Phenolic Acids and Flavonoids from Pithecellobium dulce (Robx.) Benth Leaves Exhibit Ovicidal Activity against Haemonchus contortus
Abstract
:1. Introduction
2. Results
2.1. Egg Hatching Inhibition (EHI) Test
2.2. Identification of Compounds
3. Discussion
4. Materials and Methods
4.1. General
4.2. Plant Material
4.3. Hydroalcoholic Extract
4.4. Fractionation of the Hydroalcoholic Extract (HA-E)
4.5. Fractionation of the Organic Fraction (EtOAc-F) and Identification of Compounds (1–6)
4.6. HPLC-PDA and MS
4.7. Haemonchus contortus Eggs
4.8. Egg Hatching Inhibition (EHI) Test
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tariq, K.A. A Review of the epidemiology and control of gastrointestinal nematode infections of small ruminants. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2015, 85, 693–703. [Google Scholar] [CrossRef]
- Harder, A. Chapter three- The biochemistry of Haemonchus contortus and other parasitic nematodes. Adv. Parasitol. 2016, 93, 69–94. [Google Scholar] [CrossRef]
- Chagas, A.C.S.; Tupuy, O.; Santos, I.B.; Esteves, S.N. Economic impact of gastrointestinal nematodes in Morada Nova sheep in Brazil. Rev. Bras. Parasitol. 2022, 31, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Vivas, R.I.; Grisi, L.; Pérez-de-León, A.A.; Silva-Villela, H.; Torres-Acosta, J.F.J.; Fragoso-Sánchez, H.; Romero-Salas, D.; Rosario-Cruz, R.; Saldierna, F.; García-Carrasco, D. Potential economic impact assessment for cattle parasites in Mexico. Review. Rev. Mex. Cienc. Pecu. 2017, 8, 61–74. [Google Scholar] [CrossRef]
- Rose-Vineer., H.; Morgan, E.R.; Hertzberg, H.; Bartley, D.J.; Bosco, A.; Charlier, J.; Chartier, C.; Claerebout, E.; de Waal, T.; Hendrickx, G.; et al. Increasing importance of anthelmintic resistance in European livestock: Creation and meta-analysis of an open database. Parasite 2020, 27, 69. [Google Scholar] [CrossRef]
- Ahuir-Baraja, A.E.; Cibot, F.; Llobat, L.; Garijo, M.M. Anthelmintic resistance: Is a solution possible? Exp. Parasitol. 2021, 230, 108169. [Google Scholar] [CrossRef]
- Jayawardene, K.L.T.D.; Palombo, E.A.; Boag, P.R. Natural products are a promising source for anthelmintic drug discovery. Biomolecules 2021, 11, 1457. [Google Scholar] [CrossRef]
- Delgado-Núñez, E.J.; Zamilpa, A.; González-Cortazar, M.; Olmedo-Juárez, A.; Cardoso-Taketa, A.; Sánchez-Mendoza, E.; Tapia-Maruri, D.; Salinas-Sánchez, D.O.; Mendoza-de Gives, P. Isorhamnetin: A nematocidal flavonoid from Prosopis laevigata leaves against Haemonchus contortus eggs and larvae. Biomolecules 2020, 10, 773. [Google Scholar] [CrossRef]
- Marie-Magdeleine, C.; Ceriac, S.; Barde, D.J.; Minatchy, N.; Pericarpin, F.; Pommier, F.; Calif, B.; Philibert, L.; Jean-Christophe, J.; Archiméde, H. Evaluation of nutraceutical properties of Leucaena leucocephala leaf pellets fed to goat kids infected with Haemonchus contortus. BMC Vet. Res. 2020, 16, 280. [Google Scholar] [CrossRef]
- Lima, C.S.; Pereira, M.H.; Gainza, Y.A.; Hoste, H.; Regasini, L.O.; Chagas, A.C.S. Anthelmintic effect of Pterogyne nitens (Fabaceae) on eggs and larvae of Haemonchus contortus: Analyses of structure-activity relationships based on phenolic compounds. Ind. Crops Prod. 2021, 164, 113348. [Google Scholar] [CrossRef]
- von Son-de Fernex, E.; Alonso-Díaz, M.A.; Mendoza-de Gives, P.; Valles-de la Mora, B.; González-Cortazar, M.; Zamilpa, A.; Gallegos, E.C. Elucidation of Leucaena leucocephala anthelmintic-like phytochemicals and the ultrastructural damage generated to eggs of Cooperia spp. Vet. Parasitol. 2015, 214, 89–95. [Google Scholar] [CrossRef]
- Castillo-Mitre, G.F.; Olmedo-Juárez, A.; Rojo-Rubio, R.; González-Cortazar, M.; Mendoza de Gives, P.; Hernández-Beteta, E.E.; Reyes-Guerrero, D.E.; López-Arellano, M.E.; Vázquez-Armijo, J.F.; Ramírez-Vargas, G.; et al. Caffeoyl and coumaroyl derivatives from Acacia cochliacantha exhibit ovicidal activity against Haemonchus contortus. J. Ethnopharmacol. 2017, 204, 125–131. [Google Scholar] [CrossRef]
- González-Cortazar, M.; Zamilpa, A.; López-Arellano, M.E.; Aguilar-Marcelino, L.; Reyes-Guerrero, D.E.; Olazarán-Jenkins, S.; Ramírez-Vargas, G.; Olmedo-Juárez, A.; Mendoza-de-Gives, P. Lysiloma acapulcensis leaves contain anthelmintic metabolites that reduce the gastrointestinal nematode egg population in sheep faeces. Comp. Clinic. Pathol. 2018, 27, 189–197. [Google Scholar] [CrossRef]
- Zarza-Albarrán, M.A.; Olmedo-Juárez, A.; Rojo-Rubio, R.; Mendoza-de Gives, P.; González-Cortazar, M.; Tapia-Maruri, D.; Mondragón-Ancelmo, J.; García-Hernández, C.; Blé-González, A.; Zamilpa, A. Galloyl flavonoids from Acacia farnesiana pods possess potent anthelmintic activity against Haemonchus contortus eggs and infective larvae. J. Ethnopharmacol. 2020, 249, 112402. [Google Scholar] [CrossRef]
- Dhanisha, S.S.; Drishya, S.; Guruvayoorappan, C. Traditional knowledge to clinical trials: A review on nutritional and therapeutic potential of Pithecellobium dulce. J. Basic. Clin. Physiol. Pharmacol. 2022, 33, 133–142. [Google Scholar] [CrossRef]
- Katekhaye, S.D.; Kale, M.S. Antioxidant and free radical scavenging activity of Pithecellobium dulce (Roxb.) Benth wood bark and leaves. Free Rad. Antiox. 2012, 2, 47–57. [Google Scholar] [CrossRef]
- Bhat, M.A.; Malik, R.A.; Prakash, P. Preparation and evaluation of antibacterial potential of Pithecellobium dulce root extract against Gram positive and Gram-negative bacteria. Microb. Pathog. 2018, 116, 49–53. [Google Scholar] [CrossRef] [PubMed]
- López-Angulo., G.; Verdugo-Gaxiola, S.E.; Montes-Avila, J.; Díaz-Camacho, S.P.; Miranda-Soto, V.; Salazar-Salas, Y.; Delgado-Vargas, F. Bioguided isolation of N-malonyl-(+)-tryptophan from the fruit of Pithecellobium dulce (Roxb.) Benth. that showed high activity against Hymenolepis nana. Nat. Prod. Res. 2019, 35, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Olmedo-Juárez, A.; Rojo-Rubio, R.; Arece-García, J.; Salem, A.Z.M.; Kholif, A.E.; Morales-Almaraz, E. In vitro activity of Pithecellobium dulce and Lysiloma acapulcensis on exogenous development stages of sheep gastrointestinal strongyles. Ital. J. Anim. Sci. 2014, 13, 3104. [Google Scholar] [CrossRef]
- Romero, N.; Areche, C.; Cubides-Cárdenas, J.; Escobar, N.; García-Beltrán, O.; Simirgiotis, M.J.; Céspedes, A. In vitro anthelmintic evaluation of Gliricidia sepium, Leucaena leucocephala, and Pithecellobium dulce: Fingerprint analysis of extracts by UHPLC-Orbitrap Mass Spectrometry. Molecules 2020, 25, 3002. [Google Scholar] [CrossRef]
- Singh, R.; Singh, B.; Singh, S.; Kumar, N.; Kumar, S.; Arora, S. Anti-free radical activities of kaempferol isolated from Acacia nilotica (L.) Willd. Ex. Del. Toxicol. In Vitro 2008, 22, 1965–1970. [Google Scholar] [CrossRef] [PubMed]
- Mondragón-Ancelmo, J.; Olmedo-Juárez, A.; Reyes-Guerrero, D.E.; Ramírez-Vargas, G.; Ariza-Román, A.E.; López-Arellano, M.E.; Mendoza-de Gives, P.; Napolitano, F. Detection of gastrointestinal nematode populations resistant to Albendazole and Ivermectin in Sheep. Animals 2019, 9, 775. [Google Scholar] [CrossRef] [PubMed]
- García-Hernández, C.; Rojo-Rubio, R.; Olmedo-Juárez, A.; Zamilpa, A.; Mendoza-de Gives, P.; Antonio-Romo, I.A.; Aguilar-Marcelino, L.; Arece-García, J.; Tapia-Maruri, D.; González-Cortazar, M. Galloyl derivatives from Caesalpinia coriaria exhibit in vitro ovicidal activity against cattle gastrointestinal parasitic nematodes. Exp. Parasitol. 2019, 200, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Conti, M.V.; Guzzeti, L.; Panzeri, D.; Giuseppe, R.; Coccetti, P.; Labra, M.; Cena, H. Bioactive compounds in legumes: Implications for sustainable nutrition and health in the elderly population. Trends Food Sci. Technol. 2021, 117, 139–147. [Google Scholar] [CrossRef]
- Cortes-Morales, J.A.; Olmedo-Juárez, A.; Trejo-Tapia, G.; González-Cortazar, M.; Domínguez-Mendoza, B.E.; Mendoza-de Gives, P.; Zamilpa, A. In vitro ovicidal activity of Baccharis conferta Kunth against Haemonchus contortus. Exp. Parasitol. 2019, 197, 20–28. [Google Scholar] [CrossRef]
- UNAM. Biblioteca Digital de la Medicina Tradicional Mexicana. Available online: http://www.medicinatradicionalmexicana.unam.mx/apmtm/termino.php?l=3&t=pithecellobium-dulce (accessed on 4 February 2022).
- Sneha, D.; Prashanth, S.; Kaveti, V.S.; Boggula, N. Systematic review of Pithecellobium dulce (Roxb.) Benth.: A traditional medicine herb. J. Innov. Dev. Pharm. Tech. Sci. 2020, 38, 1–9. [Google Scholar]
- Mancilla-Montelongo, G.; Castañeda-Ramírez, G.S.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Borges-Argáez, R. Evaluation of cinnamic acids and six analogues against eggs and larvae of Haemonchus contortus. Vet. Parasitol. 2019, 270, 25–30. [Google Scholar] [CrossRef]
- Escareño-Díaz, S.; Alonso-Díaz, M.A.; Mendoza-de Gives, P.; Castillejo-Gallegos, E.; von Son-de Fernex, E. Anthelmintic-like activity of polyphenolic compounds and their interactions against the cattle nematode Cooperia punctata. Vet. Parasitol. 2019, 274, 108909. [Google Scholar] [CrossRef]
- Plant List. Available online: www.theplantlist.org (accessed on 6 June 2022).
- Coles, G.C.; Bauer, C.; Borgsteede, F.H.M.; Geerts, S.; Klei, T.R.; Taylor, M.A.; Waller, P.J. World Association for the Advancement of Veterinary Parasitology (WAAVP) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 1992, 44, 35–44. [Google Scholar] [CrossRef]
- SAS. SAS Online Doc, Version 9.1.3. SAS; SAS: Cary, NC, USA, 2014.
Treatments | Means of Eggs and Larvae (L1 or L2) Recovered | EHI% ± s.d. | |
---|---|---|---|
Eggs | Larvae | ||
Distilled water | 7.12 | 119.56 | 3.94 ± 6.61 e |
Methanol (2%) | 7.25 | 111.68 | 3.99 ± 2.97 e |
Thiabendazole (0.1 mg/mL) | 105.37 | 0 | 100 a |
Hydroalcoholic extract (HA-E, mg/mL) | |||
5.0 | 99.09 | 2 | 98.57 ± 3.52 a |
2.5 | 73.5 | 15.75 | 97.52 ± 5.92 ab |
1.25 | 54.87 | 36.37 | 96.21 ± 4.83 ab |
0.62 | 114.62 | 5.5 | 95.15 ± 5.56 ab |
0.31 | 109.12 | 75.75 | 58.63 ± 10.09 c |
Aqueous fraction (Aq-F, mg/mL) | |||
5.0 | 125.28 | 3.14 | 96.87 ± 4.04 ab |
2.5 | 138.36 | 22.18 | 94.42 ± 7.71 ab |
1.25 | 151.75 | 1.25 | 98.47 ± 1.87 ab |
0.62 | 125.25 | 9.37 | 92.19 ± 7.57 ab |
0.31 | 59.37 | 60.12 | 53.53 ± 13.24 c |
Organic fraction (EtOAc-F, mg/mL) | |||
5.0 | 120.08 | 0 | 100 a |
2.5 | 107.00 | 0 | 100 a |
1.25 | 124.50 | 0 | 100 a |
0.62 | 154.62 | 1 | 99.94 ± 0.16 a |
0.31 | 129.00 | 0 | 100 a |
0.15 | 121.25 | 22.37 | 88.24 ± 13.76 b |
0.07 | 61.25 | 173.75 | 25.87 ± 6.06 d |
0.03 | 41.51 | 173.75 | 18.95 ± 2.80 d |
Treatments | EC50 (mg/mL) | Confidence Interval (95%) | EC90 mg/mL | Confidence Interval (95%) | ||
---|---|---|---|---|---|---|
Lower | Upper | Lower | Upper | |||
HA-E | 0.15 | 0.12 | 0.18 | 3.34 | 2.84 | 4.04 |
Aq-F | 0.15 | 0.12 | 0.18 | 1.63 | 1.5 | 1.78 |
EtOAc-F | 0.08 | 0.083 | 0.089 | 0.14 | 0.13 | 0.14 |
Subfractions/Controls | Concentration (mg/mL) | Means of Eggs and Larvae (L1 or L2) Recovered | EHI% ± s.d. | |
---|---|---|---|---|
Eggs | Larvae | |||
C1F6 | 1.00 | 113.25 | 0 | 100 a |
0.50 | 111.50 | 0 | 100 a | |
0.25 | 97.00 | 20.25 | 83.33 ± 6.68 cd | |
0.12 | 34.75 | 71.75 | 33.03 ± 6.87 e | |
0.06 | 105.00 | 96.50 | 9.67 ± 5.11 hij | |
C1F9 | 1.00 | 94.50 | 0 | 100 a |
0.50 | 82.00 | 0 | 100 a | |
0.25 | 93.37 | 0 | 100 a | |
0.12 | 119.5 | 0.75 | 99.50 ± 0.57 a | |
0.06 | 115.75 | 16.25 | 88.00 ± 2.58 bc | |
C1F10 | 1.00 | 44.50 | 0 | 100 a |
0.50 | 47.75 | 0 | 100 a | |
0.25 | 70.87 | 0 | 100 a | |
0.12 | 79.50 | 17.75 | 82.20 ± 3.32 cd | |
0.06 | 15.25 | 98.75 | 13.38 ± 0.68 ghi | |
C1F11 | 1.00 | 85.75 | 0 | 100 a |
0.50 | 76.75 | 0 | 100 a | |
0.25 | 88.62 | 0 | 100 a | |
0.12 | 121.25 | 1.50 | 98.84 ± 0.90 a | |
0.06 | 100.25 | 28.50 | 78.15 ± 2.47 cd | |
C1F13 | 1.00 | 128.25 | 0 | 100 a |
0.50 | 95.25 | 0 | 100 a | |
0.25 | 87.67 | 0 | 100 a | |
0.12 | 116.00 | 0 | 100 a | |
0.06 | 96.05 | 26.00 | 78.42 ± 6.42 cd | |
C1F15 | 1.00 | 54.75 | 9.00 | 85.90 ± 6.48 c |
0.50 | 13.00 | 54.50 | 20.00 ± 5.89 fg | |
0.25 | 13.87 | 70.75 | 15.64 ± 9.06 fgh | |
0.12 | 6.00 | 69.75 | 7.91 ± 8.43 hij | |
0.06 | 0.00 | 100.75 | 0.00 j | |
C1F18 (kaempferol) | 1.0 | 1.25 | 102.25 | 1.27 ± 1.13 j |
Methanol (2%) | 2% | 6.75 | 67.75 | 8.26 ± 8.50 hij |
Thiabendazole (0.1 mg/mL) | 0.5% | 12.37 | 100 | 100 a |
Treatments | EC50 mg/mL | Confidence Interval (95%) | EC90 mg/mL | Confidence Interval (95%) | ||
---|---|---|---|---|---|---|
Lower | Upper | Lower | Upper | |||
C1F6 | 0.16 | 0.15 | 0.17 | 0.29 | 0.28 | 0.31 |
C1F9 | 0.03 | 0.02 | 0.04 | 0.06 | 0.06 | 0.07 |
C1F10 | 0.09 | 0.08 | 0.09 | 0.13 | 0.12 | 0.14 |
C1F11 | 0.04 | 0.03 | 0.04 | 0.07 | 0.07 | 0.08 |
C1F13 | 0.03 | 0.03 | 0.03 | 0.08 | 0.07 | 0.08 |
C1F15 | 0.67 | 0.62 | 0.72 | 1.30 | 1.14 | 1.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olmedo-Juárez, A.; Jimenez-Chino, A.L.; Bugarin, A.; Zamilpa, A.; Gives, P.M.-d.; Villa-Mancera, A.; López-Arellano, M.E.; Olivares-Pérez, J.; Delgado-Núñez, E.J.; González-Cortazar, M. Phenolic Acids and Flavonoids from Pithecellobium dulce (Robx.) Benth Leaves Exhibit Ovicidal Activity against Haemonchus contortus. Plants 2022, 11, 2555. https://doi.org/10.3390/plants11192555
Olmedo-Juárez A, Jimenez-Chino AL, Bugarin A, Zamilpa A, Gives PM-d, Villa-Mancera A, López-Arellano ME, Olivares-Pérez J, Delgado-Núñez EJ, González-Cortazar M. Phenolic Acids and Flavonoids from Pithecellobium dulce (Robx.) Benth Leaves Exhibit Ovicidal Activity against Haemonchus contortus. Plants. 2022; 11(19):2555. https://doi.org/10.3390/plants11192555
Chicago/Turabian StyleOlmedo-Juárez, Agustín, Ana Laura Jimenez-Chino, Alejandro Bugarin, Alejandro Zamilpa, Pedro Mendoza-de Gives, Abel Villa-Mancera, María Eugenia López-Arellano, Jaime Olivares-Pérez, Edgar Jesús Delgado-Núñez, and Manases González-Cortazar. 2022. "Phenolic Acids and Flavonoids from Pithecellobium dulce (Robx.) Benth Leaves Exhibit Ovicidal Activity against Haemonchus contortus" Plants 11, no. 19: 2555. https://doi.org/10.3390/plants11192555
APA StyleOlmedo-Juárez, A., Jimenez-Chino, A. L., Bugarin, A., Zamilpa, A., Gives, P. M. -d., Villa-Mancera, A., López-Arellano, M. E., Olivares-Pérez, J., Delgado-Núñez, E. J., & González-Cortazar, M. (2022). Phenolic Acids and Flavonoids from Pithecellobium dulce (Robx.) Benth Leaves Exhibit Ovicidal Activity against Haemonchus contortus. Plants, 11(19), 2555. https://doi.org/10.3390/plants11192555