Productivity and Feed Quality Performance of Napier Grass (Cenchrus purpureus) Genotypes Growing under Different Soil Moisture Levels
Abstract
:1. Introduction
2. Results
2.1. Effects of Growing Season, Harvest Period and Genotype on Napier Grass Performance
2.2. Partitioning Quantitative Genetic Variation
2.3. The Effect of Soil Moisture Stress Levels on Napier Grass Performance
2.4. Genotype Diversity and Trait Selection under Water Stress Conditions
2.5. Genotype and Trait Clusters under Water Stress Treatments
2.6. Biomass Productivity of Napier Grass Genotypes under Water Stress and Optimum Soil Moisture Conditions
2.7. Biomass Yield Stability across Harvests
2.8. Feed Quality Trait Variation among Genotypes, Soil Moisture Levels and Harvest
2.9. Association of Feed Quality Traits and Total Dry Weight under Moisture Stress Conditions
2.10. Annual Total Dry Weight and Crude Protein Yield Performance of Genotypes
2.11. Variation between Leaf and Stem Tissue Samples for Feed Quality Traits in the Wet Season
3. Discussion
3.1. Trait Expression under Rainfed, Moderate and Severe Water Stress Conditions
3.2. Drought Stress-Responsive Agro-Morphological Traits
3.3. Drought Stress Effects on Genotype Performance
3.4. Biomass Yield of Genotypes
3.5. Feed Nutrient Quality Performance
4. Materials and Methods
4.1. Description of the Experimental Area and Planting Material
4.2. Field Trial Set Up
4.3. Data Collection
4.4. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Genotypes | Origin | Type | Genotypes | Origin | Type |
---|---|---|---|---|---|
1026 | Burundi | landrace | 16815 | USA | landrace |
14355 | Ethiopia | landrace | 16816 | USA | landrace |
14982 | USA | hybrid | 16817 | USA | landrace |
14982 | 16818 | USA | landrace | ||
14983 | USA | landrace | 16819 | USA | landrace |
14984 | USA | landrace | 16821 | Zimbabwe | landrace |
15357 | NA | hybrid | 16822 | Malawi | landrace |
15743 | USA | landrace | 16834 | ||
16621 | 16835 | Zimbabwe | hybrid | ||
16782 | Tanzania | landrace | 16836 | Zimbabwe | landrace |
16783 | Tanzania | landrace | 16837 | Zimbabwe | hybrid |
16784 | Tanzania | landrace | 16838 | Zimbabwe | hybrid |
16785 | Tanzania | landrace | 16839 | Zimbabwe | landrace |
16786 | Swaziland | landrace | 16840 | Zimbabwe | hybrid |
16787 | 16902 | Zimbabwe | landrace | ||
16788 | 18438 | Tanzania | landrace | ||
16789 | Swaziland | landrace | 18448 | Tanzania | landrace |
16790 | Swaziland | landrace | 18662 | ||
16791 | Swaziland | landrace | BAGCE 100 | Brazil | Landrace |
16792 | Mozambique | landrace | BAGCE 17 | Costa Rica | Landrace |
16793 | Cuba | landrace | BAGCE 30 | Brazil | Landrace |
16794 | BAGCE 34 | Brazil | Landrace | ||
16795 | Zimbabwe | landrace | BAGCE 53 | Brazil | Landrace |
16796 | Zimbabwe | landrace | BAGCE 81 | Brazil | Landrace |
16797 | Zimbabwe | landrace | BAGCE 86 | NA | Landrace |
16798 | Zimbabwe | landrace | BAGCE 93 | NA | Landrace |
16799 | BAGCE 97 | NA | Landrace | ||
16800 | Zimbabwe | landrace | CNPGL 00-1-1 | NA | Hybrid |
16801 | Zimbabwe | landrace | CNPGL 92-133-3 | NA | Hybrid |
16802 | Zimbabwe | landrace | CNPGL 92-198-7 | NA | Hybrid |
16803 | Zimbabwe | landrace | CNPGL 92-56-2 | NA | Hybrid |
16804 | USA | landrace | CNPGL 92-66-3 | NA | Hybrid |
16805 | USA | landrace | CNPGL 92-79-2 | NA | Hybrid |
16806 | USA | landrace | CNPGL 93 -37-5 | NA | Hybrid |
16807 | USA | landrace | CNPGL 93-01-1 | NA | Hybrid |
16808 | USA | landrace | CNPGL 93-04-2 | NA | Hybrid |
16809 | USA | landrace | CNPGL 93-18-2 | NA | Hybrid |
16810 | USA | landrace | CNPGL 94-13-1 | NA | Hybrid |
16811 | USA | landrace | CNPGL 96-21-1 | NA | Hybrid |
16812 | USA | landrace | CNPGL 96-23-1 | NA | Hybrid |
16813 | USA | landrace | CNPGL 96-27-3 | NA | Hybrid |
16814 | USA | landrace | PIONEIRO | NA | Hybrid |
Sources of Variation | Conditions | Genotypes | Harvest | Genotype X Harvest | CV % |
---|---|---|---|---|---|
PH | Wet | <0.001 | <0.001 | <0.001 | 2.9 |
MWS | <0.001 | <0.001 | <0.001 | 11 | |
SWS | <0.001 | <0.001 | <0.001 | 11.4 | |
LW | Wet | <0.001 | <0.001 | <0.001 | 1.6 |
MWS | <0.001 | <0.001 | <0.001 | 9.6 | |
SWS | <0.001 | <0.001 | <0.001 | 9.1 | |
LL | Wet | <0.001 | <0.001 | <0.001 | 2 |
MWS | <0.001 | <0.001 | <0.001 | 11.1 | |
SWS | <0.001 | <0.001 | <0.001 | 10.9 | |
IL | Wet | <0.001 | <0.001 | <0.001 | 49.8 |
ST | Wet | <0.001 | <0.001 | <0.001 | 2.2 |
TN | Wet | <0.001 | <0.001 | <0.001 | 12.3 |
MWS | <0.001 | <0.001 | <0.001 | 5.1 | |
SWS | <0.001 | <0.001 | <0.001 | 5.2 | |
Fv/Fm | Wet | <0.001 | <0.001 | <0.001 | 5.6 |
MWS | <0.001 | <0.001 | <0.001 | 2.6 | |
SWS | <0.001 | <0.001 | <0.001 | 2.7 | |
PI | Wet | <0.001 | <0.001 | <0.001 | 9.9 |
MWS | <0.001 | <0.001 | <0.001 | 20.2 | |
SWS | <0.001 | <0.001 | <0.001 | 21.2 | |
TFW | Wet | <0.001 | <0.001 | <0.001 | 6.2 |
MWS | <0.001 | <0.001 | <0.001 | 13 | |
SWS | <0.001 | <0.001 | <0.001 | 13.5 | |
TDW | Wet | <0.001 | <0.001 | <0.001 | 9.4 |
MWS | <0.001 | <0.001 | <0.001 | 17.1 | |
SWS | <0.001 | <0.001 | <0.001 | 18.7 | |
WUE | MWS | <0.001 | <0.001 | <0.001 | 13.3 |
SWS | <0.001 | <0.001 | <0.001 | 13.4 | |
LSR | Wet | <0.001 | <0.001 | <0.001 | 54.6 |
Principal Components | Principal Components | ||||
---|---|---|---|---|---|
PCA1 | PCA2 | PCA1 | PCA2 | ||
PH | 0.88 | −0.21 | PH | 0.85 | −0.24 |
LL | 0.9 | −0.23 | LL | 0.86 | −0.26 |
LW | 0.78 | −0.34 | LW | 0.76 | −0.3 |
Fv/Fm | −0.27 | 0.62 | Fv/Fm | −0.19 | 0.79 |
PI | −0.36 | 0.75 | PI | −0.17 | 0.81 |
TN | 0.39 | 0.66 | TN | 0.5 | 0.57 |
TFW | 0.95 | 0.26 | TFW | 0.96 | 0.19 |
TDW | 0.96 | 0.2 | TDW | 0.97 | 0.15 |
WUE | 0.95 | 0.23 | WUE | 0.95 | 0.19 |
STI | 0.96 | 0.2 | STI | 0.97 | 0.15 |
Sources of Variation | Mean Square | Explained Total Sum Square | ||||
---|---|---|---|---|---|---|
Wet | MWS | SWS | Wet | MWS | SWS | |
Harvest (H) | 145.47 *** | 21.76 *** | 98.30 *** | 48.84% | 36.50% | 36.50% |
Genotype (G) | 2369.25 *** | 78.93 *** | 4.17 *** | 33.93% | 40.10% | 40.10% |
GXH | 219.35 *** | 10.58 *** | 0.51 *** | 15.71% | 18.70% | 18.70% |
IPC1 | 94.68 ** | 1.06 ** | 1.22 ** | 7.84% | 8.50% | 9.67% |
IPC2 | 34.63 ** | 0.53 ** | 0.56 ** | 2.80% | 4.20% | 4.31% |
IPC3 | 21.11 ** | 0.31 ** | 0.33 ** | 1.67% | 2.40% | 2.50% |
IPC4 | 10.01 ** | 0.15 ** | 0.09 NS | 0.77% | 1.10% | 0.68% |
IPC5 | 6.78 ** | 0.05 NS | 0.03 NS | 0.51% | 0.40% | 0.21% |
Genotype | TDW Mean (t/ha) | ASV | rY | rASV | YSI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wet | MWS | SWS | Wet | MWS | SWS | Wet | MWS | SWS | Wet | MWS | SWS | Wet | MWS | SWS | |
16791 | 20.38 | 2.17 | 2.21 | 5.38 | 0.42 | 0.45 | 1 | 11 | 7 | 83 | 33 | 32 | 84 | 44 | 39 |
16819 | 18.33 | 2.79 | 2.54 | 5.99 | 1.05 | 1.3 | 2 | 1 | 1 | 84 | 78 | 79 | 86 | 79 | 80 |
BAGCE 30 | 17.36 | 2.5 | 2.22 | 2.17 | 1.5 | 1.39 | 3 | 4 | 6 | 60 | 83 | 82 | 63 | 87 | 88 |
CNPGL 93-37-5 | 16.35 | 2.36 | 2.42 | 1.88 | 1.32 | 1.32 | 4 | 8 | 2 | 55 | 82 | 80 | 59 | 90 | 82 |
16802 | 16.34 | 1.99 | 2.19 | 2.73 | 0.57 | 0.48 | 5 | 14 | 9 | 69 | 59 | 39 | 74 | 73 | 48 |
BAGCE 100 | 16.15 | 1.86 | 2.27 | 1.94 | 0.32 | 0.65 | 6 | 22 | 5 | 56 | 28 | 58 | 62 | 50 | 63 |
BAGCE 34 | 15.44 | 1.84 | 1.79 | 2.62 | 0.31 | 0.42 | 7 | 24 | 20 | 68 | 24 | 30 | 75 | 48 | 50 |
BAGCE 93 | 14.98 | 2.29 | 2.15 | 1.08 | 1.27 | 1.49 | 8 | 9 | 10 | 30 | 81 | 83 | 38 | 90 | 93 |
CNPGL 92-198-7 | 14.94 | 2.06 | 1.73 | 1.46 | 0.85 | 0.82 | 9 | 13 | 22 | 42 | 73 | 69 | 51 | 86 | 91 |
15357 | 14.67 | 1.85 | 1.35 | 3.31 | 0.46 | 0.12 | 10 | 23 | 40 | 75 | 38 | 2 | 85 | 61 | 42 |
14355 | 14.37 | 1.68 | 1.82 | 3.09 | 0.11 | 0.46 | 11 | 30 | 19 | 72 | 7 | 34 | 83 | 37 | 53 |
CNPGL 00-1-1 | 14.26 | 1.79 | 1.3 | 1.44 | 0.53 | 0.76 | 12 | 28 | 43 | 41 | 52 | 66 | 53 | 80 | 109 |
CNPGL 92-56-2 | 13.77 | 1.92 | 1.79 | 2.4 | 1.09 | 1.19 | 13 | 16 | 21 | 65 | 80 | 78 | 78 | 96 | 99 |
CNPGL 92-66-3 | 13.57 | 2.36 | 2.39 | 0.45 | 0.5 | 0.46 | 14 | 7 | 3 | 10 | 45 | 33 | 24 | 52 | 36 |
16839 | 13.42 | 2.55 | 2.29 | 0.5 | 2.2 | 2.36 | 15 | 3 | 4 | 12 | 84 | 84 | 27 | 87 | 88 |
16807 | 13 | 1.16 | 1.26 | 4.41 | 0.27 | 0.68 | 16 | 59 | 46 | 81 | 21 | 60 | 97 | 80 | 106 |
14983 | 12.77 | 1.83 | 1.71 | 0.58 | 0.99 | 1.06 | 17 | 25 | 23 | 14 | 76 | 73 | 31 | 101 | 96 |
18438 | 12.6 | 1.38 | 1.14 | 1.23 | 0.36 | 0.47 | 18 | 51 | 54 | 33 | 30 | 35 | 51 | 81 | 89 |
BAGCE 53 | 12.58 | 1.54 | 1.31 | 0.99 | 0.43 | 0.78 | 19 | 41 | 42 | 25 | 34 | 68 | 44 | 75 | 110 |
16814 | 12.57 | 1.65 | 1.61 | 1.36 | 0.08 | 0.27 | 20 | 34 | 25 | 37 | 5 | 15 | 57 | 39 | 40 |
BAGCE 97 | 12.35 | 1.92 | 1.98 | 2.93 | 0.48 | 0.48 | 21 | 17 | 11 | 71 | 40 | 40 | 92 | 57 | 51 |
CNPGL 93-04-2 | 11.86 | 1.2 | 1.44 | 0.96 | 0.21 | 0.37 | 22 | 58 | 32 | 22 | 13 | 26 | 44 | 71 | 58 |
18448 | 11.85 | 1.31 | 1.05 | 3.29 | 0.45 | 0.62 | 23 | 54 | 57 | 74 | 35 | 56 | 97 | 89 | 113 |
16783 | 11.66 | 1.64 | 1.24 | 1.67 | 0.56 | 0.24 | 24 | 35 | 47 | 48 | 55 | 12 | 72 | 90 | 59 |
14984 | 11.62 | 1.92 | 1.63 | 1.58 | 0.13 | 0.37 | 25 | 19 | 24 | 46 | 8 | 25 | 71 | 27 | 49 |
15743 | 11.57 | 1.4 | 1.26 | 1.8 | 0.03 | 0.41 | 26 | 49 | 45 | 52 | 1 | 29 | 78 | 50 | 74 |
16795 | 11.43 | 2.43 | 2.2 | 1.04 | 1.06 | 1.18 | 27 | 6 | 8 | 27 | 79 | 77 | 54 | 85 | 85 |
BAGCE 17 | 11.41 | 1.01 | 1.15 | 2.5 | 0.29 | 0.58 | 28 | 63 | 53 | 67 | 23 | 53 | 95 | 86 | 106 |
BAGCE 81 | 11.37 | 1.48 | 1.38 | 1.87 | 0.47 | 0.58 | 29 | 44 | 38 | 54 | 39 | 54 | 83 | 83 | 92 |
CNPGL 94-13-1 | 11.36 | 1.54 | 1.41 | 0.99 | 0.11 | 0.16 | 30 | 42 | 35 | 23 | 6 | 4 | 53 | 48 | 39 |
16811 | 11.26 | 2.46 | 1.96 | 1.38 | 1.04 | 1.36 | 31 | 5 | 12 | 38 | 77 | 81 | 69 | 82 | 93 |
16792 | 11.12 | 1.92 | 1.82 | 1.13 | 0.25 | 0.08 | 32 | 18 | 18 | 31 | 17 | 1 | 63 | 35 | 19 |
16815 | 10.8 | 1.07 | 1.04 | 0.37 | 0.21 | 0.16 | 33 | 62 | 58 | 5 | 15 | 5 | 38 | 77 | 63 |
16789 | 10.6 | 1.96 | 1.84 | 0.22 | 0.41 | 0.47 | 34 | 15 | 16 | 2 | 31 | 37 | 36 | 46 | 53 |
BAGCE 86 | 10.5 | 1.56 | 1.38 | 0.37 | 0.5 | 0.66 | 35 | 39 | 36 | 6 | 44 | 59 | 41 | 83 | 95 |
16817 | 10.19 | 1.42 | 1.45 | 1.68 | 0.19 | 0.54 | 36 | 48 | 30 | 49 | 12 | 44 | 85 | 60 | 74 |
PIONEIRO | 10.02 | 1.61 | 1.45 | 0.95 | 0.32 | 0.21 | 37 | 37 | 31 | 21 | 25 | 10 | 58 | 62 | 41 |
CNPGL 96-27-3 | 9.8 | 1.61 | 1.32 | 0.1 | 0.22 | 0.25 | 38 | 38 | 41 | 1 | 16 | 13 | 39 | 54 | 54 |
16782 | 9.68 | 0.79 | 0.93 | 2.02 | 0.54 | 0.58 | 39 | 69 | 63 | 58 | 53 | 51 | 97 | 122 | 114 |
16809 | 9.64 | 1.35 | 0.97 | 0.53 | 0.27 | 0.22 | 40 | 53 | 62 | 13 | 20 | 11 | 53 | 73 | 73 |
16784 | 9.63 | 1.15 | 1.29 | 0.61 | 0.19 | 0.55 | 41 | 60 | 44 | 16 | 11 | 46 | 57 | 71 | 90 |
CNPGL 92-79-2 | 9.4 | 1.87 | 1.42 | 0.92 | 0.32 | 0.18 | 42 | 21 | 33 | 20 | 27 | 7 | 62 | 48 | 40 |
16786 | 9.26 | 1.72 | 1.38 | 1.07 | 0.26 | 0.33 | 43 | 29 | 37 | 29 | 18 | 21 | 72 | 47 | 58 |
16794 | 9.23 | 1.65 | 1.58 | 0.45 | 0.49 | 0.68 | 44 | 33 | 27 | 11 | 43 | 61 | 55 | 76 | 88 |
16800 | 9.23 | 1.82 | 1.61 | 0.38 | 0.41 | 0.31 | 45 | 26 | 26 | 7 | 32 | 17 | 52 | 58 | 43 |
16812 | 9.23 | 0.78 | 0.83 | 1.14 | 0.5 | 0.44 | 46 | 70 | 67 | 32 | 46 | 31 | 78 | 116 | 98 |
CNPGL 92-133-3 | 9.09 | 1.21 | 1.2 | 1.06 | 0.18 | 0.18 | 47 | 56 | 51 | 28 | 9 | 6 | 75 | 65 | 57 |
16822 | 8.97 | 0.76 | 0.85 | 1.84 | 0.49 | 0.83 | 48 | 72 | 65 | 53 | 42 | 70 | 101 | 114 | 135 |
16808 | 8.9 | 0.89 | 0.81 | 1.78 | 0.57 | 0.51 | 49 | 64 | 70 | 50 | 60 | 42 | 99 | 124 | 112 |
16798 | 8.76 | 1.82 | 1.84 | 0.99 | 0.56 | 0.34 | 50 | 27 | 15 | 24 | 56 | 23 | 74 | 83 | 38 |
16840 | 8.6 | 1.55 | 1.09 | 0.42 | 0.64 | 0.33 | 51 | 40 | 55 | 8 | 64 | 22 | 59 | 104 | 77 |
16804 | 8.42 | 1.39 | 1.04 | 1.35 | 0.5 | 0.5 | 52 | 50 | 59 | 36 | 47 | 41 | 88 | 97 | 100 |
14982 | 8.38 | 2.25 | 1.91 | 0.73 | 0.51 | 0.74 | 53 | 10 | 14 | 18 | 50 | 63 | 71 | 60 | 77 |
CNPGL 96-21-1 | 8.33 | 1.29 | 1.22 | 1.32 | 0.21 | 0.18 | 54 | 55 | 49 | 35 | 14 | 8 | 89 | 69 | 57 |
16801 | 8.31 | 1.62 | 1.47 | 1.44 | 0.49 | 0.37 | 55 | 36 | 29 | 40 | 41 | 24 | 95 | 77 | 53 |
16788 | 8.29 | 1.42 | 1.08 | 0.79 | 0.5 | 0.31 | 56 | 47 | 56 | 19 | 48 | 18 | 75 | 95 | 74 |
16806 | 8.12 | 1.91 | 1.49 | 1.78 | 0.05 | 0.56 | 57 | 20 | 28 | 51 | 2 | 47 | 108 | 22 | 75 |
14389 | 7.96 | 1.66 | 1.42 | 1.53 | 0.51 | 0.14 | 58 | 31 | 34 | 44 | 49 | 3 | 102 | 80 | 37 |
16818 | 7.79 | 0.61 | 0.68 | 0.43 | 0.71 | 0.75 | 59 | 77 | 76 | 9 | 68 | 64 | 68 | 145 | 140 |
16837 | 7.52 | 1.51 | 0.93 | 0.59 | 0.63 | 0.25 | 60 | 43 | 64 | 15 | 62 | 14 | 75 | 105 | 78 |
16785 | 7.46 | 1.66 | 1.83 | 1.43 | 0.65 | 0.56 | 61 | 32 | 17 | 39 | 65 | 48 | 100 | 97 | 65 |
16803 | 7.38 | 2.65 | 1.91 | 1.99 | 0.06 | 0.77 | 62 | 2 | 13 | 57 | 3 | 67 | 119 | 5 | 80 |
CNPGL 93-18-2 | 7.31 | 1.43 | 1.03 | 1.02 | 0.56 | 0.33 | 63 | 46 | 60 | 26 | 58 | 20 | 89 | 104 | 80 |
16821 | 7.27 | 0.73 | 0.72 | 0.32 | 0.45 | 0.52 | 64 | 74 | 72 | 3 | 36 | 43 | 67 | 110 | 115 |
16799 | 7.18 | 1.11 | 0.85 | 0.63 | 0.18 | 0.27 | 65 | 61 | 66 | 17 | 10 | 16 | 82 | 71 | 82 |
CNPGL 93-01-1 | 6.97 | 2.12 | 1.38 | 0.34 | 0.67 | 0.4 | 66 | 12 | 39 | 4 | 66 | 28 | 70 | 78 | 67 |
CNPGL 96-23-1 | 6.96 | 0.78 | 0.82 | 1.67 | 0.33 | 0.32 | 67 | 71 | 68 | 47 | 29 | 19 | 114 | 100 | 87 |
16793 | 6.94 | 1.43 | 1.16 | 1.52 | 0.27 | 0.38 | 68 | 45 | 52 | 43 | 22 | 27 | 111 | 67 | 79 |
16816 | 6.78 | 0.74 | 0.65 | 1.32 | 0.45 | 0.58 | 69 | 73 | 77 | 34 | 37 | 52 | 103 | 110 | 129 |
16813 | 6.56 | 0.81 | 1.23 | 2.47 | 0.26 | 0.47 | 70 | 67 | 48 | 66 | 19 | 36 | 136 | 86 | 84 |
16810 | 6.53 | 0.55 | 0.62 | 2.34 | 0.77 | 0.75 | 71 | 78 | 78 | 62 | 70 | 65 | 133 | 148 | 143 |
16902 | 6.34 | 1.21 | 1.21 | 2.11 | 0.51 | 0.56 | 72 | 57 | 50 | 59 | 51 | 49 | 131 | 108 | 99 |
16787 | 6.24 | 1.37 | 1.01 | 3.82 | 0.6 | 0.57 | 73 | 52 | 61 | 79 | 61 | 50 | 152 | 113 | 111 |
16836 | 6.15 | 0.85 | 0.8 | 3.48 | 0.64 | 0.55 | 74 | 65 | 71 | 78 | 63 | 45 | 152 | 128 | 116 |
16796 | 6.06 | 0.82 | 0.69 | 2.4 | 0.32 | 0.48 | 75 | 66 | 75 | 64 | 26 | 38 | 139 | 92 | 113 |
16838 | 5.85 | 0.61 | 0.81 | 1.55 | 0.7 | 0.61 | 76 | 76 | 69 | 45 | 67 | 55 | 121 | 143 | 124 |
1026 | 5.48 | 0.67 | 0.7 | 3.47 | 0.55 | 0.73 | 77 | 75 | 74 | 77 | 54 | 62 | 154 | 129 | 136 |
16835 | 5.47 | 0.8 | 0.71 | 2.24 | 0.08 | 0.21 | 78 | 68 | 73 | 61 | 4 | 9 | 139 | 72 | 82 |
16834 | 4.47 | 0.43 | 0.53 | 2.34 | 0.56 | 0.63 | 79 | 79 | 79 | 63 | 57 | 57 | 142 | 136 | 136 |
16790 | 3.35 | 0.4 | 0.29 | 2.87 | 0.77 | 1.12 | 80 | 80 | 83 | 70 | 69 | 75 | 150 | 149 | 158 |
16797 | 1.77 | 0.29 | 0.33 | 3.39 | 0.79 | 0.92 | 81 | 82 | 81 | 76 | 72 | 71 | 157 | 154 | 152 |
18662 | 0.63 | 0.27 | 0.26 | 4.38 | 0.88 | 1.13 | 82 | 83 | 84 | 80 | 74 | 76 | 162 | 157 | 160 |
16621 | 0.63 | 0.32 | 0.35 | 4.46 | 0.79 | 1.02 | 83 | 81 | 80 | 82 | 71 | 72 | 165 | 152 | 152 |
16805 | 0.44 | 0.24 | 0.32 | 3.23 | 0.9 | 1.11 | 84 | 84 | 82 | 73 | 75 | 74 | 157 | 159 | 156 |
Traits/Sources of Variation | Conditions | Genotypes (G) | Harvest (H) | G X H | CV% |
---|---|---|---|---|---|
NDF | Wet | <0.001 | <0.001 | <0.001 | 1.3 |
MWS | <0.001 | <0.001 | <0.001 | 0.5 | |
SWS | <0.001 | <0.001 | <0.001 | 0.5 | |
ADF | Wet | <0.001 | <0.001 | <0.001 | 1.5 |
MWS | <0.001 | <0.001 | <0.001 | 3.2 | |
SWS | <0.001 | <0.001 | <0.001 | 3.5 | |
ADL | Wet | <0.001 | <0.001 | <0.001 | 2.6 |
MWS | <0.001 | <0.001 | <0.001 | 1.8 | |
SWS | <0.001 | <0.001 | <0.001 | 1.9 | |
OM | Wet | <0.001 | <0.001 | <0.001 | 0.2 |
MWS | <0.001 | <0.001 | <0.001 | 1.1 | |
SWS | <0.001 | <0.001 | <0.001 | 1.1 | |
CP | Wet | <0.001 | <0.001 | <0.001 | 3.5 |
MWS | <0.001 | <0.001 | <0.001 | 7.7 | |
SWS | <0.001 | <0.001 | <0.001 | 6.1 | |
IVOMD | Wet | <0.001 | <0.001 | <0.001 | 0.9 |
MWS | <0.001 | <0.001 | <0.001 | 1 | |
SWS | <0.001 | <0.001 | <0.001 | 1 | |
Me | Wet | <0.001 | <0.001 | <0.001 | 0.9 |
MWS | <0.001 | <0.001 | <0.001 | 1.8 | |
SWS | <0.001 | <0.001 | <0.001 | 1.8 |
Traits/Sources of Variation | Tissue Samples | Genotypes (G) | Treatments (T) (MWS/SWS) | Harvest (H) | G X T | G X H | T X H | G X T X H | CV% |
---|---|---|---|---|---|---|---|---|---|
NDF | Leaf | <0.001 | NS | <0.001 | NS | NS | <0.001 | NS | 3.5 |
Stem | <0.001 | NS | <0.001 | NS | NS | 0.009 | NS | 5.9 | |
ADF | Leaf | <0.001 | NS | <0.001 | NS | NS | 0.02 | NS | 5 |
Stem | <0.001 | NS | <0.001 | NS | <0.001 | 0.004 | NS | 6.9 | |
ADL | Leaf | <0.001 | NS | <0.001 | NS | NS | NS | NS | 3.8 |
Stem | <0.001 | NS | <0.001 | NS | <0.001 | NS | NS | 16.9 | |
OM | Leaf | <0.001 | NS | <0.001 | NS | 0.001 | <0.001 | NS | 1.3 |
Stem | <0.001 | NS | <0.001 | NS | 0.001 | 0.001 | 0.041 | 1.6 | |
CP | Leaf | <0.001 | NS | <0.001 | NS | NS | NS | NS | 15.5 |
Stem | <0.001 | NS | <0.001 | NS | <0.001 | <0.001 | NS | 25.6 | |
IVOMD | Leaf | <0.001 | NS | <0.001 | NS | NS | <0.001 | NS | 3.3 |
Stem | <0.001 | NS | <0.001 | NS | <0.001 | <0.001 | 0.03 | 5.2 | |
Me | Leaf | <0.001 | NS | <0.001 | NS | NS | <0.001 | NS | 3.2 |
Stem | <0.001 | NS | <0.001 | NS | <0.001 | <0.001 | 0.03 | 4.9 |
Traits | Tissue Samples | Range | Mean |
---|---|---|---|
NDF% | Leaf | 53.20–78.39 | 67.13 ± 3.19 |
Stem | 47.12–83.57 | 71.01 ± 5.41 | |
ADF% | Leaf | 31.65–52.85 | 41.66 ± 2.93 |
Stem | 25.78–56.99 | 46.2 ± 4.09 | |
ADL% | Leaf | 2.1–7.38 | 4.16 ± 1.18 |
Stem | 1.67-7.84 | 3.99 ± 1.11 | |
OM% | Leaf | 76.43–86.51 | 82.08 ± 1.52 |
Stem | 73.8–90.2 | 84.54 ± 2.55 | |
CP% | Leaf | 4.33–20.49 | 11.78 ± 2.83 |
Stem | 2.17–27.94 | 9.79 ± 3.64 | |
IVOMD% | Leaf | 44.8–62.90 | 54.67 ± 2.88 |
Stem | 44.2–70.82 | 54.38 ± 3.88 | |
Me | Leaf | 6.33–8.48 | 7.55 ± 0.38 |
Stem | 6.33–9.74 | 7.66 ± 0.50 |
References
- Yohannes, H.A. Review on relationship between climate change and agriculture. J. Earth Sci. Clim. Chang. 2016, 7, 335. [Google Scholar] [CrossRef]
- Paul, B.K.; Koge, J.; Maass, B.L.; Notenbaert, A.; Peters, M.; Groot, J.C.; Tittonell, P. Tropical forage technologies can deliver multiple benefits in Sub-Saharan Africa. A meta-analysis. Agron. Sustain. Dev. 2020, 40, 1–17. [Google Scholar] [CrossRef]
- Abberton, M.T.; Macduff, J.H.; Marshall, A.H.; Humphreys, M.W. The Genetic Improvement of Forage Grasses and Legumes to Enhance Adaptation of Grasslands to Climate Change; FAO: Rome, Italy, 2008; p. 39. [Google Scholar]
- Blum, A. Drought resistance, water-use efficiency, and yield potential—Are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 2005, 56, 1159–1168. [Google Scholar] [CrossRef]
- Barker, D.J.; Caradus, J.R. Adaptation of forage species to drought. In Proceedings of the XIX International Grassland Congress, São Paulo, Brazil, 21 February 2001. [Google Scholar]
- Hart, E.H.; Christofides, S.R.; Davies, T.E.; Stevens, P.R.; Creevey, C.J.; Müller, C.T.; Rogers, H.J.; Kingston-Smith, A.H. Forage grass growth under future climate change scenarios affects fermentation and ruminant efficiency. Sci. Rep. 2022, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Rosero, A.; Granda, L.; Berdugo-Cely, J.A.; Šamajová, O.; Šamaj, J.; Cerkal, R. A Dual Strategy of Breeding for Drought Tolerance and Introducing Drought-Tolerant, Underutilized Crops into Production Systems to Enhance Their Resilience to Water Deficiency. Plants 2020, 9, 1263. [Google Scholar] [CrossRef] [PubMed]
- Rusdy, M. Elephant grass as forage for ruminant animals. Livest. Res. Rural. Dev.T 2016, 28, 4. [Google Scholar]
- Esilaba, A.; Okoti, M.; Nyariki, D.; Keya, G.; Miriti, J.; Kigomo, J.; Olukoye, G.; Wekesa, L.; Ego, W.; Muturi, G.; et al. The Desert Margins Programme Approaches in Upscaling Best-Bet Technologies in Arid and Semi-arid Lands in Kenya. In Innovations as Key to the Green Revolution in Africa; Andre, B., Boaz, W., Jeremiah, M., Okeyo, F., Job, M., Eds.; Springer Dordrecht: Dordrecht, The Netherlands, 2011; Volume 2, pp. 1177–1191. [Google Scholar] [CrossRef]
- Habte, E.; Muktar, M.S.; Negawo, A.T.; Sartie, A.; Jones, C.S. Performance of Napier grass (Cenchrus purpureus L.) genotypes grown under limited soil moisture. In Proceedings of the Joint International Grassland & International Rangeland Kenya 2021 Virtual Congress, Nairobi, Kenya, 25–29 October 2021. [Google Scholar]
- Negawo, A.T.; Teshome, A.; Kumar, A.; Hanson, J.; Jones, C.S. Opportunities for Napier Grass (Pennisetum purpureum) Improvement Using Molecular Genetics. Agronomy 2017, 7, 28. [Google Scholar] [CrossRef]
- Muktar, M.; Teshome, A.; Hanson, J.; Negawo, A.T.; Habte, E.; Entfellner, J.-B.D.; Lee, K.-W.; Jones, C.S. Genotyping by sequencing provides new insights into the diversity of Napier grass (Cenchrus purpureus) and reveals variation in genome-wide LD patterns between collections. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef]
- Habte, E.; Muktar, M.S.; Abdena, A.; Hanson, J.; Sartie, A.M.; Negawo, A.T.; Machado, J.C.; Ledo, F.J.D.S.; Jones, C.S. Forage Performance and Detection of Marker Trait Associations with Potential for Napier Grass (Cenchrus purpureus) Improvement. Agronomy 2020, 10, 542. [Google Scholar] [CrossRef]
- Wamalwa, N.I.E.; Midega, C.A.O.; Ajanga, S.; Omukunda, N.E.; Muyekho, F.N.; Asudi, G.O.; Mulaa, M.; Khan, Z.R. Screening Napier grass accessions for resistance to Napier grass stunt disease using the loop-mediated isothermal amplification of DNA (LAMP). Crop Prot. 2017, 98, 61–69. [Google Scholar] [CrossRef]
- Fariaszewska, A.; Aper, J.; Van Huylenbroeck, J.; De Swaef, T.; Baert, J.; Pecio, Ł. Physiological and Biochemical Responses of Forage Grass Varieties to Mild Drought Stress Under Field Conditions. Int. J. Plant Prod. 2020, 14, 335–353. [Google Scholar] [CrossRef]
- Monneveux, P.; Jing, R.; Misra, S.C. Phenotyping for drought adaptation in wheat using physiological traits. Front. Physiol. 2012, 3, 429. [Google Scholar] [CrossRef] [PubMed]
- Tuberosa, R. Phenotyping for drought tolerance of crops in the genomics era. Front. Physiol. 2012, 3, 347. [Google Scholar] [CrossRef]
- Cardoso, J.A.; Pineda, M.; Jiménez, J.D.L.C.; Vergara, M.F.; Rao, I.M. Contrasting strategies to cope with drought conditions by two tropical forage C4 grasses. AoB Plants 2015, 7, 107. [Google Scholar] [CrossRef]
- Purbajanti, E.; Anwar, S.; Kusmiyati, F. Drought stress effect on morphology characters, water use efficiency, growth and yield of guinea and napier grasses. Int. Res. J. Plant Sci. 2012, 3, 47–53. [Google Scholar]
- Perotti, E.; Huguenin-Elie, O.; Meisser, M.; Dubois, S.; Probo, M.; Mariotte, P. Climatic, soil, and vegetation drivers of forage yield and quality differ across the first three growth cycles of intensively managed permanent grasslands. Eur. J. Agron. 2020, 122, 126194. [Google Scholar] [CrossRef]
- Kebede, G.; Feyissa, F.; Assefa, G.; Alemayehu, M.; Mengistu, A.; Kehaliew, A.; Melese, K.; Mengistu, S.; Tadesse, E.; Wolde, S.; et al. Evaluation of Napier Grass (Pennisetum purpureum (L.) Schumach) Accessions for Agronomic Traits Under Different Environmental Conditions of Ethiopia. Int. J. Adv. Res. 2016, 4, 1029–1035. [Google Scholar] [CrossRef]
- Luna, A.D.; Efante, G.; Montagner, D.; Emerenciano Netto, J.; Araujo, I.; Fernandes, L. Tillering dynamic and structural characteristics of tropical grasses under cutting management. Biosci. J. 2016, 32, 1008–1017. [Google Scholar] [CrossRef]
- Zhang, R.; Schellenberg, M.P.; Han, G.; Wang, H.; Li, J. Drought weakens the positive effects of defoliation on native rhizomatous grasses but enhances the drought-tolerance traits of native caespitose grasses. Ecol. Evol. 2018, 8, 12126–12139. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, J.; Guo, Z.; Guan, Y.; Qu, G.; Liu, J.; Guo, Y.; Yan, X. Morphological variation in Cynodon dactylon (L.) Pers., and its relationship with the environment along a longitudinal gradient. Hereditas 2020, 157, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Barre, P.; Turner, L.B.; Escobar-Gutiérrez, A.J. Leaf Length Variation in Perennial Forage Grasses. Agriculture 2015, 5, 682–696. [Google Scholar] [CrossRef] [Green Version]
- Feyissa, F.; Assefa, G.; Mengistu, A.; Minta, M.; Tsadik, T.T. Agronomic performance and nutritive values of Napier grass (Pennisetum purpureuem (L) Shumach) accessions in the central highlands of Ethiopia. Int. J. Dev. Res. 2016, 6, 8717–8726. [Google Scholar]
- Liu, Y.; Li, P.; Xu, G.C.; Xiao, L.; Ren, Z.P.; Li, Z.B. Growth, Morphological, and Physiological Responses to Drought Stress in Bothriochloa ischaemum. Front. Plant Sci. 2017, 8, 230. [Google Scholar] [CrossRef]
- Chen, L.-P.; Zhao, N.-X.; Zhang, L.-H.; Gao, Y.-B. Responses of two dominant plant species to drought stress and defoliation in the Inner Mongolia Steppe of China. Plant Ecol. 2013, 214, 221–229. [Google Scholar] [CrossRef]
- Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Mwendia, S.W.; Yunusa, I.A.; Sindel, B.M.; Whalley, R.D.; Kariuki, I.W. Assessment of Napier grass accessions in lowland and highland tropical environments of East Africa: Water stress indices, water use and water use efficiency. J. Sci. Food Agric. 2016, 97, 1953–1961. [Google Scholar] [CrossRef]
- Faji, M.; Kebede, G.; Feyissa, F.; Mohammed, K.; Mengistu, G. Yield, Yield Components, and Nutritive Value of Perennial Forage Grass Grown under Supplementary Irrigation. Adv. Agric. 2022, 2022, 1–11. [Google Scholar] [CrossRef]
- Nagasuga, K. Characteristics of Biomass Productivity and Related Growth Parameters in Napiergrass (Pennisetum purpureum Schumach). Jpn. J. Plant Sci. 2007, 1, 25–29. [Google Scholar]
- Delfin, E.F.; Drobnitch, S.T.; Comas, L.H. Plant strategies for maximizing growth during water stress and subsequent recovery in Solanum melongena L. (eggplant). PLoS ONE 2021, 16, e0256342. [Google Scholar] [CrossRef]
- Kebede, G.; Feyissa, F.; Assefa, G.; Alemayehu, M.; Mengistu, A.; Ashagrie, A.K.; Melese, K.G.; Mengistu, S.; Tadesse, E.; Wolde, S.; et al. Agronomic performance, dry matter yield stability and herbage quality of Napier grass (Pennisetum purpureum (L.) Schumach ) accession. J.Agr. Crop Res. 2017, 5, 49–65. [Google Scholar]
- Maleko, D.; Mwilawa, A.; Msalya, G.; Pasape, L.; Mtei, K. Forage growth, yield and nutritional characteristics of four varieties of napier grass (Pennisetum purpureum Schumach) in the west Usambara highlands, Tanzania. Sci. Afr. 2019, 6, e00214. [Google Scholar] [CrossRef]
- Zailan, M.Z.; Jusoh, S. Yield and nutritive quality of napier (Pennisetum purpureum) cultivars as fresh and ensiled fodder. J. Anim. Plant Sci. 2018, 28, 63. [Google Scholar]
- Mwendia, S.W.; Yunusa, I.A.M.; Sindel, B.M.; Whalley, R.D.B.; Kariuki, I.W. Assessment of Napier Grass Accessions In Lowland and Highland Tropical Environments In East Africa: Productivity And Forage Quality. Exp. Agric. 2016, 53, 27–43. [Google Scholar] [CrossRef]
- Sampaio, C.B.; Detmann, E.; Paulino, M.F.; Filho, S.C.V.; de Souza, M.A.; Lazzarini, I.; Paulino, P.V.R.; de Queiroz, A.C. Intake and digestibility in cattle fed low-quality tropical forage and supplemented with nitrogenous compounds. Trop. Anim. Heal. Prod. 2010, 42, 1471–1479. [Google Scholar] [CrossRef] [PubMed]
- Wangchuk, K.; Rai, K.; Nirola, H.; Thukten Dendup, C.; Mongar, D. Forage growth, yield and quality responses of Napier hybrid grass cultivars to three cutting intervals in the Himalayan foothills. Trop. Grassl.-Forrajes Trop. 2015, 3, 142. [Google Scholar] [CrossRef] [Green Version]
- Mganga, K.Z.; Ndathi, A.J.N.; Wambua, S.M.; Bosma, L.; Kaindi, E.M.; Kioko, T.; Kadenyi, N.; Musyoki, G.K.; van Steenbergen, F.; Musimba, N.K.R. Forage value of vegetative leaf and stem biomass fractions of selected grasses indigenous to African rangelands. Anim. Prod. Sci. 2021, 61, 1476–1483. [Google Scholar] [CrossRef]
- Ansah, T.; Osafo, E.; Hansen, H. Herbage yield and chemical composition of four varieties of Napier (Pennisetum purpureum) grass harvested at three different days after planting. Agric. Biol. J. N. Am. 2010, 1, 923–929. [Google Scholar] [CrossRef]
- Muktar, M.; Habte, E.; Teshome, A.; Assefa, Y.; Negawo, A.T.; Lee, K.-W.; Zhang, J.; Jones, C.S. Insights into the Genetic Architecture of Complex Traits in Napier Grass (Cenchrus purpureus) and QTL Regions Governing Forage Biomass Yield, Water Use Efficiency and Feed Quality Traits. Front. Plant Sci. 2022, 12, 5454. [Google Scholar] [CrossRef]
- Goedhart, P.W.; Thissen, J.T.N.M. Biometris GenStat Procedure Library Manual, 19th ed.; Biometris Quantitative Methods Brought to Life Biometris GenStat Procedure Library: Wageningen, The Netherlands, 2018. [Google Scholar]
- Burton, G.W.; DeVane, E.H. Estimating heritability in tall fescue (Festuca arundinacea) from replicated clonal material 1. Ag. J. 1953, 45, 478–481. [Google Scholar] [CrossRef]
- Mächler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. Cluster: Cluster Analysis Basics and Extensions. R package version 2.1.2; R Core Team: Vienna, Austria, 2021. [Google Scholar]
- Jahufer, M.Z.Z.; Luo, D. Deltagen: A comprehensive decision support tool for plant breeders. Crop Sci. 2018, 58, 1118–1131. [Google Scholar] [CrossRef]
- Papathanasiou, F.; Dordas, C.; Gekasb, F.; Pankou, C.; Ninou, E.; Mylonas, J.; Tsantarmas, K.; Sistanis, I.; Sinapidou, E.; Lithourgidis, A.; et al. The Use of Stress Tolerance Indices for the Selection of Tolerant Inbred Lines and their Correspondent Hybrids under Normal and Water-stress Conditions. Procedia Environ. Sci. 2015, 29, 274–275. [Google Scholar] [CrossRef] [Green Version]
- Kassambara, A.; Mundt, F. Package ‘factoextra’: Extract and visualize the results of multivariate data analyses. CRAN-R Packag. 2020, 84, 35. [Google Scholar]
- Mendiburu, F.; Yaseen, M. Agricolae: Statistical Procedures for Agricultural Research. R package version 1.3-1. 2019. Available online: https://myaseen208.github.io/agricolae//index.html (accessed on 17 August 2020).
- Gauch, H.G.; Zobel, R.W. AMMI analysis of yield trials. In Genotype by Environment Interaction; Kang, M.S., Gauch, H.G., Eds.; Frontiers: Lausanne, Switzerland, 1996; pp. 85–122. [Google Scholar]
Sources of Variation/Traits | Season | Genotype (G) | Treatment (T) | Harvest (H) | G X T | G X H | T X H | G X T X H | CV % |
---|---|---|---|---|---|---|---|---|---|
PH | Wet | <0.001 | NS | <0.001 | NS | <0.001 | NS | NS | 2.9 |
Dry | <0.001 | 0.05 | <0.001 | 0.02 | <0.001 | <0.001 | <0.001 | 11.2 | |
LW | Wet | <0.001 | NS | <0.001 | NS | <0.001 | NS | NS | 1.6 |
Dry | <0.001 | 0.04 | <0.001 | NS | <0.001 | <0.001 | NS | 9.4 | |
LL | Wet | <0.001 | NS | <0.001 | NS | <0.001 | <0.001 | NS | 2 |
Dry | <0.001 | 0.03 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 6.1 | |
IL | Wet | <0.001 | NS | <0.001 | NS | <0.001 | <0.001 | NS | 49.8 |
Dry | - | - | - | - | - | - | - | ||
ST | Wet | <0.001 | NS | <0.001 | NS | <0.001 | NS | NS | 2.2 |
Dry | - | - | - | - | - | - | - | ||
TN | Wet | <0.001 | NS | <0.001 | NS | <0.001 | <0.001 | NS | 12.3 |
Dry | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 5.2 | |
Fv/Fm | Wet | <0.001 | NS | <0.001 | NS | <0.001 | <0.001 | NS | 5.6 |
Dry | <0.001 | 0.04 | <0.001 | NS | <0.001 | <0.001 | NS | 2.6 | |
PI | Wet | <0.001 | NS | <0.001 | NS | <0.001 | <0.001 | NS | 9.9 |
Dry | <0.001 | 0.07 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 20.7 | |
TFW | Wet | <0.001 | NS | <0.001 | NS | <0.001 | <0.001 | NS | 6.2 |
Dry | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 13.3 | |
TDW | Wet | <0.001 | NS | <0.001 | NS | <0.001 | <0.001 | NS | 9.4 |
Dry | <0.001 | 0.05 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 17.8 | |
LSR | Wet | <0.001 | NS | <0.001 | NS | <0.001 | <0.001 | NS | 54.6 |
Dry | - | - | - | - | - | - | - | ||
WUE | Wet | - | - | - | - | - | - | - | |
Dry | <0.001 | 0.05 | <0.001 | <0.001 | <0.001 | NS | <0.001 | 13.4 |
Traits | Growing Conditions | Mean | Range | PCV% | GCV% | H2 % |
---|---|---|---|---|---|---|
PH | Wet | 55.49 | 5.01–115.4 | 51.11 | 23.13 | 45.25 |
MWS | 12.88 | 0.50–28.05 | 34.46 | 22.11 | 64.16 | |
SWS | 12.5 | 1.77–26.1 | 34.01 | 20.37 | 59.9 | |
LL | Wet | 79.61 | 14.19–143.1 | 27.16 | 18.26 | 67.21 |
MWS | 42.01 | 0.1–72.71 | 32.78 | 28.01 | 85.43 | |
SWS | 42.79 | 8.45–69.02 | 29.05 | 23.75 | 81.76 | |
LW | Wet | 26.2 | 9.85–39.44 | 22.29 | 19.38 | 86.92 |
MWS | 18.13 | 2.5–30.36 | 22.96 | 15.06 | 65.62 | |
SWS | 19.01 | 5.07–30.67 | 21.73 | 14.11 | 64.95 | |
Fv/Fm | Wet | 0.74 | 0.63–0.81 | 4.93 | 2.46 | 50.02 |
MWS | 0.74 | 0.55–0.85 | 4.82 | 2.06 | 42.62 | |
SWS | 0.73 | 0.54–0.82 | 4.9 | 2.11 | 43.15 | |
PI | Wet | 4.37 | 0.70–12.69 | 44.59 | 19.11 | 42.85 |
MWS | 3.66 | 0.44–11.43 | 40.13 | 19.88 | 49.54 | |
SWS | 3.45 | 0.01–21.5 | 41.56 | 18.95 | 45.6 | |
TN | Wet | 62.97 | 2.07–262.5 | 64.24 | 51.01 | 79.4 |
MWS | 134.3 | 4.08–494.8 | 59.52 | 39.27 | 65.97 | |
SWS | 131.3 | 6.00–439.5 | 62.07 | 41.94 | 67.57 | |
TFW | Wet | 43.67 | 0.13–184.4 | 89.21 | 55.3 | 61.99 |
MWS | 5.31 | 0.01–20.08 | 68.85 | 40.59 | 58.95 | |
SWS | 5.13 | 0.01–20.08 | 71.32 | 42.02 | 58.92 | |
TDW | Wet | 9.83 | 0.10–34.17 | 81.66 | 58.58 | 71.73 |
MWS | 1.45 | 0.001–6.22 | 68.3 | 42.89 | 62.79 | |
SWS | 1.34 | 0.001–6.22 | 70.32 | 40.44 | 57.51 | |
WUE | MWS | 2.17 | 0.01–10.16 | 79.84 | 38.45 | 48.15 |
SWS | 2.16 | 0.01–10.16 | 81.5 | 41.22 | 50.58 | |
LSR | Wet | 5.15 | 0.90–55.95 | 115.36 | 68.93 | 59.76 |
ST | Wet | 14.21 | 3.03–176.2 | 62.94 | 37.62 | 59.77 |
IL | Wet | 24.3 | 10.08–53.03 | 37.79 | 17.09 | 45.24 |
Sources of Variation/Traits | Season | Genotype (G) | Treatment (T) | Harvest (H) | G X T | G X H | T X H | G X T X H | CV % |
---|---|---|---|---|---|---|---|---|---|
NDF | Wet | <0.001 | NS | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 1.3 |
Dry | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.5 | |
ADF | Wet | <0.001 | NS | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 1.5 |
Dry | <0.001 | 0.04 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 3.3 | |
ADL | Wet | <0.001 | NS | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 2.6 |
Dry | <0.001 | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 1.9 | |
OM | Wet | <0.001 | NS | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.2 |
Dry | <0.001 | NS | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 1.1 | |
CP | Wet | <0.001 | NS | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 3.5 |
Dry | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 6.8 | |
IVOMD | Wet | <0.001 | NS | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.9 |
Dry | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 1 | |
Me | Wet | <0.001 | NS | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.9 |
Dry | <0.001 | 0.04 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 1.8 |
Traits | Growing Condition | Mean | Range | PCV% | GCV% | H2 % |
---|---|---|---|---|---|---|
NDF | Wet | 67.58 | 58.1–78.59 | 4.89 | 1.37 | 28.06 |
MWS | 63.75 | 57.29–69.59 | 3.18 | 1.9 | 59.68 | |
SWS | 62.86 | 56.27–69.59 | 3.65 | 1.51 | 41.31 | |
ADF | Wet | 41.25 | 33.72–48.1 | 7.37 | 2.17 | 29.43 |
MWS | 37.5 | 29.65–45.78 | 8.16 | 2.31 | 28.32 | |
SWS | 34.62 | 25.15–45.00 | 12.51 | 2.35 | 18.81 | |
ADL | Wet | 3.88 | 1.93–3.79 | 28.22 | 3.89 | 13.8 |
MWS | 2.81 | 2.05–3.91 | 11.87 | 4.04 | 34 | |
SWS | 2.69 | 1.93–3.79 | 10.4 | 4.76 | 45.72 | |
OM | Wet | 82.68 | 72.69–95.72 | 1.59 | 0.72 | 45.62 |
MWS | 81.7 | 72.11–87.72 | 2.76 | 1.33 | 48.31 | |
SWS | 82.13 | 72.69–95.72 | 3.28 | 1.38 | 41.91 | |
CP | Wet | 12.07 | 5.05–24.3 | 19.74 | 4.69 | 23.76 |
MWS | 10.94 | 4.53–20.83 | 27.99 | 12.26 | 43.82 | |
SWS | 13.86 | 5.05–24.3 | 29.38 | 9.76 | 33.24 | |
IVOMD | Wet | 55.15 | 50.38–69.27 | 4.53 | 1 | 22.12 |
MWS | 56.24 | 50.45–65.06 | 5.19 | 1.49 | 28.68 | |
SWS | 58.7 | 50.38–69.27 | 7.83 | 0.23 | 2.95 | |
Me | Wet | 7.65 | 6.74–9.58 | 4.31 | 0.66 | 15.34 |
MWS | 7.89 | 6.68–9.15 | 6.23 | 0.64 | 10.28 | |
SWS | 8.15 | 6.74–9.58 | 8.56 | 0.39 | 4.54 |
Genotype | Moderate Water Stress | Severe Water Stress | Genotype | Moderate Water Stress | Severe Water Stress | ||||
---|---|---|---|---|---|---|---|---|---|
Annual TDW t/ha | Annual CPY t/ha | Annual TDW t/ha | Annual CPY t/ha | Annual TDW t/ha | Annual CPY t/ha | Annual TDW t/ha | Annual CPY t/ha | ||
1026 | 18.9p | 1281.06l | 17.99b | 1448.47hi | 16816 | 22.8lmn | 1570.71hi | 22.05yza | 1863.46abcdef |
14355 ** | 48.48ij | 3240.65ghij | 48.21fg | 3648.34efg | 16817 | 35.68tuvw | 2300.43uvw | 34.07opq | 2456.48rst |
14389 | 29.28cdefg | 2154.83wxy | 27.75uv | 2172.14uvwxy | 16818 | 25.47ijk | 1640.72ghi | 25.13wx | 1931zabcd |
14982 | 31.91yzab | 2375.85stu | 30.83rst | 2343.17stu | 16819 ** | 63.57b | 3893.9c | 62.43b | 4430.8b |
14983 | 43.95k | 3423.47ef | 43.31h | 3862.63de | 16821 | 24.41klm | 1613.06ghi | 23.56xy | 1719.4efg |
14984 | 41.02lmno | 2663.53p | 39.33jk | 2877.39lm | 16822 | 29.58bcdefg | 1901.39bcd | 29.1tuv | 1907.54abcde |
15357 ** | 49.97hi | 3342.45efgh | 47.66fg | 3572.8fg | 16834 | 15.26q | 1111.38m | 14.43c | 1177.9j |
16621 | 2.9t | 164.84p | 2.66f | 201.87lm | 16835 | 19.25p | 1377.79kl | 18.14b | 1413.72i |
16782 | 31.53yzabc | 2139.68wxyz | 31.71pqrs | 2080.56vwxyza | 16836 | 21.56no | 1525.72ij | 20.33a | 1778.28cdef |
16783 | 40.43mno | 2511.52qrs | 38.16kl | 2647.38nopqr | 16837 | 27.5ghi | 1835.66cde | 24.92x | 1908.07abcde |
16784 | 32.75xyza | 2369.07tu | 32.33pqr | 2691.07nopq | 16838 | 19.35op | 1372.03kl | 19.98ab | 1320.31ij |
16785 | 27.76efghi | 1515.86ijk | 27.47vw | 1808.73bcdef | 16839** | 48.09ij | 3199.29hijk | 46.91fg | 3567.88fgh |
16786 | 33.3wxyz | 2025.89yzab | 31.6rs | 2260.51tuvw | 16840 | 30.84zabcd | 2036.14yzab | 28.66tuv | 2081.19vwxyza |
16787 | 23.34klmn | 1522.19ij | 21.21za | 1668.73fgh | 16902 | 23.33klmn | 1578.78hi | 21.98yza | 1739.71defg |
16788 | 29.66bcdef | 1978.48zab | 27.61uv | 2080.21vwxyza | 18438 * | 42.39klmn | 2958.7no | 40.76ij | 3718.42ef |
16789 | 38.09pqrs | 2313.41uv | 36.9lmn | 2619.82opqr | 18448 * | 40.05nop | 2966.61no | 38.12kl | 3115.94jk |
16790 | 11.64r | 813.97n | 10.45d | 790.64k | 18662 | 2.65t | 151.77p | 2.47f | 139.56m |
16791 ** | 68.05a | 4429.1a | 67.35a | 5213.84a | 15743 | 39.93nop | 2530.31pqrs | 37.49klmn | 2501.03qrs |
16792 | 39.54op | 2200.51vwx | 38.41kl | 2494.38rs | BAGCE 100 ** | 54.21ef | 3101.07jklmn | 55.11d | 3684.03ef |
16793 | 25.56ijk | 1585.26ghi | 23.86xy | 1669.11fgh | BAGCE 17 * | 37.38qrst | 3016.64lmn | 37.57klm | 3215.17ijk |
16794 | 33.46wxy | 2333.49tuv | 31.63qrs | 2705.3mnopq | BAGCE 30 ** | 59.94c | 4130.07b | 58.37c | 4466.59b |
16795 | 42klmn | 2632.63pq | 40.48ij | 2828.19lmn | BAGCE 34 ** | 52.51fg | 3145.92ijklm | 51.03e | 3750.61def |
16796 | 21.16nop | 1393.36jkl | 19.71ab | 1534.64ghi | BAGCE 53 * | 42.74klm | 2976.08no | 41.28hij | 3348.2hij |
16797 | 6.28s | 464.86o | 6.11e | 421.85l | BAGCE 81 * | 39.02opqr | 2943.12no | 37.75kl | 3163.11jk |
16798 | 31.89yzab | 1966.69abc | 31.62qrs | 2247.3tuvw | BAGCE 86 | 36.58rstu | 2600.97pqr | 35.22mno | 2518.56pqrs |
16799 | 25.1jkl | 1693.38fgh | 23.87xy | 1737.6defg | BAGCE 93 ** | 52.27fg | 3818.98cd | 50.94e | 4469.65b |
16800 | 33.72vwxy | 2024.91yzab | 31.95pqrs | 2180.03uvwxy | BAGCE 97 * | 43.35k | 3256.66ghij | 42.43hi | 3631.1efg |
16801 | 30.26bcd | 1829.93cdef | 28.89tuv | 1987.33xyzabc | CNPGL 00-1-1 ** | 48.86ij | 3697.89d | 45.97g | 3520.77fgh |
16802 ** | 55.11de | 3342.67efgh | 55.47d | 3966.85cd | CNPGL 92-133-3 | 30.88zabcd | 2165.94wxy | 30.88rst | 2711.36mnopq |
16803 | 30.69abcd | 2028.23yzab | 27.25vw | 1918.03zabcde | CNPGL 92-198-7 ** | 51.64gh | 3381.83efg | 49.35ef | 4169.44c |
16804 | 30.09bcdef | 2202.14vwx | 27.73uv | 2219.09uvwx | CNPGL 92-56-2 ** | 47.63j | 3156.48ijkl | 46.1g | 3541.91fgh |
16805 | 5.1s | 400.24o | 4.79e | 297.49lm | CNPGL 92-66-3 ** | 48.33ij | 3053.45klmn | 47.38fg | 3422.05ghi |
16806 | 30.59bcd | 2017.28yzab | 28.36uv | 1957.29yzabcd | CNPGL 9279-2 | 34.22vwx | 2208.15vwx | 31.57rs | 2260.57tuv |
16807 | 43kl | 3297.35fghi | 42.26hi | 3201.01ijk | CNPGL 93 -37-5 ** | 56.71d | 3479.82e | 55.75d | 3967.35cd |
16808 | 29.74bcdef | 2008.26yzab | 28.74tuv | 2152.11uvwxyz | CNPGL 93-01-1 | 27.66fghi | 2138.5xyz | 24.67x | 2030.17wxyzab |
16809 | 33.84vwxy | 2370.2stu | 30.95rst | 2113.2uvwxyz | CNPGL 93-04-2 * | 39.51opq | 2952.96no | 39.58jk | 3160.9jk |
16810 | 21.61no | 1582.54ghi | 21.09za | 1494.81hi | CNPGL 93-18-2 | 26.6hij | 2022.46yzab | 24.62x | 1831.22bcdef |
16811 * | 41.69klmn | 3331.09efgh | 39.15jk | 3270.85ij | CNPGL 94-13-1 | 38.99opqr | 2993.54mn | 38.05kl | 2735.53mnop |
16812 | 30.21bcde | 2467.96rst | 29.99stu | 2514.4pqrs | CNPGL 96-21-1 | 28.93defgh | 2094.59xyza | 28.57tuv | 2251.7tuvw |
16813 | 22.46mn | 1741.49defg | 22.98xyz | 1865.04abcdef | CNPGL 96-23-1 | 23.5klmn | 1698.31efgh | 23.03xyz | 1780.96cdef |
16814 | 42.99kl | 2600.77pqr | 42.19hi | 2983.3kl | CNPGL 96-27-3 | 34.53uvwx | 2374.71stu | 33.08opqr | 2345.12stu |
16815 | 36.1stuv | 2825.58o | 35.05no | 3024.79kl | Pioneiro | 35.18tuvw | 2558.97pqr | 34.15op | 2797.11lmno |
Soil Chemical Properties | Block | ||||
---|---|---|---|---|---|
Year | 1 | 2 | 3 | 4 | |
Phosphorus (ppm) | 2018 | 14.06 | 12 | 11.27 | 10.69 |
2020 | 20.93 | 24.92 | 14.32 | 23.44 | |
Potassium (%) | 2018 | 335.27 | 354.03 | 339.2 | 279.78 |
2020 | 294 | 320.25 | 455.52 | 367.47 | |
Organic carbon (C) | 2018 | 1.11 | 1.07 | 1 | 0.99 |
2020 | 1.16 | 1.14 | 1.06 | 1.01 | |
Total nitrogen (N) | 2018 | 0.08 | 0.09 | 0.09 | 0.08 |
2020 | 0.1 | 0.1 | 0.09 | 0.09 | |
C:N | 2018 | 13.94 | 11.85 | 11.6 | 13.18 |
2020 | 11.49 | 11.75 | 11.67 | 11.03 | |
Cation exchange capacity | 2018 | 29.22 | 28.8 | 23.75 | 26.92 |
2020 | 28.09 | 27.27 | 25.59 | 21.5 | |
PH | 2018 | 7.26 | 7.22 | 7.26 | 7.12 |
2020 | 8.82 | 8.56 | 8.7 | 8.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habte, E.; Teshome, A.; Muktar, M.S.; Assefa, Y.; Negawo, A.T.; Machado, J.C.; Ledo, F.J.d.S.; Jones, C.S. Productivity and Feed Quality Performance of Napier Grass (Cenchrus purpureus) Genotypes Growing under Different Soil Moisture Levels. Plants 2022, 11, 2549. https://doi.org/10.3390/plants11192549
Habte E, Teshome A, Muktar MS, Assefa Y, Negawo AT, Machado JC, Ledo FJdS, Jones CS. Productivity and Feed Quality Performance of Napier Grass (Cenchrus purpureus) Genotypes Growing under Different Soil Moisture Levels. Plants. 2022; 11(19):2549. https://doi.org/10.3390/plants11192549
Chicago/Turabian StyleHabte, Ermias, Abel Teshome, Meki S. Muktar, Yilikal Assefa, Alemayehu T. Negawo, Juarez Campolina Machado, Francisco José da Silva Ledo, and Chris S. Jones. 2022. "Productivity and Feed Quality Performance of Napier Grass (Cenchrus purpureus) Genotypes Growing under Different Soil Moisture Levels" Plants 11, no. 19: 2549. https://doi.org/10.3390/plants11192549
APA StyleHabte, E., Teshome, A., Muktar, M. S., Assefa, Y., Negawo, A. T., Machado, J. C., Ledo, F. J. d. S., & Jones, C. S. (2022). Productivity and Feed Quality Performance of Napier Grass (Cenchrus purpureus) Genotypes Growing under Different Soil Moisture Levels. Plants, 11(19), 2549. https://doi.org/10.3390/plants11192549