Sugar Utilization Under High Temperature Is Associated with Brassinolide Decomposition. Environ. Exp. Bot. 2021, 190, 104585. [Google Scholar] [CrossRef]
- Dardanelli, M.S.; Manyani, H.; González-Barroso, S.; Rodríguez-Carvajal, M.A.; Gil-Serrano, A.M.; Espuny, M.R.; López-Baena, J.; Bellogín, R.A.; Megías, M.; Ollero, F.J. Effect of the Presence of the Plant Growth Promoting Rhizobacterium (PGPR) Chry- Seobacterium Balustinum Aur9 and Salt Stress in the Pattern of Flavonoids Exuded by Soybean Roots. Plant Soil 2010, 328, 483–493. [Google Scholar] [CrossRef]
- Dardanelli, M.S.; de Córdoba, F.J.F.; Estévez, J.; Contreras, R.; Cubo, M.T.; Rodríguez-Carvajal, M.A.; Gil-Serrano, A.M.; López-Baena, F.J.; Bellogín, R.; Manayni, H.; et al. Changes in Flavonoids Secreted by Phaseolus Vulgaris Roots in The Presence of Salt and the Plant Growth-Promoting Rhizobacterium Chryseobacterium balustinum. Appl. Soil Ecol. 2012, 57, 31–38. [Google Scholar] [CrossRef]
- Marin, J.A.; Andreu, P.; Carrasco, A.; Arbeloa, A. Determination of Proline Concentration, An Abiotic Stress Marker, In Root Exudates of Excised Root Cultures of Fruit Tree Rootstocks Under Salt Stress. Rev. Régions Arid. 2010, 24, 722–727. [Google Scholar]
- Bui, E.N. Causes of Soil Salinization, Sodification, and Alkalinization. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Zhang, J.G.; Xu, X.W.; Li, S.Y. Danger of Sudden Strong Rainfall to Calligonum-Take the Tarim Desert Highway Shelterbelt Eco-Project as an Example. In Association for Science and Technology of Xinjiang Uygur Autonomous Region. Collected Papers of the 6th Youth Academic Year and the 1st Doctoral Forum in Xinjiang; Xinjiang Science and Technology Press: Urumqi, China, 2006; Volume 3, pp. 1261–1266. (In Chinese) [Google Scholar]
- Kaya, C.; Aydemir, S.; Akram, N.A.; Ashraf, M. Epibrassinolide Application Regulates Some Key Physio-Biochemical Attributes as Well as Oxidative Defense System in Maize Plants Grown Under Saline Stress. J. Plant Growth Regul. 2018, 37, 1244–1257. [Google Scholar] [CrossRef]
- Roh, J.; Yeom, H.S.; Jang, H.; Kim, S.; Youn, J.H.; Kim, S.K. Identification and Biosynthesis of C-24 Ethylidene Brassinosteroids in Arabidopsis thaliana. J. Plant Biol. 2017, 60, 533–538. [Google Scholar] [CrossRef]
- Chmur, M.; Bajguz, A. Brassinolide Enhances the Level of Brassinosteroids, Protein, Pigments, and Monosaccharides in Wolffia arrhiza treated with brassinazole. Plants 2021, 10, 1311. [Google Scholar] [CrossRef]
- Neumann, G. Root Exudates and Nutrient Cycling. In Nutrient Cycling in Terrestrial Ecosystems; Marschner, P., Rengel, Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 123–157. [Google Scholar]
- Zhao, M.; Zhao, J.; Yuan, J.; Hale, L.; Wen, T.; Huang, Q.; Vivanco, J.M.; Zhou, J.; Kowalchuk, G.A.; Shen, Q. Root Exudates Drive Soil-Microbe-Nutrient Feedbacks in Response to Plant Growth. Plant Cell Environ. 2021, 44, 613–628. [Google Scholar] [CrossRef]
- Eckstein, A.; Zieba, P.; Gabrys, H. Sugar and Light Effects on the Condition of the Photosynthetic Apparatus of Arabidopsis thaliana Cultured In Vitro. J. Plant Growth Regul. 2012, 31, 90–101. [Google Scholar] [CrossRef]
- Shrivastava, P.; Kumar, R. Soil Salinity: A Serious Environmental Issue and Plant Growth Promoting Bacteria as One of the Tools for Its Alleviation. Saudi J. Biol. Sci. 2015, 22, 123. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Bustingorri, C.; Lavado, R.S. Soybean Growth Under Stable Versus Peak Salinity. Sci. Agric. 2011, 68, 102. [Google Scholar] [CrossRef]
- Yuan, J.; Zhao, J.; Wen, T.; Zhao, M.; Li, R.; Goossens, P.; Huang, Q.; Bai, Y.; Vivanco, J.M.; Kowalchuk, G.A.; et al. Root Exudates Drive the Soil-Borne Legacy of Aboveground Pathogen Infection. Microbiome 2018, 6, 156. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, G.A.; Abruzzese, A.; Lucchini, G.; Fiorani, F.; Cocucci, S. Efflux and Active Re-Adsorption of Glucose in Roots of Cotton Plants Grown Under Saline Conditions. Plant Soil 2000, 220, 1–11. [Google Scholar] [CrossRef]
Soil Properties | Values |
---|---|
Sand (g/kg) | 961.00 |
Silt (g/kg) | 40.00 |
Clay (g/kg) | 35.00 |
CEC (meq/100 g) | 2.00 |
pH (H2O) | 5.98 |
ECse (dS/m) | 0.11 |
C (g/kg) | 0.30 |
P (g/kg) | 0.65 |
TN (g/kg) | 0.10 |
Exchangeable Cation Content (meq/100 g) | |
NH4+ | 0.00 |
K+ | 0.06 |
Ca2+ | 0.35 |
Mg2+ | 0.68 |
SL (dS/m) | ECse (dS/m) | BR Application Stages | ECse (dS/m) | WAST | ECse (dS/m) |
---|---|---|---|---|---|
3.24 | 3.37c | No Application | 4.88a | 3 | 1.91h |
6.06 | 4.38b | Seedling | 4.39b | 4 | 2.57g |
8.63 | 5.15a | Flowering | 4.36b | 5 | 4.04f |
Podding | 4.34b | 6 | 4.61e | ||
Seedling + Flowering | 4.00c | 7 | 4.97d | ||
Seedling + Flowering + Podding | 3.82d | 8 | 5.20c | ||
9 | 5.42b | ||||
10 | 5.68a |
BR Application Stages | Salinity Levels (SLs) | ||
---|---|---|---|
SL1 (dS/m) | SL2 (dS/m) | SL3 (dS/m) | |
No Application | 3.80i | 4.91c | 5.94a |
Seedling | 3.49j | 4.49ef | 5.20b |
Flowering | 3.47j | 4.39fg | 5.23b |
Podding | 3.48j | 4.34g | 5.20b |
Seedling + Flowering | 3.12k | 4.13h | 4.76d |
Seedling + Flowering + Podding | 2.89l | 4.01h | 4.56e |
BR Application Stages | Weeks after Commencement of Irrigation with Saline Water | |||||||
---|---|---|---|---|---|---|---|---|
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
No Application | 2.62r | 3.11q | 4.47lm | 4.95fghi | 5.30e | 5.63cd | 6.07b | 6.91a |
Seedling | 1.88t | 2.61r | 4.14no | 4.70j-l | 5.01fgh | 5.41de | 5.58cd | 5.79c |
Flowering | 2.02t | 2.53rs | 4.04no | 4.65j-l | 5.05fg | 5.32e | 5.56cd | 5.74c |
Podding | 1.86t | 2.50rs | 4.01o | 4.64j-l | 5.08f | 5.31e | 5.56cd | 5.74c |
Seedling + Flowering | 1.56u | 2.37s | 3.94o | 4.49lm | 4.77h-k | 4.86f-j | 4.96fghi | 5.07fg |
Seedling + Flowering + Podding | 1.50u | 2.30s | 3.64p | 4.26mn | 4.58kl | 4.65j-l | 4.76i-k | 4.83g-j |
SL (dS/m) | Weeks after the Commencement of Irrigation with Saline Water | |||||||
---|---|---|---|---|---|---|---|---|
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
3.24 | 1.29S | 1.80q | 3.18n | 3.67m | 3.97l | 4.19k | 4.35j | 4.55i |
6.06 | 1.63r | 2.59p | 3.84l | 4.87h | 5.12g | 5.34f | 5.67e | 5.96cd |
8.63 | 2.81o | 3.32n | 5.11g | 5.30f | 5.81de | 6.06c | 6.23b | 6.52a |
BR Application Stages | SL (dS/m) | Weeks after Commencement of Irrigation with Saline Water | |||||||
---|---|---|---|---|---|---|---|---|---|
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
No application | 3.24 | 1.83a | 2.30a | 3.32a | 3.87a | 4.28a | 4.65a | 4.94a | 5.24a |
6.06 | 2.19a | 3.03a | 4.53a | 5.05a | 5.29a | 5.75a | 6.15a | 7.27a | |
8.63 | 3.85a | 4.01a | 5.56a | 5.93a | 6.33a | 6.49a | 7.11a | 8.23a | |
Seedling | 3.24 | 1.32a | 1.67a | 3.26a | 3.79a | 4.08a | 4.37a | 4.57a | 4.85a |
6.06 | 1.71a | 2.76a | 3.99a | 4.97a | 5.11a | 5.59a | 5.78a | 5.97a | |
8.63 | 2.60a | 3.40a | 5.18a | 5.33a | 5.84a | 6.29a | 6.39a | 6.54a | |
Flowering | 3.24 | 1.38a | 1.60a | 3.21a | 3.74a | 4.08a | 4.37a | 4.55a | 4.81a |
6.06 | 1.70a | 2.67a | 3.77a | 4.94a | 5.13a | 5.29a | 5.72a | 5.89a | |
8.63 | 2.97a | 3.32a | 5.16a | 5.25a | 5.93a | 6.29a | 6.41a | 6.52a | |
Podding | 3.24 | 1.30a | 1.89a | 3.15a | 3.70a | 4.04a | 4.35a | 4.57a | 4.81a |
6.06 | 1.64a | 2.41a | 3.71a | 4.94a | 5.14a | 5.25a | 5.74a | 5.92a | |
8.63 | 2.62a | 3.21a | 5.18a | 5.27a | 6.07a | 6.33a | 6.38a | 6.49a | |
Seedling + Flowering | 3.24 | 0.99a | 1.69a | 3.11a | 3.56a | 3.83a | 3.88a | 3.91a | 4.00a |
6.06 | 1.18a | 2.38a | 3.56a | 4.79a | 5.11a | 5.19a | 5.38a | 5.44a | |
8.63 | 2.52a | 3.05a | 5.16a | 5.10a | 5.38a | 5.52a | 5.58a | 5.76a | |
Seedling + Flowering + Podding | 3.24 | 0.91a | 1.64a | 3.03a | 3.33a | 3.49a | 3.53a | 3.57a | 3.60a |
6.06 | 1.33a | 2.30a | 3.49a | 4.52a | 4.92a | 4.99a | 5.23a | 5.30a | |
8.63 | 2.26a | 2.96a | 4.41a | 4.93a | 5.33a | 5.43a | 5.49a | 5.60a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otie, V.; Ibrahim, A.; Udo, I.; Kashiwagi, J.; Matsuura, A.; Shao, Y.; Itam, M.; An, P.; Eneji, A.E. Foliarly Applied 24-Epibrassinolide Modulates the Electrical Conductivity of the Saturated Rhizospheric Soil Extracts of Soybean under Salinity Stress. Plants 2022, 11, 2330. https://doi.org/10.3390/plants11182330
Otie V, Ibrahim A, Udo I, Kashiwagi J, Matsuura A, Shao Y, Itam M, An P, Eneji AE. Foliarly Applied 24-Epibrassinolide Modulates the Electrical Conductivity of the Saturated Rhizospheric Soil Extracts of Soybean under Salinity Stress. Plants. 2022; 11(18):2330. https://doi.org/10.3390/plants11182330
Chicago/Turabian StyleOtie, Victoria, Ali Ibrahim, Itohowo Udo, Junichi Kashiwagi, Asana Matsuura, Yang Shao, Michael Itam, Ping An, and Anthony Egrinya Eneji. 2022. "Foliarly Applied 24-Epibrassinolide Modulates the Electrical Conductivity of the Saturated Rhizospheric Soil Extracts of Soybean under Salinity Stress" Plants 11, no. 18: 2330. https://doi.org/10.3390/plants11182330
APA StyleOtie, V., Ibrahim, A., Udo, I., Kashiwagi, J., Matsuura, A., Shao, Y., Itam, M., An, P., & Eneji, A. E. (2022). Foliarly Applied 24-Epibrassinolide Modulates the Electrical Conductivity of the Saturated Rhizospheric Soil Extracts of Soybean under Salinity Stress. Plants, 11(18), 2330. https://doi.org/10.3390/plants11182330