Transposable Elements in the Revealing of Polymorphism-Based Differences in the Seeds of Flax Varieties Grown in Remediated Chernobyl Area
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Material and Experimental Field Conditions
4.2. DNA Extraction
4.3. Transposable Elements Profiling
4.4. Cassandra TRIM Element Specifity Checking
4.5. Data Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Møller, A.P.; Mousseau, T.A. Biological consequences of Chernobyl: 20 years on. Trends Ecol. Evol. 2006, 21, 200–207. [Google Scholar] [CrossRef]
- Geras´kin, S.A.; Dikarev, V.G.; Zyablitskaya, Y.Y.; Oudalova, A.A.; Spirin, Y.V.; Alexakhin, R.M. Genetic consequences of radioactive contamination by the Chernobyl fallout to agricultural crops. J. Environ. Radioact. 2003, 66, 155–169. [Google Scholar] [CrossRef]
- Geras’kin, S.; Evseeva, T.; Oudalova, A. Effects of Long-Term Chronic Exposure to Radionuclides in Plant Populations. J. Environ. Radioact. 2013, 121, 22–32. [Google Scholar] [CrossRef]
- Kuchma, O.; Vornam, B.; Finkeldey, R. Mutation rates in Scots pine (Pinus sylvestris L.) from the Chernobyl exclusion zone evaluated with amplified fragment-length polymorphisms (AFLPs) and microsatellite markers. Mutat. Res. 2011, 725, 29–35. [Google Scholar] [CrossRef]
- Kovalchuk, O.; Dubrova, Y.E.; Arkhipov, A.; Hohn, B.; Kovalchuk, I. Germline DNA—Wheat mutation rate after Chernobyl. Nature 2000, 407, 583–584. [Google Scholar] [CrossRef]
- Karimullina, E.; Antonova, E.; Pozolotina, V. Assessing radiation exposure of herbaceous plant species at the East-ural Radioactive Trace. J. Environ. Radioact. 2013, 124, 113–120. [Google Scholar] [CrossRef]
- Kovalchuk, I.; Abramov, V.; Pogribny, I.; Kovalchuk, O. Molecular aspects of plant adaptation to life on the Chernobyl Zone. Plant Physiol. 2004, 135, 357–363. [Google Scholar] [CrossRef]
- Abramov, V.I.; Stepanova, A.A.; Famelis, S.A. Some radiobiological effects in higher plants growing on the territory of East Ural Radioactive Trace. Biophysics 2011, 56, 129–134. [Google Scholar] [CrossRef]
- Tharmalingam, S.; Sreetharan, S.; Kulesza, A.V.; Boreham, D.R.; Tai, T.C. Low-Dose Ionizing Radiation Exposure, Oxidative Stress and Epigenetic Programing of Health and Disease. Radiat. Res. 2017, 188, 525–538. [Google Scholar] [CrossRef]
- de Oliveira, D.S.; Rosa, M.T.; Vieira, C.; Loreto, E.L.S. Oxidative and radiation stress induces transposable element transcription in Drosophila melanogaster. J. Evol. Biol. 2021, 34, 628–638. [Google Scholar] [CrossRef]
- Cullis, C.A. Mechanisms and Control of Rapid Genomic Changes in Flax. Ann. Bot. 2005, 95, 201–206. [Google Scholar] [CrossRef]
- Johnson, C.; Moss, T.; Cullis, C. Environmentally Induced Heritable Changes in Flax. J. Vis. Exp. 2011, 47, e2332. [Google Scholar] [CrossRef]
- Deng, X.; Long, S.; He, D.; Li, X.; Wang, Y.; Hao, D.; Qiu, C.; Chen, X. Isolation and characterization of polymorphic microsatellite markers from flax (Linum usitatissimum L.). Afr. J. Biotechnol. 2011, 10, 734–739. [Google Scholar]
- McClintock, B. The Significance of Responses of the Genome to Challenge. Science 1984, 226, 792–801. [Google Scholar] [CrossRef]
- Wicker, T.; Sabot, F.; Hua-Van, A.; Bennetzen, J.L.; Capy, P.; Chalhoub, B.; Flavell, A.; Leroy, P.; Morgante, M.; Panaud, O.; et al. A Unified Classification System for Eukaryotic Transposable Elements. Nat. Rev. Genet. 2007, 8, 973–982. [Google Scholar] [CrossRef]
- Muñoz-Lopez, M.; Garcıa-Perez, J. DNA Transposons: Nature and Applications in Genomics. Curr. Genom. 2010, 11, 115–128. [Google Scholar] [CrossRef]
- Kumar, A.; Bennetzen, J.L. Plant Retrotransposons. Annu. Rev. Genet. 1999, 33, 479–532. [Google Scholar] [CrossRef]
- Alipour, A.; Tsuchimoto, S.; Sakai, H.; Ohmido, N.; Fukui, K. Structural Characterization of Copia-Type Retrotransposons Leads to Insights into the Marker Development in a Biofuel Crop. Biotechnol. Biofuels 2013, 6, 129. [Google Scholar] [CrossRef]
- Galindo-Gonzalez, L.; Mhiri, C.; Deyholos, M.K.; Grandbastien, M.A. LTR-Retrotransposons in Plants: Engines of Evolution. Gene 2017, 626, 14–25. [Google Scholar] [CrossRef]
- Pereira, V. Insertion bias and purifying selection of retrotransposons in the Arabidopsis Thaliana genome. Genome Biol. 2004, 5, R79. [Google Scholar] [CrossRef]
- Lockton, S.; Gaut, B.S. The contribution of transposable elements to expressed coding sequence in Arabidopsis thaliana. J. Mol. Evol. 2009, 68, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Boyko, A.; Kovalchuk, I. Epigenetic Control of Plant Stress Response. Environ. Mol. Mutagen. 2008, 49, 61–72. [Google Scholar] [CrossRef]
- Yurchenko, N.N.; Kovalenko, L.V.; Zakharov, I.K. Transposable Elements: Instability of Genes and Genomes. Russ. J. Genet. Appl. Res. 2011, 1, 489–496. [Google Scholar] [CrossRef]
- Wang, X.; Weigel, D.; Smith, L.M. Transposon Variants and Their Effects on Gene Expression in Arabidopsis. PLoS Genet. 2013, 9, e1003255. [Google Scholar] [CrossRef]
- Cullis, C.A.; Swami, S.; Song, Y. RAPD polymorphism detected among the flax genotrophs. Plant Mol. Biol. 1999, 41, 795–800. [Google Scholar] [CrossRef]
- Fu, Y.B.; Diederichsen, A.; Richards, K.W.; Peterson, G. Genetic diversity within a range of cultivars and landraces of flax (Linum usitatissimum L.) as revealed by RAPDs. Gen. Res. Crop Evol. 2002, 49, 167–174. [Google Scholar] [CrossRef]
- Melnikova, N.V.; Kudryavtseva, A.V.; Zelenin, A.V.; Lakunina, V.A.; Yurkevich, O.Y.; Speranskaya, A.S.; Dmitriev, A.A.; Krinitsina, A.A.; Belenikin, M.S.; Uroshlev, L.A.; et al. Retrotransposon-based molecular markers for analysis of genetic diversity within the Genus Linum. Biomed. Res. Int. 2014, 2014, 231589. [Google Scholar] [CrossRef]
- Abbasi Holasou, H.; Abdollahi Mandoulakani, B.; Jafari, M.; Bernousi, I. Use of IRAP and REMAP markers to interpret the population structure of Linum usitatissimum from Iran. Biologia 2016, 71, 305–315. [Google Scholar] [CrossRef]
- Ražná, K.; Nôžková, J.; Hlavačková, L.; Brutch, N.; Porokhovinova, E.; Shelenga, T.; Pavlov, A. Genotyping of Flax Genetic Resources by Mirna-Based Molecular Markers and Morphology. Agriculture 2016, 61, 129–138. [Google Scholar] [CrossRef]
- Oh, T.J.; Gorman, M.; Cullis, C.A. RFLP and RAPD mapping in flax (Linum usitatissimum). Theor. Appl. Genet. 2000, 101, 590–593. [Google Scholar] [CrossRef]
- Ragupathy, R.; Rathinavelu, R.; Cloutier, S. Physical mapping and BAC-end sequence analysis provide initial insights into the flax (Linum usitatissimum L.) genome. BMC Genom. 2011, 12, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smýkal, P.; Bačová-Kerteszová, N.; Kalendar, R.; Corander, J.; Schulman, A.H.; Pavelek, M. Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theor. Appl. Genet. 2011, 122, 1385–1397. [Google Scholar] [CrossRef] [PubMed]
- Luck, J.E.; Lawrence, G.J.; Finnegan, E.J.; Jones, D.A.; Ellis, J.G. A flax transposon identified in two spontaneous mutant alleles of the L6 rust resistance gene. Plant J. 1998, 16, 365–369. [Google Scholar] [CrossRef]
- Oh, T.J.; Cullis, C.A. Labile DNA sequences in flax identified by combined sample representational difference analysis (csRDA). Plant Mol Bio. 2003, 52, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Žiarovská, J.; Bežo, M.; Lancíková, V.; Ražná, K. In silico based development of dLUTE length polymorphism marker for common flax germplasm evaluation. Pak. J. Bot. 2015, 47, 2277–2282. [Google Scholar]
- Kalendar, R.; Tanskanen, J.; Chang, W.; Antonius, K.; Sela, H.; Peleg, O.; Schulman, A.H. Cassandra retrotransposons carry independently transcribed 5s RNA. Proc. Natl. Acad. Sci. USA 2008, 105, 5833–5838. [Google Scholar] [CrossRef]
- Kalendar, R.; Raskina, O.; Belyayev, A.; Schulman, A.H. Long Tandem Arrays of Cassandra Retroelements and Their Role in Genome Dynamics in Plants. Int. J. Mol. Sci. 2020, 21, 2931. [Google Scholar] [CrossRef]
- Lancíková, V.; Žiarovská, J. Inter-retrotransposon amplified polymorphism markers revealed long terminal repeat retrotransposon insertion polymorphism in flax cultivated on the experimental fields around Chernobyl. J. Environ. Sci. Health Part A 2020, 55, 1760016. [Google Scholar] [CrossRef]
- Gileva, E.A. Chromosomal instability in rodents from the EURT territory: Interspecies comparison. Radiats Biol Radioecol. 2002, 42, 665–668. (In Russian) [Google Scholar]
- Fedotov, I.S.; Kal’chenko, V.A.; Rubanovich, A.V.; Igonina, E.V.; Shevchenko, V.A. Restoration of pine plantations after effect of ionizing radiation in the region of the accident at the Chernobyl Atomic Energy Station. Radiat. Biol. Radioecol. 2002, 42, 740–744. [Google Scholar]
- Kovalchuk, O.; Burke, P.; Arkhipov, A.; Kuchma, N.; James, S.J.; Kovalchuk, I.; Pogribny, I. Genome hypermethylation in Pinus sylvestris of Chernobyl—A mechanism for radiation adaptation? Mutat. Res. Fundam. Mol. Mech. Mutagen. 2003, 529, 13–20. [Google Scholar] [CrossRef]
- Vornam, B.; Kuchma, O.; Kuchma, N.; Arkhipov, A.; Finkeldey, R. SSR markers as tools to reveal mutation events in Scots pine (Pinus sylvestris L.) from Chernobyl. Eur. J. For. Res. 2004, 123, 245–248. [Google Scholar] [CrossRef]
- Shevchencko, V.A.; Abramov, V.I.; Kal’chenko, V.A.; Fedotov, I.S.; Rubanovich, A.V. Genetic consequences of radioactive pollution of the environment caused by the Chernobyl accident for plants populations. Radiat. Biol. Radioehkol. 1996, 36, 531–545. [Google Scholar]
- Grandbastien, M.A. LTR Retrotransposons, Handy Hitchhikers of Plant Regulation and Stress Response. Biochim. Biophys. Acta 2015, 1849, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Cavrak, V.V.; Lettner, N.; Jamge, S.; Kosarewicz, A.; Bayer, L.M.; Scheid, O.M. How a Retrotransposon Exploits the Plant’s Heat Stress Response for Its Activation. PLoS Gene 2014, 10, e1004115. [Google Scholar] [CrossRef] [Green Version]
- Lisch, D. How Important Are Transposons for Plant Evolution? Nat. Rev. Genet. 2013, 14, 49–61. [Google Scholar] [CrossRef]
- Hedges, D.J.; Deininger, P.L. Inviting Instability: Transposable Elements, Double-Strand Breaks, and the Maintenance of Genome Integrity. Mutat. Res. 2007, 616, 46–59. [Google Scholar] [CrossRef]
- Klubicová, K.; Danchenko, M.; Škultéty, L.; Miernyk, A.J.; Rashydov, N.M.; Berezhna, V.V.; Preťová, A.; Hajduch, M. Proteomics Analysis of Flax Grown in Chernobyl Area Suggests Limited Effect of Contaminated Environment on Seed Proteome. Environ. Sci. Technol. 2010, 44, 6940–6946. [Google Scholar] [CrossRef]
- Klubicová, K.; Berčák, M.; Danchenko, M.; Škultéty, L.; Rashydov, N.M.; Berezhna, V.V.; Miernyk, J.A.; Hajduch, M. Agricultural recovery of a formerly radioactive area: I. Establishment of high-resolution quantitative protein map of mature flax seeds harvested from the remediated Chernobyl area. Phytochem 2011, 72, 1308–1315. [Google Scholar] [CrossRef]
- Al-Saheal, Y.A.; Larik, A.S. Genetic factors determining plasticity in flax genotrophs. Can. J. Gen. Cytol. 1985, 27, 272–275. [Google Scholar] [CrossRef]
- Ince, A.G.; Karaca, M.; Onus, A.N. Genetic relationships within and between Capsicum species. Biochem. Genet. 2010, 48, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Bickel, C.L.; Lukacus, M.; Cullis, C.A. The loci controlling plasticity in flax. Res. Rep. Biol. 2012, 3, 1–11. [Google Scholar] [CrossRef]
- Vivodík, M.; Balážová, Ž.; Gálová, Z.; Kuťka Hlozáková, T. Differentiation of ricin using RAPD markers. Pak. J. Bot. 2015, 47, 4. [Google Scholar]
- Schulman, A.H.; Flavell, A.J.; Paux, E.; Ellis, T.H. The application of LTR retrotransposons as molecular markers in plants. Methods Mol. Biol. 2012, 859, 115–153. [Google Scholar] [PubMed]
- Dmitriev, A.A.; Kudryavtseva, A.V.; Krasnov, G.S.; Koroban, N.V.; Speranskaya, A.S.; Krinitsina, A.A.; Belenikin, M.S.; Snezhkina, A.V.; Sadritdinova, A.F.; Kishlyan, N.V.; et al. Gene expression profiling of flax (Linum usitatissimum L.) under edaphic stress. BMC Plant Biol. 2016, 16, 237. [Google Scholar] [CrossRef]
- Wang, Z.; Hobson, N.; Galindo, L.; Zhu, S.; Shi, D.; McDill, J.; Yang, L.; Hawkins, S.; Neutelings, C.; Datla, R.; et al. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J. 2012, 72, 461–473. [Google Scholar] [CrossRef] [Green Version]
- Rogers, S.O.; Bendlich, A.J. Extraction of total cellular DNA from plants, algae and fungi. In Plant Molecular Biology Manual, 2nd ed.; Gelvin, S.B., Schilperoort, R.A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; pp. 1–8. [Google Scholar]
- Žiarovská, J.; Ražná, K.; Bežo, M.; Senková, S. Genomic analysis and identification of Cassandra retrotransposon in germplasm collection of flax. Acta Fytotech. Zool. 2010, 13, 49–54. [Google Scholar]
- De Riek, J.; Calsyn, E.; Everaert, I.; Van Bockstaele, E.; De Loose, M. AFLP based alternatives for the assessment of distinctness, uniformity and stability of sugar beet varieties. Theor. Appl. Gen. 2001, 103, 1254–1265. [Google Scholar] [CrossRef]
- Tessier, C.; David, J.; This, P.; Boursiquot, J.M.; Charrier, A. Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theor. Appl. Gen. 1999, 98, 171–177. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žiarovská, J.; Speváková, I.; Klongová, L.; Farkasová, S.; Rashydow, N. Transposable Elements in the Revealing of Polymorphism-Based Differences in the Seeds of Flax Varieties Grown in Remediated Chernobyl Area. Plants 2022, 11, 2567. https://doi.org/10.3390/plants11192567
Žiarovská J, Speváková I, Klongová L, Farkasová S, Rashydow N. Transposable Elements in the Revealing of Polymorphism-Based Differences in the Seeds of Flax Varieties Grown in Remediated Chernobyl Area. Plants. 2022; 11(19):2567. https://doi.org/10.3390/plants11192567
Chicago/Turabian StyleŽiarovská, Jana, Ivana Speváková, Lucia Klongová, Silvia Farkasová, and Namik Rashydow. 2022. "Transposable Elements in the Revealing of Polymorphism-Based Differences in the Seeds of Flax Varieties Grown in Remediated Chernobyl Area" Plants 11, no. 19: 2567. https://doi.org/10.3390/plants11192567
APA StyleŽiarovská, J., Speváková, I., Klongová, L., Farkasová, S., & Rashydow, N. (2022). Transposable Elements in the Revealing of Polymorphism-Based Differences in the Seeds of Flax Varieties Grown in Remediated Chernobyl Area. Plants, 11(19), 2567. https://doi.org/10.3390/plants11192567