Impact of Edaphic and Climatic Factors on Thymus pulegioides Essential Oil Composition and Potential Prevalence of Chemotypes
Abstract
:1. Introduction
2. Results
2.1. Analysis of Composition of Thymus pulegioides Essential Oils and Classification of Thymus pulegioides Habitats According to Main Chemical Compounds of Essential Oils
2.2. Soil Chemistry and Its Effect on Composition of Thymus pulegioides Essential Oils
2.3. Climatic Conditions of Lithuania and Their Effect on Composition of Thymus pulegioides Essential Oils
2.4. Influence of Edaphic and Climatic Factors on Prevalention of Geraniol and Carvacrol Chemotypes of T. pulegioides
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Isolation and Investigation of Essential Oils
4.3. Collection and Investigation of Soil
4.4. Analysis of Meteorological Data
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Martino, L.; Bruno, M.; Formisano, K.; De Feo, V.; Napolitano, F.; Rosselli, S.; Senatore, F. Chemical composition and antimicrobial activity of the essential oils from two species of Thymus growing wild in southern Italy. Molecules 2009, 14, 4614–4624. [Google Scholar] [CrossRef] [PubMed]
- Mártonfi, P. Polymorfism of essential oil of Thymus pulegioides subc. chamaedrys in Slovakia . J. Essent. Oil. Res. 1992, 4, 173–179. [Google Scholar] [CrossRef]
- Grendhal, E.; Ehlers, B.K.; Keefover–Ring, K. A new cis sabinene hydrate chemotype detectecd in large Thyme (Thymus pulegioides L.) growing wild in Denmark. J. Essent. Oil. Res. 2008, 20, 40–41. [Google Scholar] [CrossRef]
- Michet, A.; Chalchar, C.J.; Figueredo, G.; Thebaud, G.; Billy, F.; Petel, G. Chemotypes in the volatiles of wild thyme (Thymus pulegioides L.). J. Essent Oil. Res. 2008, 20, 101–103. [Google Scholar] [CrossRef]
- Yanishlieva, N.V.; Marinova, E.M.; Gordon, M.H.; Raneva, V.G. Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chem. 1999, 64, 59–66. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Pina–Vaz, C.; Gonsalves Rodrigues, A.; Pinto, A.; Costa-de-Oliveira, S.; Tavares, C.; Salgueiro, L.; Cavaleiro, C.; Gonsalves, M.J.; Martinez-de-Oliveira, J. Antifungal activity of Thymus pils and their major compounds. J. Eur. Acad. Dermatol. 2004, 18, 73–78. [Google Scholar] [CrossRef]
- Ložienė, K.; Venskutonis, P.R.; Šipailienė, A.; Labokas, J. Radical scavenging and antibactrial properties of extracts from different T. pulegioides chemotypes L. Food Chem. 2007, 103, 546–559. [Google Scholar] [CrossRef]
- Pirbalouti, G.A.; Barani, M.; Hamedi, B.; Kachousei, M.A.; Karimi, A. Environment effect on diversity in quality and quantity of essential oil of different wild populations of Kerman thyme. Genetika 2013, 45, 441–450. [Google Scholar]
- Mumcouglu, K.Y.; Galun, R.; Bach, U.; Miller, J.; Magdassi, S. Repellency of essential oils and their components to the human body louse, Pediculus humanus humanus. Entomol. Exp. Apllicata 1996, 78, 309–314. [Google Scholar] [CrossRef]
- Radonic, A.; Mastelic, J. Essential oil and glycosidically bound volatiles of Thymus pulegioides L. growing wild in Croatia. Croat. Chem. Acta 2008, 81, 599–606. [Google Scholar]
- Beier, R.C.; Byrd, J.A.; Kubena, L.F.; Hume, M.E.; McReynolds, J.L.; Anderson, R.C.; Nisbet, D.J. Evaluation of linalool, a natural antimicrobial and insecticidal essential oil from basil: Effects on poultry. J. Poult. Sci. 2013, 93, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Hugh, T.; Tan, W. Herbs and Spices of Thailand; Cavendish: Singapore, 2005. [Google Scholar]
- Zouaghi, N.; Belllel, C.; Cavaleiro, C.; Nadjemi, B.; Yousfi, M. Identification of volatile compounds, antimicrobial properties and antioxidant activity from leaves, cones and steams of Cupressus sempervirens from Algeria. Afr. J. Microbiol. Res. 2015, 9, 83–90. [Google Scholar]
- Vernet, P.; Gouyon, P.H.; Valdeyron, G. Genetic control of the oil content in Thymus vulgaris L.: A case of polymorphism in a biosynthetic chain. Genetica 1986, 69, 227–231. [Google Scholar] [CrossRef]
- Tarayre, M.; Thompson, J.D. The population genetic structure of the gynodioecious Thymus vulgaris (Labiateae) in southern France. J. Evol. Biol. 1997, 10, 157–174. [Google Scholar] [CrossRef]
- Sangwan, N.S.; Farooqi, A.H.A.; Shabih, F.; Sangwan, R.S. Regulation of essential oil production in plant. Plant Growth Regul. 2001, 34, 3–21. [Google Scholar] [CrossRef]
- Thompson, J.; Chalchat, J.C.; Michet, A.; Linhart, I.B.; Ehlers, B. Qualitative and quantitative variation in monoterpene co-occurence and composition in the essential oil of Thymus vulgaris chemotypes. J. Ecol. 2003, 29, 859–880. [Google Scholar]
- Kaya, D.A.; Arslan, M.; Rusu, L.K. Effects of harvesting hour on essential oil content and composition of Thymus vulgaris. Farmacia 2013, 61, 1194–1203. [Google Scholar]
- Nurzynska-Wierdak, R. Does mineral fertilization modify essential oil content and chemical composition in medical plants. Acta Sci. Pol. Hortorum Cultus 2013, 12, 3–16. [Google Scholar]
- Farhat, M.B.; Jordan, M.J.; Chaouch-Hamada, R.; Landoulsi, A.; Sotomayor, J.A. Phenophase effects of sage (Salvia officinalis) yield and composition of essential oil. J. Appl. Res. Med. Aromat. Plants 2016, 3, 87–93. [Google Scholar] [CrossRef]
- Vaičiulytė, V.; Ložienė, K. Metabolomic analysis and effects of metereological factors on phenolic and non phenolic chemotypes of Thymus pulegioides L. cultured in the same locality. Ind. Crops Prod. 2015, 77, 491–498. [Google Scholar] [CrossRef]
- Bukantis, A. Lietuvos Klimatas; Vilnius Universitetas: Vilnius, Lithuania, 1994. [Google Scholar]
- Buivydaitė, V.V. Soil Survey and Available Soil Date in Lihuania; Research Report; Europian Soil Bureau: Akademija-Kaunas, Lithuana, 2001; Volume 9, pp. 211–223. [Google Scholar]
- Liekis, A. Soils of Lithuania; Lithuania Science: Vilnius, Lithuania, 2001. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectometry, 4th ed.; Allured Publishing Corp.: Carol Stream, IL, USA, 2007; pp. 104–550. [Google Scholar]
- Pavel, M.; Ristic, M.; Stevic, T. Essential oils of Thymus pulegioides and Thymus glabrescens from Romania: Chemical composition and antimicrobial activity. J. Serb. Chem. Soc. 2010, 75, 27–34. [Google Scholar] [CrossRef]
- Pinto, E.; Pina-Vaz, C.; Salgueiro, L.; Concalves, M.J.; Costa-de- Oliveira, S.; Cavaleiro, C.; Palmaeira, A.; Rodrigues, A.; Martinez-de-Oliveira, J. Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermophyte species. J. Med. Microbiol. 2006, 55, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- Ibrahimi, M.H.; Papajani, V.; Zelikovic, S.C.; Matevski, V. Essential oil analysis of two Thymus spp. growing wild in Kosowo. J. Essent. Oil Bear. Plants 2014, 17, 832–837. [Google Scholar] [CrossRef]
- Tejada, M.; Garcia, C.; Gonzalez, J.C. Use of organic admendent as a strategy of saline soil remediation: Influence of physical, chemical and biological properties of soil. Soil Biol. Biochem. 2006, 38, 1413–1421. [Google Scholar] [CrossRef]
- Fernandes-Sestelo, M.; Carrillo, M. Environmental effects on yield and composition of essential oil in Wild populations of Spike Lavander (Lanvandula latifolia Medik.). Agriculture 2020, 10, 626. [Google Scholar] [CrossRef]
- Ložienė, K. Morphological characteristics and essential oil analysis of Thymus pulegioides in the habitat of hilly landscape of Vilnius vicinities. Litnuanian Young Bot. Res. 1997, 1, 141–151. [Google Scholar]
- Mockutė, D.; Bernotienė, G. The main citral-geraniol and carvacrol chemotypes of essential oil of Thymus pulegioides L. growing wild in Vilnius district (Lithuania). J. Agric. Food. Chem. 1999, 47, 3787–3790. [Google Scholar] [CrossRef]
- Mockutė, D.; Bernotienė, G. The α-terpinyl acetate chemotype of essential oil of Thymus pulegioides L. Biochem. Syst. Ecol. 2001, 29, 69–73. [Google Scholar] [CrossRef]
- Mockutė, D.; Bernotienė, G. Chemical composition of the essential oils and the odour of Thymus pulegioides L. growing wild in Vilnius. J. Essent. Oil Res. 2005, 17, 415–418. [Google Scholar] [CrossRef]
- Stahl-Biskup, E. Das ätherische Öl norwegischer Thymian Arten; II. Thymus pulegioides. Planta Med. 1986, 3, 233–235. [Google Scholar] [CrossRef]
- Kustrak, D.; Martinis, Z.; Kuftinec, J.; Blazevic, N. Composition of essential oils of some Thymus and Thymbra species. Flav. Frag. J. 1990, 5, 227–231. [Google Scholar]
- Vaičiulytė, V.; Ložienė, K.; Taraškevičius, R.; Butkienė, R. Variation of essential oil composition of Thymus pulegioides in relation with soil chemistry. Ind. Crops Prod. 2017, 95, 422–433. [Google Scholar] [CrossRef]
- Pluhár, Z.S.; Szabó, E.; Balassa, Á.; Kricskovics, O.; Bíró, Z.; Pintér, A.; Gimesi, A.; Puhalák, K.; Héthelyi, É. The role of environmental factors in the occurrence of different indigenous thyme (Thymus) taxa in the Carpathian Basin. In Proceedings of the 36th International Symposium on Essential Oils, Budapest, Hungary, 4–7 September 2005. [Google Scholar]
- Said Ahl-Al, H.; Wahby, M.S. Effect of nitrogen and phosphorus application on herb and esssential oil composition of Satureja montana carvacrol chemotype. J. Chem. Pharm. Res. 2016, 8, 119–128. [Google Scholar]
- Hadef, Y.; Kaloustian, J.; Chefrour, A.; Mikail, C.; Abou, L.; Giodani, R.; Nicolay, A.; Portugal, H. Chemical composition and variability of the essential oil Thymus numidicus Poir. from Algeria. Acta Bot. Gall. 2007, 154, 265–274. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gauthier, P.; Amiot, J.; Ehlers, B.K.; Collin, C.; Fossat, J.; Barrios, V.; Arnaud-Miramont, F.; Keeforver-Ring, K.; Linhart, Y.B. Ongoing adaption to mediterranenan climate extremes in chemically polimorphic plant. Ecol. Monogr. 2007, 77, 421–439. [Google Scholar] [CrossRef]
- Gouyon, P.H.; Vernet, P.; Guillerm, J.L.; Valdeyron, G. Polymorphisms and environment: The adaptive value of the oil polymorphisms in Thymus vulgaris L. Heredity 1986, 57, 59–66. [Google Scholar] [CrossRef]
- Thompson, J.D. Population structure and the spatialdynamics of genetic polymorphism in thyme. In Thyme: The Genus Thymus; Stahl-Biskup, E., Saez, F., Eds.; Francis: London, UK, 2002; pp. 44–74. [Google Scholar]
- Amiot, J.; Salmon, Y.; Collin, C.; Thompson, J.D. Differential resistance to freezing and spatial distribution in achemically polymorphic plant Thymus vulgaris. Ecol. Lett. 2005, 8, 370–377. [Google Scholar] [CrossRef]
- Ghavam, M. Relationship of irrigation water and soil physical and chemical characteristics with yield, chemical composition and antimicrobial activity of Damaska rose essential oil. PLoS ONE 2021, 16, e0249363. [Google Scholar] [CrossRef]
- Kowal, T.; Krupinska, A. Antibacterial activity of essentila oil from Thymus pulegioides L. Herba Pol. 1979, 25, 303–310. (In Polish) [Google Scholar]
- European Pharmacopoeia, 6th ed.; Directorate for the Quality of Medicines and HealthCare of the Council of Europe (EDQM): Strasbourg, France, 2008; Volume 1.
Chemical Compound | Retention Index | Min–Max, % | Mean ± SD, % | CV, % | |
---|---|---|---|---|---|
Calculated | Literature [26] | ||||
Carvacrol | 1308 | 1298 | 0.00–48.00 | 17.66 ± 9.43 | 53 |
Thymol | 1298 | 1289 | 0.00–31.00 | 3.17 ± 5.11 | 162 |
p-Cymene | 1029 | 1020 | 0.14–38.49 | 11.81 ± 8.21 | 70 |
γ-Terpinene | 1053 | 1054 | 0.00–42.60 | 16.90 ± 8.83 | 52 |
Geraniol | 1237 | 1249 | 0.00–39.87 | 6.57 ± 8.70 | 132 |
Geranial | 1272 | 1264 | 0.00–6.57 | 1.13 ± 1.44 | 127 |
Nerol | 1235 | 1227 | 0.00–20.57 | 3.66 ± 4.90 | 134 |
Neral | 1242 | 1235 | 0.00–34.92 | 3.05 ± 4.73 | 155 |
Linalool | 1104 | 1095 | 0.00–57.75 | 1.66 ± 6.59 | 397 |
α-Terpinyl acetate | 1355 | 1346 | 0.00–57.50 | 1.48 ± 6.96 | 470 |
Thymol methyl ether | 1241 | 1232 | 0.00–5.79 | 0.83 ± 1.14 | 470 |
Carvacrol methyl ether | 1251 | 1241 | 0.00–9.17 | 3.97 ± 2.22 | 56 |
Myrcene | 997 | 988 | 0.00–4.19 | 1.48 ± 6.96 | 39 |
β-Caryophyllene | 1426 | 1417 | 0.69–13.66 | 5.52 ± 1.82 | 33 |
β-Bisabolene | 1513 | 1505 | 0.00–6.66 | 3.02 ± 1.15 | 38 |
Caryophyllene oxside | 1591 | 1582 | 0.00–5.01 | 1.16 ± 0.73 | 63 |
α-Terpinene | 1022 | 1014 | 0.00–4.85 | 1.64 ± 0.85 | 52 |
Borneol | 1173 | 1165 | 0.00–4.65 | 0.56 ± 0.53 | 95 |
Cis-β-Guaiene | 1500 | 1492 | 0.00–7.14 | 1.65 ± 0.89 | 39 |
Cluster or Habitat Number. | Amount of Essential Oil, % | Carvacrol, % | Thymol, % | p-Cymene, % | γ-Terpinene, % | Carvacrol Methyl Ether, % | Thymol Methyl Ether, % | Geraniol, % | Geranial, % | Nerol, % | Neral, % | Linalool % | α-Terpinyl Acetate, % | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cluster 1′ (N = 34) | Mean | 0.55 | 11.24 | 1.55 | 4.94 | 8.86 | 2.04 | 0.37 | 18.56 | 3.09 | 9.92 | 8.63 | 2.05 | 4.94 |
SD | 0.21 | 5.51 | 2.46 | 3.85 | 6.36 | 0.99 | 0.51 | 8.90 | 1.44 | 5.40 | 6.18 | 4.94 | 2.01 | |
Min | 0.23 | 0.00 | 0.00 | 0.39 | 0.00 | 0.12 | 0.00 | 3.48 | 0.32 | 0.88 | 0.65 | 0.00 | 0.00 | |
Max | 1.21 | 24.28 | 10.28 | 12.60 | 23.85 | 3.67 | 2.02 | 39.87 | 6.57 | 20.57 | 34.92 | 22.94 | 9.84 | |
CV, % | 38 | 49 | 159 | 78 | 72 | 49 | 138 | 48 | 47 | 54 | 72 | 241 | 41 | |
Cluster 2′ (N = 17) | Mean | 0.64 | 13.38 | 12.10 | 17.61 | 16.59 | 4.42 | 3.19 | 2.39 | 0.40 | 1.43 | 1.02 | 0.36 | 0.27 |
SD | 0.12 | 4.12 | 7.48 | 7.27 | 6.59 | 1.55 | 1.33 | 2.85 | 0.46 | 1.73 | 1.35 | 0.10 | 0.53 | |
Min | 0.83 | 7.09 | 4.50 | 5.20 | 0.81 | 2.23 | 1.48 | 0.00 | 0.00 | 0.00 | 0.00 | 0.16 | 0.00 | |
Max | 0.65 | 21.31 | 31.00 | 29.55 | 30.64 | 6.50 | 5.79 | 10.04 | 1.45 | 5.66 | 4.23 | 0.51 | 1.84 | |
CV, % | 19 | 31 | 62 | 41 | 40 | 35 | 42 | 119 | 115 | 121 | 132 | 28 | 196 | |
Cluster 3′ (N = 45) | Mean | 0.68 | 26.11 | 2.09 | 9.44 | 23.78 | 3.89 | 0.55 | 1.89 | 0.29 | 0.75 | 0.56 | 0.56 | 0.07 |
SD | 0.22 | 8.75 | 2.96 | 4.41 | 6.40 | 1.99 | 0.63 | 2.21 | 0.40 | 1.13 | 0.90 | 0.75 | 0.24 | |
Min | 0.23 | 12.10 | 0.00 | 1.23 | 11.96 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Max | 1.32 | 48.00 | 11.11 | 20.00 | 42.60 | 9.06 | 2.21 | 7.80 | 1.40 | 5.29 | 4.16 | 4.41 | 1.35 | |
CV, % | 32 | 34 | 142 | 47 | 27 | 51 | 115 | 117 | 138 | 151 | 161 | 134 | 343 | |
Cluster 4′ (N = 28) | Mean | 0.57 | 17.89 | 1.56 | 20.66 | 17.49 | 6.25 | 0.54 | 2.94 | 0.72 | 2.72 | 2.06 | 0.35 | 0.34 |
SD | 0.22 | 5.38 | 1.72 | 7.17 | 5.96 | 1.40 | 0.51 | 2.66 | 0.60 | 2.59 | 1.97 | 0.22 | 1.01 | |
Min | 0.20 | 8.19 | 0.00 | 5.73 | 4.40 | 3.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | |
Max | 1.03 | 27.10 | 6.36 | 38.49 | 29.47 | 9.17 | 2.27 | 10.04 | 1.88 | 9.34 | 7.18 | 1.23 | 4.33 | |
CV, % | 39 | 30 | 111 | 35 | 34 | 22 | 94 | 90 | 83 | 95 | 96 | 63 | 297 | |
Habitat no. 11 | Amount | 0.39 | 13.58 | 2.38 | 20.99 | 11.68 | 6.94 | 1.46 | 1.67 | 0.17 | 0.65 | 0.09 | 14.25 | 2.34 |
Habitat no. 34 | Amount | 1.02 | 5.65 | 1.32 | 6.82 | 5.87 | 1.72 | 0.40 | 2.92 | 0.56 | 1.87 | 1.43 | 0.35 | 43.56 |
Habitat no. 39 | Amount | 0.53 | 5.65 | 0.00 | 20.70 | 6.44 | 5.77 | 0.05 | 2.08 | 0.12 | 0.07 | 0.00 | 6.51 | 30.77 |
Habitat no. 99 | Amount | 0.54 | 0.06 | 0.00 | 0.14 | 0.48 | 0.04 | 0.02 | 12.35 | 1.12 | 3.52 | 2.81 | 0.29 | 57.50 |
Habitat no. 106 | Amount | 0.77 | 6.39 | 0.00 | 5.38 | 5.85 | 1.88 | 0.53 | 6.36 | 1.32 | 4.78 | 3.87 | 40.37 | 3.99 |
Habitat no. 100 | Amount | 0.53 | 3.48 | 0.27 | 1.31 | 1.57 | 0.58 | 0.00 | 4.01 | 0.38 | 1.01 | 0.90 | 57.75 | 6.01 |
pHKCl | Humus, % | K2O, mg/kg | P2O5, mg/kg | ||
---|---|---|---|---|---|
N = 131 | Mean ± SD | 7.37 ± 0.57 | 2.70 ± 1.09 | 121.90 ± 63.97 | 127.28 ± 95.16 |
Min–Max | 5.1–8.3 | 0.9–7.2 | 35.00–368.00 | 22.00–680.00 | |
CV, % | 8 | 40 | 52 | 74 | |
Cluster 1′ (N = 34) | Mean ± SD | 7.46 ± 0.56 | 2.47 ± 0.97 | 113.21 ± 46.38 | 123.41 ± 84.07 |
Min–Max | 6.0–8.2 | 1.0–5.2 | 44.00–236.00 | 24.00–411.00 | |
CV, % | 8 | 39 | 41 | 68 | |
Cluster 2′ (N = 17) | Mean ± SD | 7.27 ± 0.40 | 2.57 ± 0.99 | 99.29 ± 36.06 | 118.35 ± 106.07 |
Min–Max | 5.1–8.1 | 1.0–4.4 | 44.00–149.00 | 23.00–424.00 | |
CV, % | 6 | 38 | 36 | 90 | |
Cluster 3′ (N = 45) | Mean ± SD | 7.40 ± 0.53 | 2.72 ± 0.99 | 125.89 ± 67.93 | 135.36 ± 80.27 |
Min–Max | 5.1–8.3 | 1.0–4.7 | 35.00–350.00 | 25.00–457.00 | |
CV, % | 7 | 36 | 54 | 59 | |
Cluster 4′ (N = 28) | Mean ± SD | 7.34 ± 0.62 | 2.78 ± 1.40 | 132.21 ± 72.57 | 117.61 ± 125.45 |
Min–Max | 5.9–8.2 | 0.9–7.2 | 50.00–356.00 | 22.00–680.00 | |
CV, % | 8 | 50 | 55.0 | 107.0 | |
Habitat no. 11 | Amount | 6.9 | 4.0 | 215.0 | 81.0 |
Habitat no. 34 | Amount | 7.6 | 3.9 | 163.0 | 186.0 |
Habitat no. 39 | Amount | 8.0 | 1.4 | 79.0 | 65.0 |
Habitat no. 99 | Amount | 7.4 | 5.0 | 368.00 | 313.0 |
Habitat no. 100 | Amount | 6.1 | 2.0 | 64.0 | 45.0 |
Habitat no. 106 | Amount | 7.6 | 2. 4 | 87.0 | 177.0 |
Cluster or Habitat Number | Al | Ca | Cu | Fe | K | Mg | Mn | Na | P | S | Si | Ti | Zn | Co | Cl | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N = 131 | Mean | 26,505.50 | 24,315.50 | 8.15 | 11,808.30 | 17,743.70 | 7191.4 | 350.50 | 5894.30 | 477.90 | 226.1 | 380,643.1 | 1652.8 | 40.10 | 4.1 | 385.30 |
SD | 10,151.59 | 15,759.48 | 3.64 | 5436.02 | 3856.66 | 4685.60 | 159.17 | 1096.45 | 484.86 | 134.31 | 39,914.34 | 817.53 | 13.72 | 2.39 | 207.4 | |
Min | 11,450 | 1894 | 2.6 | 4489 | 11,007 | 627 | 150 | 3055 | 106 | 15 | 278,411 | 436 | 20 | 0.4 | 83 | |
Max | 73,099 | 64,606 | 20.1 | 34,261 | 31,381 | 19,095 | 1501 | 9114 | 4997 | 657 | 450,223 | 4547 | 95 | 10.8 | 1862 | |
CV, % | 38 | 38 | 45 | 46 | 22 | 65 | 45 | 19 | 101 | 59 | 10 | 49 | 34 | 58 | 54 | |
Cluster 1′ (N = 34) | Mean | 24,751.20 | 24,038.20 | 8.01 | 11,086.50 | 17,676.0 | 7439.00 | 364.1 | 6175.70 | 438.20 | 208.80 | 380,739.20 | 1725.80 | 38.70 | 4.30 | 321.9 |
SD | 7303.22 | 16,944.48 | 3.41 | 4628.63 | 3230.52 | 5354.14 | 164.8 | 1120.90 | 301.35 | 141.88 | 38,176.68 | 853.25 | 14.53 | 2.08 | 96.15 | |
Min | 12,122 | 3121 | 3.8 | 4649 | 11,924 | 1134 | 168 | 4282 | 113 | 15 | 278,411 | 436 | 20 | 0.4 | 135 | |
Max | 48,441 | 57,963 | 20.1 | 30,803 | 27,362 | 19,095 | 1090 | 9114 | 1876 | 657 | 435,162 | 3972 | 89 | 8.8 | 506 | |
CV, % | 30 | 70 | 43 | 42 | 18 | 72 | 45 | 18 | 69 | 46 | 10 | 49 | 38 | 48 | 30 | |
Cluster 2′ (N = 17) | Mean | 24,082.04 | 23,161.10 | 7.17 | 10,241.46 | 16,418.63 | 5984.63 | 342.63 | 6019.8 | 665.9 | 185.5 | 390,674.6 | 1355.7 | 35.8 | 3.80 | 403.2 |
SD | 7278.88 | 14,648.68 | 3.31 | 3744.89 | 2825.31 | 4213.87 | 104.07 | 1043.34 | 1130.87 | 136.64 | 36,630.22 | 536.97 | 9.67 | 2.21 | 126.64 | |
Min | 11,450 | 2766 | 3.4 | 5213 | 11,531 | 803 | 197 | 4576 | 106 | 30 | 336,270 | 517 | 22 | 0.4 | 83 | |
Max | 41,763 | 41,793 | 13.8 | 18,489 | 22,014 | 15,052 | 558 | 8074 | 4997 | 556 | 450,223 | 2337 | 52 | 8.4 | 587 | |
CV, % | 30 | 63 | 46 | 37 | 17 | 70 | 30 | 17 | 170 | 74 | 9 | 40 | 27 | 58 | 31 | |
Cluster 3′ (N = 7) | Mean | 25,709.90 | 27,069.38 | 7.89 | 11,690.32 | 17,401.04 | 7771.16 | 344.70 | 5827.50 | 444,5 | 257.30 | 376,922.30 | 1601.77 | 38.49 | 3.73 | 428.35 |
SD | 9883.03 | 14,518.34 | 3.61 | 5396.30 | 4055.52 | 4972.84 | 198.20 | 948.68 | 200.24 | 130.56 | 37,250.70 | 830.40 | 9.48 | 2.67 | 289.67 | |
Min | 14,228 | 1894 | 2.60 | 4489 | 11,007 | 627 | 150 | 3440 | 149 | 63 | 299,097 | 589 | 24 | 0.4 | 168 | |
Max | 59,507 | 53,962 | 17.3 | 26,044 | 27,337 | 18,841 | 1501 | 7854 | 1014 | 628 | 449,804 | 3477 | 60 | 10.7 | 1863 | |
CV, % | 38 | 54 | 46 | 46 | 23 | 64 | 55 | 16 | 45 | 51 | 10 | 52 | 25 | 72 | 68 | |
Cluster 4′ (N = 28) | Mean | 30,550.66 | 22,911.60 | 8.76 | 13,536.78 | 18,696.45 | 7039.30 | 355.15 | 5661.37 | 395.18 | 199.21 | 390,312.90 | 1777.20 | 42.20 | 4.80 | 356.5 |
SD | 14,993.53 | 17,213.48 | 4.17 | 7147.57 | 4820.92 | 4310.13 | 130.08 | 1240.65 | 189.48 | 124.36 | 37,649.37 | 937.97 | 16.52 | 2.6 | 114.24 | |
Min | 11,450 | 2176 | 20.0 | 5263 | 11,395 | 710 | 197 | 3055 | 128 | 17 | 313,391 | 477 | 21 | 0.9 | 129 | |
Max | 73,099 | 64,606 | 3.5 | 34,961 | 31,381 | 18,587 | 791 | 7908 | 964 | 488 | 442,443 | 4547 | 82 | 10.8 | 559 | |
CV, % | 49 | 75 | 48 | 53 | 26 | 61 | 37 | 22 | 48 | 62 | 10 | 53 | 39 | 54 | 32 | |
Habitat no. 11 | Amount | 38,652 | 9196 | 10 | 17,544 | 22,736 | 6598 | 348 | 5453 | 434 | 302 | 380,454 | 2170 | 42 | 5.5 | 400 |
Habitat no. 34 | Amount | 28,422 | 22,692 | 9 | 12,828 | 20,796 | 6967 | 377 | 5439 | 540 | 292 | 376,059 | 1865 | 41 | 2.9 | 541 |
Habitat no. 39 | Amount | 14,669 | 56,164 | 7 | 6607 | 12,782 | 11,473 | 239 | 6239 | 212 | 96 | 357,185 | 493 | 25 | 2.8 | 523 |
Habitat no. 99 | Amount | 26,867 | 36,441 | 15 | 15,269 | 19,967 | 10,414 | 396 | 3367 | 2331 | 415 | 331,517 | 2203 | 69 | 4.2 | 498 |
Habitat no. 100 | Amount | 20,319 | 3788 | 3 | 6304 | 15,705 | 1490 | 201 | 6776 | 187 | 76 | 432,282 | 1025 | 27 | 2.1 | 142 |
Habitat no. 106 | Amount | 22,644 | 8964 | 6 | 10,211 | 17,308 | 3309 | 263 | 6347 | 315 | 164 | 407,441 | 1528 | 53 | 3.3 | 195 |
Chemical Characteristics | Humus, % | pHKCl | K2O, mg/kg | P2O5, mg/kg | Chemical Elements, mg/kg | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | Ca | Cu | Fe | K | Mg | Mn | Na | P | Co | S | Si | Ti | Zn | Cl | |||||
Amount of essential oil (%) | 0.18 | 0.14 | 0.02 | 0.15 | −0.16 | 0.13 | −0.09 | −0.16 | −0.14 | −0.02 | −0.22 | −0.06 | 0.08 | −0.32 | 0.00 | 0.04 | −0.12 | −0.04 | −0.02 |
Carvacrol | 0.10 | 0.01 | −0.08 | 0.18 | 0.08 | 0.13 | 0.09 | 0.13 | 0.09 | 0.14 | −0.03 | −0.20 | 0.07 | −0.08 | 0.27 | −0.16 | 0.13 | 0.08 | 0.00 |
Thymol | 0.04 | −0.14 | 0.15 | 0.12 | −0.01 | −0.05 | −0.11 | −0.08 | −0.07 | −0.07 | −0.03 | −0.04 | 0.16 | −0.06 | −0.12 | 0.12 | −0.13 | −0.12 | 0.10 |
p-Cymene | −0.12 | 0.02 | 0.01 | −0.16 | 0.00 | 0.06 | −0.02 | −0.02 | −0.03 | −0.05 | −0.10 | −0.07 | −0.18 | 0.02 | −0.20 | 0.00 | −0.11 | −0.10 | 0.13 |
γ-Terpinene | 0.07 | −0.04 | 0.01 | 0.23 | −0.06 | 0.04 | −0.10 | −0.11 | −0.12 | −0.15 | −0.12 | 0.08 | 0.02 | −0.14 | 0.13 | 0.02 | −0.09 | −0.04 | −0.06 |
Geraniol | −0.19 | 0.05 | −0.02 | 0.04 | −0.13 | −0.10 | −0.12 | −0.11 | −0.05 | −0.09 | −0.02 | 0.18 | 0.04 | 0.07 | −0.16 | 0.14 | 0.02 | 0.08 | −0.22 |
Geranial | −0.20 | 0.03 | −0.03 | −0.02 | −0.11 | −0.13 | −0.12 | −0.12 | −0.04 | −0.10 | 0.00 | 0.19 | −0.06 | 0.14 | −0.23 | 0.17 | −0.02 | −0.09 | −0.20 |
Nerol | −0.16 | −0.05 | −0.05 | −0.06 | −0.10 | −0.22 | −0.10 | −0.12 | −0.04 | −0.16 | 0.03 | 0.22 | 0.06 | 0.15 | −0.25 | 0.23 | −0.03 | −0.01 | −0.20 |
Neral | −0.17 | −0.05 | −0.03 | −0.05 | −0.09 | −0.19 | 0.10 | 0.11 | −0.03 | −0.14 | 0.03 | 0.19 | 0.06 | 0.15 | −0.24 | 0.20 | −0.02 | −0.09 | −0.20 |
Linalool | 0.03 | −0.03 | 0.05 | 0.16 | −0.01 | 0.02 | 0.08 | 0.01 | −0.02 | 0.04 | −0.06 | 0.14 | 0.06 | −0.04 | 0.08 | −0.02 | −0.06 | −0.02 | 0.09 |
α-Terpinyl acetate | −0.10 | 0.00 | 0.08 | 0.14 | 0.09 | 0.07 | −0.11 | −0.07 | −0.09 | 0.03 | −0.03 | 0.12 | −0.01 | 0.08 | −0.01 | −0.04 | −0.09 | −0.04 | 0.06 |
Myrcene | −0.04 | −0.05 | −0.01 | −0.05 | −0.12 | 0.08 | −0.14 | −0.10 | −0.22 | −0.02 | −0.05 | 0.01 | 0.01 | −0.10 | 0.06 | 0.02 | −0.18 | −0.08 | 0.04 |
Thymol methyl ether | −0.04 | 0.07 | −0.13 | −0.01 | 0.00 | 0.05 | −0.13 | −0.03 | −0.09 | −0.08 | 0.02 | 0.03 | 0.06 | 0.04 | −0.08 | 0.11 | −0.09 | −0.06 | 0.07 |
Carvacrol methyl ether | 0.06 | 0.04 | 0.07 | −0.12 | 0.09 | 0.03 | 0.02 | 0.06 | 0.05 | 0.06 | 0.00 | −0.09 | 0.01 | −0.01 | −0.06 | −0.04 | −0.01 | −0.04 | 0.09 |
β-Caryophyllene | 0.13 | 0.05 | 0.09 | 0.05 | 0.18 | 0.01 | 0.19 | 0.20 | 0.20 | 0.08 | 0.16 | −0.16 | 0.17 | 0.14 | 0.16 | −0.11 | 0.20 | 0.16 | 0.10 |
β-Bisabolene | 0.08 | 0.05 | −0.05 | 0.00 | 0.15 | 0.00 | 0.12 | 0.15 | 0.12 | 0.04 | 0.19 | −0.15 | 0.13 | 0.16 | 0.07 | 0.06 | 0.15 | 0.13 | 0.12 |
Caryophyllene oxide | −0.22 | 0.03 | 0.03 | −0.24 | 0.00 | −0.11 | −0.04 | −0.01 | 0.03 | −0.01 | −0.03 | 0.05 | −0.19 | 0.22 | −0.33 | 0.12 | −0.01 | −0.15 | 0.07 |
Lithuania Climatic Sub-District | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | D | M-N | NL | V | S | Z | PL | P | ||
Tjune, °C | Mean ± SD | 16.3 ± 1.39 | 16.4 ± 1.26 | 16.1 ± 1.42 | 16.4 ± 1.31 | 15.1 ±1.67 | 16.3 ± 1.26 | 15.4 ± 1.41 | 15.9 ± 1.34 | 15.5 ± 1.34 |
Min–max | 14.4–18.4 | 14.5–18.1 | 14.3–18.4 | 14.8–18.4 | 13.8–17.5 | 14.5–17.8 | 13.6–17.5 | 14.1–17.6 | 13.3–17.5 | |
CV, % | 9 | 8 | 9 | 8 | 11 | 8 | 9 | 8 | 9 | |
Tjuly, °C | Mean ± SD | 18.8 ± 1.62 | 18.9 ± 1.36 | 18.9 ± 1.54 | 19.1 ± 1.47 | 17.8 ± 1.21 | 18.9 ± 1.36 | 18.2 ± 1.62 | 18.8 ± 1.52 | 18.8 ± 1.33 |
Min–max | 16.9–22.0 | 17.2–21.7 | 16.9–21.8 | 17.1–21.7 | 16.2–19.6 | 17.2–21.2 | 16.0–20.9 | 16.8–21.1 | 16.8–21.1 | |
CV, % | 9 | 7 | 8 | 8 | 7 | 7 | 9 | 8 | 7 | |
T∑april–july, °C | Mean ± SD | 55.4 ± 2.86 | 55.8 ± 2.45 | 55.20 ± 2.68 | 56.60 ± 2.33 | 51.60 ± 3.24 | 56.10 ± 2.13 | 52.40 ± 2.51 | 54.60 ± 2.50 | 52.90 ± 2.02 |
Min–max | 50.2–59.9 | 51.3–60.0 | 49.7–58.7 | 51.7–59.4 | 46.5–54.0 | 51.5–58.7 | 46.4–54.8 | 48.8–57.9 | 48.2–55.8 | |
CV, % | 5 | 4 | 5 | 4 | 6 | 4 | 5 | 5 | 4 | |
Rjune, mm | Mean ± SD | 64.4 ± 39.90 | 72.6 ± 40.27 | 64.4 ± 31.77 | 68.7 ± 28.87 | 52.9 ± 22.92 | 75.9 ± 29.26 | 63.4 ± 24.96 | 57.2 ± 22.36 | 49.2 ± 17.37 |
Min–max | 20.2–131.4 | 11.5–136.2 | 17.9–131.1 | 17.8–114.9 | 30.2–83.3 | 19.0–121.5 | 28.7–118.0 | 12.6–92.2 | 23.5–79.2 | |
CV, % | 62 | 55 | 49 | 42 | 43 | 39 | 39 | 39 | 35 | |
Rjuly, mm | Mean ± SD | 94.8 ± 28.37 | 102.1 ± 41.97 | 94.7 ± 33.50 | 92.00 ± 35.56 | 62.40 ± 31.50 | 114.80 ± 50.26 | 100.10 ± 49.10 | 99.23 ± 70.61 | 87.4 ± 50.5 |
Min–max | 52.4–135.0 | 24.8–165.0 | 35.3–141.0 | 44.3–166.0 | 30.1–165.0 | 26.8–192.1 | 21.6–180.7 | 16.9–286.0 | 11.0–193.7 | |
CV, % | 30 | 41 | 36 | 39 | 50 | 44 | 49 | 71 | 58 | |
R∑Aptil–july, mm | Mean ± SD | 259.34 ± 59.38 | 283.00 ± 63.30 | 250.80 ± 63.51 | 249.00 ± 63.47 | 229.40 ± 72.78 | 292.10 ± 87.88 | 245.90 ± 64.15 | 234.59 ± 91.50 | 214.20 ± 66.76 |
Min–max | 166.2–386.8 | 207.1–388.1 | 134.8–338.8 | 149.9–324.8 | 121.3–275.5 | 151.2–464.5 | 125.8–345.9 | 102.0–454.9 | 89.3–333.0 | |
CV, % | 23 | 22 | 25 | 25 | 32 | 30 | 26 | 39 | 32 | |
SDjune, h | Mean ± SD | 264.9 ± 48.86 | 254.4 ± 52.99 | 266.8 ± 45.59 | 272.0 ± 55.18 | – | 282.1 ± 56.18 | 282.8 ± 42.19 | 287.1 ± 49.73 | 295.3 ± 26.26 |
Min–max | 180.1–319.3 | 168.3–321.3 | 184.8–322.1 | 192.4–364.2 | – | 181.8–364.2 | 207.3–341.7 | 217.6–353.4 | 258.2–334.9 | |
CV, % | 18 | 21 | 17 | 20 | – | 20 | 15 | 23 | 9 | |
SDjuly, h | Mean ± SD | 264.1 ± 49.92 | 249.9 ± 50.02 | 272.1 ± 49.94 | 269.3 ± 52.71 | – | 273.4 ± 52.13 | 284.5 ± 49.52 | 282.5 ± 72.77 | 284.2 ± 52.37 |
Min–max | 177.4–343.5 | 176.8–342.3 | 199.3–361.3 | 186.5–395.5 | – | 199.9–341.7 | 222.90–373.10 | 171.6–396.0 | 192.6–356.1 | |
CV, % | 19 | 20 | 18 | 20 | – | 19 | 17 | 26 | 18 | |
SD∑april–july, h | Mean ± SD | 1007.8 ± 102.93 | 945.8 ± 59.31 | 1012.4 ± 77.47 | 1022.6 ± 91.81 | – | 1056.6 ± 86.56 | 1064.0 ± 82.92 | 1080.2 ± 49.73 | 1096.3 ± 77.31 |
Min–max | 877.8–1246.5 | 848.7–1070.9 | 870.7–1149.9 | 895.8–1173.1 | – | 976.8–1264.2 | 959.8–1205.6 | 851.9–396.0 | 1008.7–122.8 | |
CV, % | 10 | 6 | 8 | 9 | – | 8 | 8 | 5 | 7 | |
PARjune, MJ/m2 | Mean ± SD | 334.7 ± 31.16 | – | 309.9 ± 43.78 | 323.7 ± 36.63 | 307.5 ± 31.94 | – | – | 331.5 ± 25.44 | – |
Min–max | 289.9 –358.3 | – | 217.7–346.5 | 261.1–369.8 | 264.0–339.4 | – | – | 291.5–371.8 | – | |
CV, % | 9 | – | 14 | 11 | 10 | – | – | 8 | – | |
PARjuly, MJ/m2 | Mean ± SD | 299.3 ± 40.47 | – | 314.00 ± 22.59 | 312.80 ± 28.41 | 306.40 ± 32.93 | – | – | 319.30 ± 38.48 | – |
Min–max | 247.3–345.9 | – | 280.0–354.3 | 270.8–359.8 | 249.8–348.8 | – | – | 244.1– 369.7 | – | |
CV, % | 14 | – | 7 | 9 | 11 | – | – | 12 | – | |
PAR∑april–july, MJ/m2 | Mean ± SD | 1154.3 ± 32.07 | – | 1167.0 ± 27.05 | 1173.5 ± 33.84 | 1138.8 ± 61.00 | – | – | 1175.0 ± 105.32 | – |
Min–max | 1117.4–1182.5 | – | 1118.5–1202.7 | 1106.4–1218.2 | 1009.00–1214.0 | – | – | 909.7–1264.9 | – | |
CV, % | 3 | – | 2 | 3 | 5 | – | – | 9 | – |
Lithuania Climatic Sub-District | ||||||||
---|---|---|---|---|---|---|---|---|
Chemical Compound | Aukštaitija | Dzūkija | Mūša-Nevėžis | Nemunas Lowland | Venta | Sudūva | Žemaičiai | |
Carvacrol | Mean ± SD, % | 14.02 ± 6.01 * | 19.78 ± 11.31 | 15.17 ± 7.98 | 19.32 ± 10.39 | 21.84 ± 14.52 | 27.73 ± 9.55 * | 20.92 ± 7.94 |
Min–max, % | 4.79–29.30 | 5.30–48.00 | 0.00–32.26 | 0.00–40.36 | 11.02–43.95 | 17.37–39.95 | 10.94–43.27 | |
CV, % | 43 | 57 | 53 | 54 | 66 | 34 | 38 | |
Thymol | Mean± SD, % | 4.74 ± 3.45 * | 1.25 ± 1.69 | 3.70 ± 6.12 | 0.64 ± 1.39 * | 0.37 ± 0.45 | 0.43 ± 0.67 | 4.52 ± 3.94 |
Min–max, % | 0.20–10.94 | 0.00–5.77 | 0.00–27.86 | 0.00–5.73 | 0.00–1.10 | 0.00–1.22 | 0.08–11.64 | |
CV, % | 73 | 135 | 165 | 217 | 122 | 156 | 87 | |
p-Cymene | Mean ± SD, % | 17.12 ± 7.81 * | 10.67 ± 6.97 | 12.12 ± 9.58 * | 10.10 ± 8.18 | 0.99 ± 0.41 * | 9.68 ± 1.23 | 11.59 ± 4.43 |
Min–max, % | 3.29–29.93 | 1.00–28.87 | 0.39–38.49 | 0.14–22.60 | 0.57–1.53 | 8.32–11.15 | 5.07–21.35 | |
CV, % | 46 | 65 | 79 | 81 | 41 | 13 | 38 | |
γ-Terpinene | Mean ± SD, % | 12.97 ± 4.45 * | 16.78 ± 9.46 | 15.53 ± 9.80 * | 18.93 ± 7.74 | 10.75 ± 5.40 * | 20.08 ± 2.96 | 23.92 ± 7.83 * |
Min–max, % | 2.67–21.87 | 1.69–29.67 | 0.00–40.10 | 0.48–27.61 | 4.78–17.53 | 17.89–24.29 | 9.76–42.60 | |
CV, % | 34 | 56 | 63 | 41 | 50 | 12 | 33 | |
Carvacrol methyl ether | Mean ± SD, % | 4.08 ± 1.65 | 3.33 ± 2.36 | 3.92 ± 2.29 | 3.47 ± 2.17 | 2.56 ± 2.07 | 4.19 ± 1.30 | 5.83 ± 2.02 |
Min–max, % | 1.00–6.04 | 0.00–8.56 | 0.12–9.26 | 0.00–7.99 | 0.00–5.70 | 2.60–5.73 | 1.18–9.17 | |
CV, % | 40 | 71 | 58 | 63 | 81 | 31 | 35 | |
Thymol methyl ether | Mean ± SD, % | 1.63 ± 1.34 | 0.41 ± 0.52 | 0.66 ± 1.03 | 0.46 ± 0.53 | 0.18 ± 0.10 | 0.48 ± 0.60 | 1.21 ± 1.29 |
Min–max, % | 0.12–4.92 | 0.00–2.05 | 0.00–5.66 | 0.00–2.21 | 0.00–0.23 | 0.08–1.37 | 0.00–4.14 | |
CV, % | 82 | 127 | 156 | 115 | 56 | 125 | 106 | |
Gėraniol | Mean ± SD, % | 6.93 ± 6.20 | 8.33 ± 10.10 | 8.43 ± 10.12 | 3.95 ± 5.57 | 15.91 ± 15.63 * | 3.68 ± 6.68 | 1.48 ± 2.52 * |
Min–max, % | 0.60–24.72 | 0.09–39.87 | 0.00–34.74 | 0.00–18.82 | 0.00–36.32 | 0.00–13.67 | 0.00–7.54 | |
CV, % | 112 | 120 | 120 | 141 | 98 | 182 | 142 | |
Geranialis | Mean ± SD, % | 1.39 ± 1.26 | 1.68 ± 1.87 | 1.37 ± 1.63 * | 0.52 ± 0.68 | 1.93 ± 1.88 | 0.51 ± 0.93 | 0.41 ± 0.65 * |
Min–max, % | 0.10–4.71 | 0.00–5.03 | 0.00–6.57 | 0.00–2.15 | 0.00–4.28 | 0.00–1.89 | 0.00–1.88 | |
CV, % | 91 | 111 | 119 | 131 | 97 | 182 | 159 | |
Nerol | Mean ± SD, % | 5.75 ± 5.27 *,** | 5.73 ± 7.18 * | 4.02 ± 4.66 | 1.50 ± 2.25 ** | 5.19 ± 5.24 * | 1.28 ± 2.23 | 1.09 ± 1.63 |
Min–max, % | 0.51–17.17 | 0.00–20.57 | 0.00–16.71 | 0.00–8.78 | 0.00–12.40 | 0.00–4.78 | 0.00–5.39 | |
CV, % | 92 | 125 | 116 | 150 | 101 | 182 | 150 | |
Neral | Mean ± SD | 4.35 ± 4.11 | 4.32 ± 5.53 | 3.97 ± 6.21 * | 1.15 ± 1.74 | 4.10 ± 4.18 | 1.00 ± 1.89 | 0.75 ± 1.27 * |
Min–max | 0.09–13.37 | 0.00–15.46 | 0.00–34.92 | 0.00–6.61 | 0.00–9.87 | 0.00–3.84 | 0.00–3.95 | |
CV, % | 94 | 128 | 156 | 151 | 102 | 189 | 169 | |
Linalool | Mean ± SD | 0.99 ± 3.13 | 0.74 ± 1.37 | 2.45 ± 8.14 | 4.35 ± 12.93 | 0.41 ± 0.40 | 0.36 ± 0.10 | 0.29 ± 0.15 |
Min–max | 0.00–14.25 | 0.17–6.46 | 0.16–40.37 | 0.10–57.75 | 0.00–1.08 | 0.25–0.49 | 0.00–0.50 | |
CV, % | 316 | 185 | 332 | 297 | 98 | 28 | 52 | |
α-Terpinyl acetate | Mean ± SD, % | 0.48 ± 0.45 | 0.56 ± 1.18 | 2.20 ± 6.84 | 2.90 ± 12.26 | 0.00 | 0.01 ± 0.02 | 0.004 ± 0.01 |
Min–max, % | 0.19–2.34 | 0.00–4.33 | 0.00–43.56 | 0.10–57.50 | 0.00 | 0.00–0.04 | 0.00–0.05 | |
CV, % | 94 | 211 | 311 | 423 | 0.00 | 200 | 250 | |
Myrcene | Mean ± SD, % | 1.44 ± 0.42 | 1.70 ± 0.88 | 1.29 ± 0.52 | 1.38 ± 0.47 | 0.95 ± 0.48 | 1.41 ± 0.19 | 1.52 ± 0.35 |
Min–max, % | 0.93–2.74 | 0.62–4.19 | 0.00–2.33 | 0.54–2.44 | 0.39–2.68 | 1.14–1.60 | 0.73–1.96 | |
CV, % | 29 | 52 | 40 | 34 | 51 | 13 | 23 | |
β-Caryophyllene | Mean ± SD | 4.99 ± 1.23 | 4.88 ± 1.00 | 5.47 ± 1.80 | 5.70 ± 2.10 | 6.02 ± 1.46 | 6.00 ± 1.39 | 6.48 ± 2.82 |
Min–max | 2.58–6.94 | 2.83–648 | 2.22–9.42 | 0.69–12.10 | 4.08–7.67 | 4.64–7.34 | 2.45–13.66 | |
CV, % | 25 | 20 | 33 | 37 | 51 | 23 | 44 | |
β-Bisabolene | Mean ± SD | 3.05 ± 1.20 | 2.98 ± 0.96 | 2.73 ± 1.11 * | 2.72 ± 0.80 | 2.97 ± 0.89 | 3.81 ± 1.26 | 3.76 ± 1.43 * |
Min–max | 1.57–5.63 | 1.57–4.78 | 0.00–5.27 | 1.23–4.77 | 1.97–4.24 | 2.50–5.08 | 1.60–6.60 | |
CV, % | 39 | 32 | 42 | 31 | 30 | 33 | 38 | |
Caryophyllene oxide | Mean ± SD, % | 1.73 ± 0.45 * | 1.34 ± 1.15 | 1.19 ± 0.67 * | 0.84 ± 0.39 * | 2.97 ± 0.89 | 0.68 ± 0.20 | 0.79 ± 0.47 * |
Min–max, % | 0.68–2.74 | 0.44–5.01 | 0.00–3.45 | 0.25–1.72 | 1.97–4.24 | 0.50–0.97 | 0.00–1.72 | |
CV, % | 26 | 86 | 56 | 46 | 75 | 29 | 38 | |
α-Terpinene | Mean ± SD, % | 1.33 ± 0.52 * | 1.50 ± 0.85 * | 1.47 ± 0.81 * | 1.89 ± 0.91 | 0.99 ± 0.41 * | 1.76 ± 0.27 | 2.39 ± 0.95 * |
Min–max, % | 0.23–2.59 | 0.00–2.48 | 0.00–2.95 | 0.04–3.86 | 0.57–1.56 | 1.60–2.16 | 1.16–4.85 | |
CV, % | 39 | 57 | 55 | 48 | 41 | 29 | 40 | |
Borneol | Mean ± SD | 0.58 ± 0.33 | 0.66 ± 0.98 | 0.47 ± 0.34 | 0.39 ± 0.32 | 0.46 ± 0.29 | 0.64 ± 0.27 | 0.69 ± 0.53 |
Min–max | 0.00–1.20 | 0.00–4.65 | 0.00–2.95 | 0.04–1.21 | 0.00–0.79 | 0.46–1.04 | 0.00–2.19 | |
CV, % | 57 | 148 | 72 | 82 | 63 | 42 | 77 | |
Cis-β-Guaiene | Mean ± SD | 1.14 ± 0.38 * | 1.52 ± 0.61 | 1.54 ± 0.74 * | 2.21 ± 1.43 * | 1.88 ± 0.86 | 2.00 ± 0.57 | 1.78 ± 0.81 |
Min–max | 0.52–1.98 | 0.68–2.96 | 0.00–3.18 | 0.59–7.14 | 0.67–286 | 1.45–2.54 | 0.00–3.06 | |
CV, % | 33 | 40 | 48 | 65 | 46 | 29 | 46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaičiulytė, V.; Ložienė, K.; Taraškevičius, R. Impact of Edaphic and Climatic Factors on Thymus pulegioides Essential Oil Composition and Potential Prevalence of Chemotypes. Plants 2022, 11, 2536. https://doi.org/10.3390/plants11192536
Vaičiulytė V, Ložienė K, Taraškevičius R. Impact of Edaphic and Climatic Factors on Thymus pulegioides Essential Oil Composition and Potential Prevalence of Chemotypes. Plants. 2022; 11(19):2536. https://doi.org/10.3390/plants11192536
Chicago/Turabian StyleVaičiulytė, Vaida, Kristina Ložienė, and Ričardas Taraškevičius. 2022. "Impact of Edaphic and Climatic Factors on Thymus pulegioides Essential Oil Composition and Potential Prevalence of Chemotypes" Plants 11, no. 19: 2536. https://doi.org/10.3390/plants11192536
APA StyleVaičiulytė, V., Ložienė, K., & Taraškevičius, R. (2022). Impact of Edaphic and Climatic Factors on Thymus pulegioides Essential Oil Composition and Potential Prevalence of Chemotypes. Plants, 11(19), 2536. https://doi.org/10.3390/plants11192536