Prediction of Nitrogen Dosage in ‘Alicante Bouschet’ Vineyards with Machine Learning Models
Abstract
:1. Introduction
2. Results
2.1. Climatic Conditions and Grape Quality Indices
2.2. Machine Learning Model-Building and Foliar N
2.3. Predictions
3. Discussion
3.1. Machine Learning Model-Building
3.2. Tissue Test at High Grape Yield and Quality Levels
3.3. Grape Yield and Quality
3.4. Carryover Effects of Fertilization
3.5. Building a Dataset for Nutrient Management of Vineyards
4. Materials and Methods
4.1. Experimental Setup
4.2. Treatments
4.3. Foliar and Fruit Analysis
4.4. Meteorological Data
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verdenal, T.; Dienes-Nagy, Á.; Spangenberg, J.E.; Zufferey, V.; Spring, J.L.; Viret, O.; Marin-Carbonne, J.; van Leeuwen, C. Understanding and Managing Nitrogen Nutrition in Grapevine: A Review. OENO One 2021, 55, 1–43. [Google Scholar] [CrossRef]
- Puckette, M.; Hammack, J. Wine Folly: The Master Guide, 1st ed.; Avery: New York, NY, USA, 2018; p. 317. [Google Scholar]
- Stefanello, L.O.; Schwalbert, R.; Schwalbert, R.A.; De Conti, L.; de Souza Kulmann, M.S.; Garlet, L.P.; Silveira, M.L.R.; Sautter, C.K.; de Melo, G.W.B.; Rozane, D.E.; et al. Nitrogen Supply Method Affects Growth, Yield and Must Composition of Young Grape Vines (Vitis vinifera L. Cv Alicante Bouschet) in Southern Brazil. Sci. Hortic. 2020, 261, 108910. [Google Scholar] [CrossRef]
- Stefanello, L.O.; Schwalbert, R.; Schwalbert, R.A.; Drescher, G.L.; De Conti, L.; Pott, L.P.; Tassinari, A.; de Souza Kulmann, M.S.; da Silva, I.C.B.; Brunetto, G. Ideal Nitrogen Concentration in Leaves for the Production of High-Quality Grapes Cv ‘Alicante Bouschet’ (Vitis vinifera L.) Subjected to Modes of Application and Nitrogen Doses. Eur. J. Agron. 2021, 123, 126200. [Google Scholar] [CrossRef]
- Martinez, D.A.; Loening, U.E.; Graham, M.C.; Gathorne-Hardy, A. When the Medicine Feeds the Problem; Do Nitrogen Fertilisers and Pesticides Enhance the Nutritional Quality of Crops for Their Pests and Pathogens? Front. Sustain. Food Syst. 2021, 5, 234. [Google Scholar] [CrossRef]
- Hilbert, G.; Soyer, J.P.; Molot, C.; Giraudon, J.; Milin, M.; Gaudillere, J.P. Effects of Nitrogen Supply on Must Quality and Anthocyanin Accumulation in Berries of Cv. Merlot. VITIS J. Grapevine Res. 2003, 42, 69–76. [Google Scholar] [CrossRef]
- Baeza, P.; Junquera, P.; Peiro, E.; Lissarrague, J.R.; Uriarte, D.; Vilanova, M. Effects of Vine Water Status on Yield Components, Vegetative Response and Must and Wine Composition. Adv. Grape Wine Biotechnol. 2019, 1, 73–94. [Google Scholar] [CrossRef]
- Toselli, M.; Baldi, E.; Cavani, L.; Mazzon, M.; Quartieri, M.; Sorrenti, G.; Marzadori, C. Soil-Plant Nitrogen Pools in Nectarine Orchard in Response to Long-Term Compost Application. Sci. Total Environ. 2019, 671, 10–18. [Google Scholar] [CrossRef]
- Cui, M.; Zeng, L.; Qin, W.; Feng, J. Measures for Reducing Nitrate Leaching in Orchards:A Review. Environ. Pollut. 2020, 263, 114553. [Google Scholar] [CrossRef]
- Mia, M.J.; Monaci, E.; Murri, G.; Massetani, F.; Facchi, J.; Neri, D. Soil Nitrogen and Weed Biodiversity: An Assessment under Two Orchard Floor Management Practices in a Nitrogen Vulnerable Zone in Italy. Horticulturae 2020, 6, 96. [Google Scholar] [CrossRef]
- Tarara, J.M.; Lee, J.; Spayd, S.E.; Scagel, C.F. Berry Temperature and Solar Radiation Alter Acylation, Proportion, and Concentration of Anthocyanin in Merlot Grapes. Am. J. Enol. Vitic. 2008, 59, 235–247. [Google Scholar]
- Kelly, M.; Gill Giese, W.; Velasco-Cruz, C.; Lawson, L.; Ma, S.; Wright, M.; Zoecklein, B. Effect of Foliar Nitrogen and Sulfur on Petit Manseng (Vitis vinifera L.) Grape Composition. J. Wine Res. 2017, 28, 165–180. [Google Scholar] [CrossRef]
- Brunetto, G.; Ceretta, C.A.; Kaminski, J.; de Melo, G.W.; Girotto, E.; Trentin, E.E.; Lourenzi, C.R.; Vieira, R.C.B.; Gatiboni, L.C. Produção e Composição Química Da Uva de Videiras Cabernet Sauvignon Submetidas à Adubação Nitrogenada. Ciência Rural 2009, 39, 2035–2041. [Google Scholar] [CrossRef]
- CQFS-RS/SC. Fertilization and Liming Manual for the States of Rio Grande Do Sul and Santa Catarina, 11th ed.; SBCS—Núcleo Regional Sul/UFRGS: Porto Alegre, Brazil, 2016; Volume 11. [Google Scholar]
- Tagliavini, M.; Millard, P.; Quartieri, M.; Marangoni, B. Timing of Nitrogen Uptake Affects Winter Storage and Spring Remobilisation of Nitrogen in Nectarine (Prunus persica var. nectarina). Trees. Plant Soil 1999, 211, 149–153. [Google Scholar] [CrossRef]
- Taylor, B.K.; van den Ende, B. The Nitrogen Nutrition of the Peach Tree. IV. Storage and Mobilization of Nitrogen in Mature Trees. Aust. J. Agric. Res. 1969, 20, 869–881. [Google Scholar] [CrossRef]
- Tromp, J. Nutrient Reserves in Roots of Fruit Trees, in Particular Carbohydrates and Nitrogen. Plant Soil 1983, 71, 401–413. [Google Scholar] [CrossRef]
- Cruz, A.F.; de Almeida, G.M.; Salvador Wadt, P.G.; de Carvalho Pires, M.; Gerosa Ramos, M.L. Seasonal Variation of Plant Mineral Nutrition in Fruit Trees. Braz. Arch. Biol. Technol. 2019, 62, 19180340. [Google Scholar] [CrossRef]
- Grossman, Y.L.; Dejong, T.M. Maximum Vegetative Growth Potential and Seasonal Patterns of Resource Dynamics during Peach Growth. Ann. Bot. 1995, 76, 473–482. [Google Scholar] [CrossRef]
- Rubio Ames, Z.; Brecht, J.K.; Olmstead, M.A. Nitrogen Fertilization Rates in a Subtropical Peach Orchard: Effects on Tree Vigor and Fruit Quality. J. Sci. Food Agric. 2020, 100, 527–539. [Google Scholar] [CrossRef]
- Nava, G.; Júnior, C.R.; Parent, L.É.; Brunetto, G.; Moura-Bueno, J.M.; Navroski, R.; Benati, J.A.; Barreto, C.F. Esmeralda Peach (Prunus persica) Fruit Yield and Quality Response to Nitrogen Fertilization. Plants 2022, 11, 352. [Google Scholar] [CrossRef]
- Badra, A.; Parent, L.E. Early Nutrient Diagnosis of Kentucky Bluegrass Combining Machine Learning and Compositional Methods. J. Plant Sci. 2022. [Google Scholar]
- Parent, L.E.; Natale, W.; Brunetto, G. Machine Learning, Compositional and Fractal Models to Diagnose Soil Quality and Plant Nutrition. In Soil Science—Emerging Technologies, Global Perspectives and Applications; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Parent, L.E.; Jamaly, R.; Atucha, A.; JeanneParent, E.; Workmaster, B.A.; Ziadi, N.; Parent, S.É. Current and Next-Year Cranberry Yields Predicted from Local Features and Carryover Effects. PLoS ONE 2021, 16, e0250575. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Friant, P.; Choné, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. Influence of Climate, Soil, and Cultivar on Terroir. Am. J. Enol. Vitic. 2004, 55, 207–217. [Google Scholar]
- Parent, S.É.; Lafond, J.; Paré, M.C.; Parent, L.E.; Ziadi, N. Conditioning Machine Learning Models to Adjust Lowbush Blueberry Crop Management to the Local Agroecosystem. Plants 2020, 9, 1401. [Google Scholar] [CrossRef]
- Bellazzi, R.; Zupan, B. Predictive Data Mining in Clinical Medicine: Current Issues and Guidelines. Int. J. Med. Inform. 2008, 77, 81–97. [Google Scholar] [CrossRef]
- Nelson, L.A.; Anderson, R.L. Partitioning of Soil Test—Crop Response Probability. Soil Test. Correl. Interpret. Anal. Results 1977, 29, 19–38. [Google Scholar] [CrossRef]
- de Wit, C.T. Resource Use Efficiency in Agriculture. Agric. Syst. 1992, 40, 125–151. [Google Scholar] [CrossRef]
- van Dijk, A.D.J.; Kootstra, G.; Kruijer, W.; de Ridder, D. Machine Learning in Plant Science and Plant Breeding. iScience 2021, 24, 101890. [Google Scholar] [CrossRef]
- Hesami, M.; Jones, A.M.P. Application of Artificial Intelligence Models and Optimization Algorithms in Plant Cell and Tissue Culture. Appl. Microbiol. Biotechnol. 2020, 104, 9449–9485. [Google Scholar] [CrossRef]
- Singh, A.; Ganapathysubramanian, B.; Singh, A.K.; Sarkar, S. Machine Learning for High-Throughput Stress Phenotyping in Plants. Trends Plant Sci. 2016, 21, 110–124. [Google Scholar] [CrossRef]
- Jafari, M.; Shahsavar, A. The Application of Artificial Neural Networks in Modeling and Predicting the Effects of Melatonin on Morphological Responses of Citrus to Drought Stress. PLoS ONE 2020, 15, e0240427. [Google Scholar] [CrossRef]
- Hesami, M.; Alizadeh, M.; Jones, A.M.P.; Torkamaneh, D. Machine Learning: Its Challenges and Opportunities in Plant System Biology. Appl. Microbiol. Biotechnol. 2022, 106, 3507–3530. [Google Scholar] [CrossRef]
- Grinblat, G.L.; Uzal, L.C.; Larese, M.G.; Granitto, P.M. Deep Learning for Plant Identification Using Vein Morphological Patterns. Comput. Electron. Agric. 2016, 127, 418–424. [Google Scholar] [CrossRef] [Green Version]
- Mishra, B.; Kumar, N.; Mukhtar, M.S. Systems Biology and Machine Learning in Plant–Pathogen Interactions. Mol. Plant-Microbe Interact. 2019, 32, 45–55. [Google Scholar] [CrossRef]
- Nowaki, R.H.; Parent, S.É.; Cecilio Filho, A.B.; Rozane, D.E.; Meneses, N.B.; Silva, J.A.D.S.D.; Natale, W.; Parent, L.E. Phosphorus Over-Fertilization and Nutrient Misbalance of Irrigated Tomato Crops in Brazil. Front. Plant Sci. 2017, 8, 825. [Google Scholar] [CrossRef]
- Hahn, L.; Parent, L.-É.; Paviani, A.C.; Feltrim, A.L.; Wamser, A.F.; Rozane, D.E.; Ender, M.M.; Grando, D.L.; Moura-Bueno, J.M.; Brunetto, G. Garlic (Allium sativum) Feature-Specific Nutrient Dosage Based on Using Machine Learning Models. PLoS ONE 2022, 17, e0268516. [Google Scholar] [CrossRef]
- Parent, S.É.; Barlow, P.; Parent, L.E. Nutrient Balances of New Zealand Kiwifruit (Actinidia deliciosa Cv. Hayward) at High Yield Level. Commun. Soil Sci. Plant Anal. 2015, 46, 256–271. [Google Scholar] [CrossRef]
- Rozane, D.E.; Vahl de Paula, B.; Wellington Bastos de Melo, G.; Haitzmann dos Santos, E.M.; Trentin, E.; Marchezan, C.; Stefanello da Silva, L.O.; Tassinari, A.; Dotto, L.; Nunes de Oliveira, F.; et al. Compositional Nutrient Diagnosis (CND) Applied to Grapevines Grown in Subtropical Climate Region. Horticulturae 2020, 6, 56. [Google Scholar] [CrossRef]
- Melo, G.W.; Rozane, D.E.; Brunetto, G. Identification of the Critical Levels, Sufficiency Ranges and Potential Response to Nutrient Fertilization in Vineyards by the DRIS Method. Acta Hortic. 2018, 1217, 423–429. [Google Scholar] [CrossRef]
- Brunetto, G.; Ceretta, C.A.; de Melo, G.W.B.; Girotto, E.; Ferreira, P.A.A.; Lourenzi, C.R.; da Rosa Couto, R.; Tassinaria, A.; Hammerschmitt, R.K.; da Silva, L.O.S.; et al. Contribution of Nitrogen from Urea Applied at Different Rates and Times on Grapevine Nutrition. Sci. Hortic. 2016, 207, 1–6. [Google Scholar] [CrossRef]
- Raij, B.V.; Cantarella, H.; Quaggio, J.A.; Furlani, A.M.C. Recomendações de Adubação e Calagem Para o Estado de São Paulo; Instituto Agronómico & Fundação IAC: São Paulo, Brazil, 1996; Volume 1, pp. 1–285. [Google Scholar]
- Betemps, D.L.; de Paula, B.V.; Parent, S.É.; Galarça, S.P.; Mayer, N.A.; Marodin, G.A.B.; Rozane, D.E.; Natale, W.; Melo, G.W.B.; Parent, L.E.; et al. Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional Methods. Agronomy 2020, 10, 900. [Google Scholar] [CrossRef]
- Demšar, J.; Zupan, B. Hands-on Training about Overfitting. PLoS Comput. Biol. 2021, 17, e1008671. [Google Scholar] [CrossRef] [PubMed]
- Vanni Ferreira, L.; Picolotto, L.; Aldrighi Gonçalves, M.; Valgas, R.A.; Corrêa Antunes, L.E. Fertilizer Maintenance Nitrogen in Vegetative Development and Production of Peach. Braz. J. Agric. Rev. Agric. 2018, 93, 80. [Google Scholar] [CrossRef] [Green Version]
- Farias Barreto, C.; Correa Antunes, L.E.; Ferreira, L.V.; Navroski, R.; Benati, J.A.; Nava, G. Nitrogen Fertilization and Genotypes of Peaches in High-Density. Rev. Bras. Frutic. 2020, 42, 1–9. [Google Scholar] [CrossRef]
- de Paula, B.V.; Arruda, W.S.; Parent, L.E.; de Araujo, E.F.; Brunetto, G. Nutrient Diagnosis of Eucalyptus at the Factor-Specific Level Using Machine Learning and Compositional Methods. Plants 2020, 9, 1049. [Google Scholar] [CrossRef] [PubMed]
- Castamann, A.; Alexandre, P.; Escosteguy, V.; Berres, D.; Zanella, S. Diagnosis and Recommendation Integrated System (Dris) of Soybean Seed Oil Content. Rev. Bras. Ciência Solo 2012, 36, 1820–1827. [Google Scholar] [CrossRef]
- de Lima Neto, A.J.; de Deus, J.A.L.; Filho, V.A.R.; Natale, W.; Parent, L.E. Nutrient Diagnosis of Fertigated “Prata” and “Cavendish” Banana (Musa spp.) at Plot-Scale. Plants 2020, 9, 1467. [Google Scholar] [CrossRef]
- Davenport, J.R.; Provost, J. Cranberry Tissue Nutrient Levels as Impacted by Three Levels of Nitrogen Fertilizer and Their Relationship to Fruit Yield and Quality. J. Plant Nutr. 1994, 17, 1625–1634. [Google Scholar] [CrossRef]
- Mpelasoka, B.S.; Schachtman, D.P.; Treeby, M.T.; Thomas, M.R. A Review of Potassium Nutrition in Grapevines with Special Emphasis on Berry Accumulation. Aust. J. Grape Wine Res. 2003, 9, 154–168. [Google Scholar] [CrossRef]
- Ciotta, M.N.; Ceretta, C.A.; da Silva, L.O.S.; Ferreira, P.A.A.; Sautter, C.K.; da Rosa Couto, R.; Brunetto, G. Grape Yield, and Must Compounds of “Cabernet Sauvignon” Grapevine in Sandy Soil with Potassium Contents Increasing. Ciência Rural 2016, 46, 1376–1383. [Google Scholar] [CrossRef]
- Alatzas, A.; Theocharis, S.; Miliordos, D.E.; Leontaridou, K.; Kanellis, A.K.; Kotseridis, Y.; Hatzopoulos, P.; Koundouras, S. The Effect of Water Deficit on Two Greek Vitis vinifera L. Cultivars: Physiology, Grape Composition and Gene Expression during Berry Development. Plants 2021, 10, 1947. [Google Scholar] [CrossRef]
- Tian, B.; Harrison, R.; Morton, J.; Jaspers, M. Changes in Pathogenesis-Related Proteins and Phenolics in Vitis vinifera L. Cv. ‘Sauvignon Blanc’ Grape Skin and Pulp during Ripening. Sci. Hortic. 2019, 243, 78–83. [Google Scholar] [CrossRef]
- Manso-Martínez, C.; Sáenz-Navajas, M.P.; Menéndez, C.M.; Hernández, M.M. Wine Quality and Berry Size: A Case Study with Tempranillo Tinto Progenies. J. Sci. Food Agric. 2021, 101, 3952–3960. [Google Scholar] [CrossRef] [PubMed]
- Castellarin, S.D.; Pfeiffer, A.; Sivilotti, P.; Degan, M.; Peterlunger, E.; di Gaspero, G. Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ. (Print) 2007, 30, 1381–1399. [Google Scholar] [CrossRef]
- Pérez-Álvarez, E.P.; Martínez-Vidaurre, J.M.; Martín, I.; García-Escudero, E.; Peregrina, F. Relationships among Soil Nitrate Nitrogen and Nitrogen Nutritional Status, Yield Components, and Must Quality in Semi-Arid Vineyards from Rioja AOC, Spain. Commun. Soil Sci. Plant Anal. 2013, 44, 232–242. [Google Scholar] [CrossRef]
- Cheng, G.; He, Y.N.; Yue, T.X.; Wang, J.; Zhang, Z.W. Effects of Climatic Conditions and Soil Properties on Cabernet Sauvignon Berry Growth and Anthocyanin Profiles. Molecules 2014, 19, 13683–13703. [Google Scholar] [CrossRef]
- Brunetto, G.; Ceretta, C.A.; Melo, G.W.B.; Kaminski, J.; Trentin, G.; Girotto, E.; Ferreira, P.A.A.; Miotto, A.; Trivelin, P.C.O. Contribution of Nitrogen from Agricultural Residues of Rye to ‘Niagara Rosada’ Grape Nutrition. Sci. Hortic. 2014, 169, 66–70. [Google Scholar] [CrossRef]
- Brunetto, G.; Stefanello, L.O.S.; Ceretta, C.A.; Couto, R.R.; Ferreira, P.A.A.; Ambrosini, V.G.; Borghezan, M.; Comin, J.J.; de Melo, G.W.; Baldi, E.; et al. Nitrogen Fertilization of ‘Chardonnay’ Grapevines: Yield, Must Composition and Their Relationship with Temperature and Rainfall. Acta Hortic. 2018, 1228, 451–456. [Google Scholar] [CrossRef]
- Lorensini, F.; Ceretta, C.A.; de Conti, L.; Ferreira, P.A.A.; Dantas, M.K.L.; Brunetto, G. Nitrogen Fertilization in the Growth Phase of “Chardonnay” and “Pinot Noir” Vines and Nitrogen Forms in Sandy Soil of the Pampa Biome. Rev. Ceres 2017, 64, 433–440. [Google Scholar] [CrossRef]
- Barreto, C.F.; Ferreira, L.V.; Navroski, R.; Frasson, S.F.; Cantillano, R.F.F.; Vizzotto, M. Adubação Nitrogenada Em Pessegueiros (Prunus Persica (L.) Batsch): Influência Sobre a Qualidade Pós-Colheita. Rev. Iberoam. Tecnol. Postcosecha 2017, 18, 93–99. [Google Scholar]
- Ciotta, M.N.; Ceretta, C.A.; Ferreira, P.A.; Stefanello, L.; Couto, R.D.R.; Tassianri, A.; Marchezan, C.; Girotto, E.; Conti, L.D.; Lourenzi, C.R.; et al. Phosphorus Fertilization for Young Grapevines of Chardonnay and Pinot Noir in Sandy Soil. Idesia (Arica) 2018, 36, 27–34. [Google Scholar] [CrossRef]
- Ciotta, M.N. Adubação Potássica Em Videiras Jovens e Em Produção No Sul Do Brasil. Ph.D. Thesis, Universidade Federal de Santa Maria, Santa Maria, Brazil, 2014. [Google Scholar]
- Ciotta, M.N.; Domingues, F.; Ceretta, C.A.; Brunetto, G.; Anchieta, M.; Tassinari, A.; Piccin, R.; Facco, D.; Ferreira, P.A.A. Impacto Do Teor de Potássio No Solo Sobre a Produção e Composição da Uva em Viníferas Cultivadas em Solo Com Textura Arenosa. In Proceedings of the XV Congresso Latino-Americano de Viticultura e Enologia/XIII Congresso Brasileiro de Viticultura e Enologia, Bento Gonçalves, Brazil, 3–7 November 2015. [Google Scholar]
- Ciotta, M.N.; Ceretta, C.A.; Oliveira, L.S.; Kulmann, M.S.S.; Ferreira, P.A.A.; Brunetto, G. Plant Growth and Nutritional Status of Leaves from Young Grapevines Grown in Soil Subjected to Potassium and Limestone Applications. Idesia (Arica) 2020, 38, 77–85. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy; Government Printing Office: Washington, DC, USA, 2014.
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Leonardo, J.; Gonçalves, M.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- INMET Clima e Tempo—Português (Brasil). Available online: https://www.gov.br/agricultura/pt-br/assuntos/inmet (accessed on 1 August 2022).
- Tedesco, M.J.; Volkweiss, S.J.; Bohmen, H. Soil, Plant and Other Material Analysis, 1st ed.; UFRGS: Porto Alegre, Brazil, 1995; Volume 1. [Google Scholar]
- Comas, L.H.; Anderson, L.J.; Dunst, R.M.; Lakso, A.N.; Eissenstat, D.M. Canopy and Environmental Control of Root Dynamics in a Long-Term Study of Concord Grape. New Phytol. 2005, 167, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Radville, L.; Bauerle, T.L.; Comas, L.H.; Marchetto, K.A.; Lakso, A.N.; Smart, D.R.; Dunst, R.M.; Eissenstat, D.M. Limited Linkages of Aboveground and Belowground Phenology: A Study in Grape. Am. J. Bot. 2016, 103, 1897–1911. [Google Scholar] [CrossRef] [PubMed]
- McMaster, G.S.; Wilhelm, W.W. Growing Degree-Days: One Equation, Two Interpretations. Agric. Meteorol. 1997, 87, 291–300. [Google Scholar] [CrossRef]
- Gris, E.F.; Burin, V.M.; Brighenti, E.; Vieira, H.; Bordignon-Luiz, M.T. Phenology and Ripening of Vitis vinifera L. Grape Varieties in São Joaquim, Southern Brazil: A New South American Wine Growing Region. Cienc. Investig. Agrar. 2010, 37, 61–75. [Google Scholar] [CrossRef]
- Tremblay, N.; Bouroubi, Y.M.; Bélec, C.; Mullen, R.W.; Kitchen, N.R.; Thomason, W.E.; Ebelhar, S.; Mengel, D.B.; Raun, W.R.; Francis, D.D.; et al. Corn Response to Nitrogen Is Influenced by Soil Texture and Weather. Agron. J. 2012, 104, 1658–1671. [Google Scholar] [CrossRef]
- Robnik-Šikonja, M.; Kononenko, I. Theoretical and Empirical Analysis of ReliefF and RReliefF. Mach. Learn. 2003, 53, 23–69. [Google Scholar] [CrossRef] [Green Version]
Year | 2014/2015 | 2015/2016 | 2016/2017 | 2017/2018 | 2018/2019 |
---|---|---|---|---|---|
Climatic indices | |||||
Precipitations (mm) | 722 | 896 | 592 | 794 | 1328 |
Shannon distribution index | 0.635 | 0.590 | 0.629 | 0.594 | 0.585 |
Cumulated degree-days (10 °C) | 1602 | 1927 | 1481 | 1816 | 1833 |
Number of chilling hours (7 °C) | 386 | 290 | 626 | 342 | 577 |
Frost events (number) | 27 | 15 | 37 | 15 | 22 |
Hail events (number) | 2 | 3 | 0 | 1 | 4 |
Clear weather (days) | 182 | 174 | 184 | 151 | 207 |
Variable | Unit | Minimum | Median | Maximum |
---|---|---|---|---|
Foliar N at full bloom | g N kg−1 | 15.4 | 26.4 | 33.0 |
Foliar N at veraison | g N kg−1 | 15.8 | 23.6 | 56.0 |
Stem diameter at full bloom | cm | 1.9 | 3.9 | 5.5 |
Stem diameter at veraison | cm | 2.2 | 4.2 | 25.0 |
Grape yield | t ha−1 | 2.74 | 16.39 | 33.75 |
Must total titratable acidity (TTA) | g tartric acid (100 g)−1 | 0.35 | 0.63 | 2.31 |
Must pH | unitless | 2.80 | 3.61 | 4.30 |
Must total soluble solids (TSS) | °Brix | 11.2 | 14.5 | 18.3 |
Must total phenolics content (TPC) | mg L−1 | 2470 | 5879 | 17,197 |
Skin total anthocyanin content (TAC) | mg L−1 | 1634 | 3448 | 6312 |
Target | Method | Minimum | Centroid | Maximum | Source |
---|---|---|---|---|---|
g N kg−1 | |||||
At full bloom | |||||
TAC | Quartiles | 19 | 21 | 24 | This study—current-year TAC |
TAC | Quartiles | 21 | 23 | 25 | This study—next-year TAC |
Yield | Quartiles | 24 | 27 | 29 | This study—current-year yield |
Yield | Quartiles | 26 | 27 | 28 | This study—next-year yield |
Yield | Range | 24 | 27 | 30 | [40] |
Yield | Range | 24 | - | 30 | [41] |
- | Range | 16 | - | 24 | [42] |
- | Range | 30 | - | 35 | [43] |
At veraison | |||||
TAC | Quartiles | 22 | 24 | 26 | This study—current-year TAC |
TAC | Quartiles | 20 | 22 | 25 | This study—next-year TAC |
Yield | Quartiles | 22 | 24 | 25 | This study—current-year yield |
Yield | Quartiles | 21 | 23 | 24 | This study—next-year yield |
- | Range | 20 | - | 23 | [1] |
Target | Adaboost | Gradient Boosting | Random Forest | |||
---|---|---|---|---|---|---|
RMSE | R2 | RMSE | R2 | RMSE | R2 | |
Yield | 3.5 | 0.645 | 3.6 | 0.633 | 3.5 | 0.654 |
TSS | 0.52 | 0.819 | 0.56 | 0.786 | 0.58 | 0.768 |
TAC | 260 | 0.943 | 351 | 0.895 | 398 | 0.866 |
TPC | 940 | 0.903 | 1094 | 0.869 | 1142 | 0.857 |
TTA | 0.062 | 0.864 | 0.062 | 0.867 | 0.061 | 0.869 |
pH | 0.050 | 0.947 | 0.056 | 0.933 | 0.056 | 0.933 |
Event | 2014/2015 | 2015/2016 | 2016/2017 | 2017/2018 | 2018/2019 |
---|---|---|---|---|---|
Bud break | 09/10/2014 | 08/28/2015 | 09/10/2016 | 08/30/2017 | 08/29/2018 |
First N application | 10/12/2014 | 09/20/2015 | 09/30/2016 | 10/16/2017 | 10/092018 |
Leaf sampling at full bloom | 11/22/2014 | 11/15/2015 | 11/06/2016 | 11/28/2017 | 11/21/2018 |
Leaf sampling at veraison | 01/18/2015 | 01/22/2016 | 01/09/2017 | 01/24/2018 | n.a. |
Grape harvest | 02/12/2015 | 02/24/2016 | 02/16/2017 | 02/20/2018 | 02/21/2019 |
Variable | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|
Features | |||||
N dose | X | X | X | X | X |
Fertilization method | X | X | X | X | X |
Foliar N at flowering | X | X | X | X | X |
Foliar N at veraison | X | X | X | X | X |
Stem diameter at flowering | X | X | X | X | X |
Stem diameter at veraison | X | X | X | X | X |
Total rainfall | X | X | X | X | X |
Cumulated degree-days | X | X | X | X | X |
Target variables | |||||
Grape yield indices | |||||
Yield per plant | X | X | X | X | X |
Yield per hectare‡ | X | X | X | X | X |
Grape quality indices | |||||
Must acidity | X | X | X | X | X |
Must pH | X | X | X | X | X |
Must total soluble solids | X | X | X | X | X |
Must total phenolics | X | X | X | X | X |
Skin total anthocyanin content | X | X | X | X | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brunetto, G.; Stefanello, L.O.; Kulmann, M.S.d.S.; Tassinari, A.; Souza, R.O.S.d.; Rozane, D.E.; Tiecher, T.L.; Ceretta, C.A.; Ferreira, P.A.A.; Siqueira, G.N.d.; et al. Prediction of Nitrogen Dosage in ‘Alicante Bouschet’ Vineyards with Machine Learning Models. Plants 2022, 11, 2419. https://doi.org/10.3390/plants11182419
Brunetto G, Stefanello LO, Kulmann MSdS, Tassinari A, Souza ROSd, Rozane DE, Tiecher TL, Ceretta CA, Ferreira PAA, Siqueira GNd, et al. Prediction of Nitrogen Dosage in ‘Alicante Bouschet’ Vineyards with Machine Learning Models. Plants. 2022; 11(18):2419. https://doi.org/10.3390/plants11182419
Chicago/Turabian StyleBrunetto, Gustavo, Lincon Oliveira Stefanello, Matheus Severo de Souza Kulmann, Adriele Tassinari, Rodrigo Otavio Schneider de Souza, Danilo Eduardo Rozane, Tadeu Luis Tiecher, Carlos Alberto Ceretta, Paulo Ademar Avelar Ferreira, Gustavo Nogara de Siqueira, and et al. 2022. "Prediction of Nitrogen Dosage in ‘Alicante Bouschet’ Vineyards with Machine Learning Models" Plants 11, no. 18: 2419. https://doi.org/10.3390/plants11182419
APA StyleBrunetto, G., Stefanello, L. O., Kulmann, M. S. d. S., Tassinari, A., Souza, R. O. S. d., Rozane, D. E., Tiecher, T. L., Ceretta, C. A., Ferreira, P. A. A., Siqueira, G. N. d., & Parent, L. É. (2022). Prediction of Nitrogen Dosage in ‘Alicante Bouschet’ Vineyards with Machine Learning Models. Plants, 11(18), 2419. https://doi.org/10.3390/plants11182419