A New Set of Golden-Gate-Based Organelle Marker Plasmids for Colocalization Studies in Plants
Abstract
:1. Introduction
2. Results
2.1. Labeling of Plasma Membrane and Tonoplast
2.2. Labeling of Nucleus, ER, Golgi Apparatus, and Peroxisomes
2.3. Labeling of Plastids and Mitochondria
2.4. Proof of Concept
3. Discussion
3.1. Selected Plasma Membrane and Tonoplast Proteins Ensure Proper Labeling of These Membranes
3.2. The New OM Properly Labeled Nuclei, ER, Golgi Apparatus, and Peroxisomes
3.3. N-Terminal Fusion of TPs to mCherry Led to Proper Labeling of Plastids and Mitochondria
3.4. Proof of Concept for Golden-Gate-Based OM Reveals Their Functionality
4. Materials and Methods
4.1. Cloning of Organelle-Targeted mCherry
4.2. Transformation of Protoplasts from N. benthamiana and Determination of Protoplast Vitality
4.3. Transformation of Leaves from N. benthamiana
4.4. Microscopy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nelson, B.K.; Cai, X.; Nebenführ, A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 2007, 51, 1126–1136. [Google Scholar] [CrossRef]
- Nebenführ, A. Identifying subcellular protein localization with fluorescent protein fusions after transient expression in onion epidermal cells. In Plant Cell Morphogenesis: Methods and Protocols; Žárský, V., Cvrčková, F., Eds.; Humana Press: Totowa, NJ, USA, 2014; pp. 77–85. [Google Scholar]
- Agrawal, G.K.; Bourguignon, J.; Rolland, N.; Ephritikhine, G.; Ferro, M.; Jaquinod, M.; Alexiou, K.; Chardot, T.; Chakraborty, N.; Jolivet, P.; et al. Plant organelle proteomics: Collaborating for optimal cell function. Mass Spectrom. Rev. 2011, 30, 772–853. [Google Scholar] [CrossRef]
- Dunkley, T.P.J.; Hester, S.; Shadforth, I.P.; Runions, J.; Weimar, T.; Hanton, S.L.; Griffin, J.L.; Bessant, C.; Brandizzi, F.; Hawes, C.; et al. Mapping the Arabidopsis organelle proteome. Proc. Natl. Acad. Sci. USA 2006, 103, 6518–6523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lilley, K.S. Methods of quantitative proteomics and their application to plant organelle characterization. J. Exp. Bot. 2006, 57, 1493–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emanuelsson, O.; von Heijne, G. Prediction of organellar targeting signals. Biochim. Biophys. Acta 2001, 1541, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Dixit, R.; Cyr, R.; Gilroy, S. Using intrinsically fluorescent proteins for plant cell imaging. Plant J. 2006, 45, 599–615. [Google Scholar] [CrossRef]
- Luo, B.; Nakata, P.A. A set of GFP organelle marker lines for intracellular localization studies in Medicago truncatula. Plant Sci. 2012, 188–189, 19–24. [Google Scholar] [CrossRef]
- Blatt, M.R.; Grefen, C. Applications of Fluorescent Marker Proteins in Plant Cell Biology. In Arabidopsis Protocols; Sanchez-Serrano, J.J., Salinas, J., Eds.; Humana Press: Totowa, NJ, USA, 2014; Volume 1062, pp. 487–507. [Google Scholar] [CrossRef]
- Geldner, N.; Dénervaud-Tendon, V.; Hyman, D.L.; Mayer, U.; Stierhof, Y.-D.; Chory, J. Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J. 2009, 59, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zheng, W.; Chen, L.; Li, C.; Liang, T.; Chen, Z.; Xu, H.; Han, Y.; Kong, L.; Zhao, X.; et al. Green Fluorescent Protein- and Discosoma sp. Red Fluorescent Protein-Tagged Organelle Marker Lines for Protein Subcellular Localization in Rice. Front. Plant Sci. 2019, 10, 1421. [Google Scholar] [CrossRef]
- Martin, K.; Kopperud, K.; Chakrabarty, R.; Banerjee, R.; Brooks, R.; Goodin, M.M. Transient expression in Nicotiana benthamiana fluorescent marker lines provides enhanced definition of protein localization, movement and interactions in planta. Plant J. 2009, 59, 150–162. [Google Scholar] [CrossRef]
- Wu, T.-M.; Lin, K.-C.; Liau, W.-S.; Chao, Y.-Y.; Yang, L.-H.; Chen, S.-Y.; Lu, C.-A.; Hong, C.-Y. A set of GFP-based organelle marker lines combined with DsRed-based gateway vectors for subcellular localization study in rice (Oryza sativa L.). Plant Mol. Biol. 2016, 90, 107–115. [Google Scholar] [CrossRef]
- Dangol, S.; Singh, R.; Chen, Y.; Jwa, N.-S. Visualization of Multicolored in vivo Organelle Markers for Co-Localization Studies in Oryza sativa. Mol. Cells 2017, 40, 828–836. [Google Scholar] [CrossRef]
- Wu, Q.; Luo, A.; Zadrozny, T.; Sylvester, A.; Jackson, D. Fluorescent protein marker lines in maize: Generation and applications. Int. J. Dev. Biol. 2013, 57, 535–543. [Google Scholar] [CrossRef] [Green Version]
- Kohler, R.H.; Zipfel, W.R.; Webb, W.W.; Hanson, M.R. The green fluorescent protein as a marker to visualize plant mitochondria in vivo. Plant J. 1997, 11, 613–621. [Google Scholar] [CrossRef]
- Wang, R.; Brattain, M.G. The maximal size of protein to diffuse through the nuclear pore is larger than 60 kDa. FEBS Lett. 2007, 581, 3164–3170. [Google Scholar] [CrossRef] [Green Version]
- Keegstra, K.; Cline, K. Protein import and routing systems of chloroplasts. Plant Cell 1999, 8, 557–570. [Google Scholar] [CrossRef] [Green Version]
- Maucher, H.; Hause, B.; Feussner, I.; Ziegler, J.; Wasternack, C. Allene oxide synthases of barley (Hordeum vulgare cv. Salome): Tissue specific regulation in seedling development. Plant J. 2000, 21, 199–213. [Google Scholar] [CrossRef]
- Mackenzie, S.A. Plant organellar protein targeting: A traffic plan still under construction. Trends Cell Biol. 2005, 15, 548–554. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Luo, J.; Zhang, X. From endoplasmic reticulum to Golgi apparatus: A secretory pathway controlled by signal molecules. J. Zhejiang Univ. Med. Sci. 2013, 42, 472–477. [Google Scholar]
- Ghareeb, H.; Laukamm, S.; Lipka, V. COLORFUL-Circuit: A Platform for Rapid Multigene Assembly, Delivery, and Expression in Plants. Front. Plant Sci. 2016, 7, 246. [Google Scholar] [CrossRef]
- Han, J.; Ma, K.; Li, H.; Su, J.; Zhou, L.; Tang, J.; Zhang, S.; Hou, Y.; Chen, L.; Liu, Y.; et al. All-in-one: A robust fluorescent fusion protein vector toolbox for protein localization and BiFC analyses in plants. Plant Biotechnol. J. 2022, 20, 1098–1109. [Google Scholar] [CrossRef]
- Weber, E.; Engler, C.; Gruetzner, R.; Werner, S.; Marillonnet, S. A Modular Cloning System for Standardized Assembly of Multigene Constructs. PLoS ONE 2011, 6, e16765. [Google Scholar] [CrossRef]
- Engler, C.; Youles, M.; Gruetzner, R.; Ehnert, T.-M.; Werner, S.; Jones, J.; Patron, N.J.; Marillonnet, S. A Golden Gate Modular Cloning Toolbox for Plants. ACS Synth. Biol. 2014, 3, 839–843. [Google Scholar] [CrossRef]
- Ziegler, J.; Stenzel, I.; Hause, B.; Maucher, H.; Hamberg, M.; Grimm, R.; Ganal, M.; Wasternack, C. Molecular cloning of allene oxide cyclase: The enzyme establishing the stereochemistry of octadecanoids and jasmonates. J. Biol. Chem. 2000, 275, 19132–19138. [Google Scholar] [CrossRef] [Green Version]
- Strassner, J.; Schaller, F.; Frick, U.B.; Howe, G.A.; Weiler, E.W.; Amrhein, N.; Macheroux, P.; Schaller, A. Characterization and cDNA-microarray expression analysis of 12-oxophytodienoate reductases reveals differential roles for octadecanoid biosynthesis in the local versus the systemic wound response. Plant J. 2002, 32, 585–601. [Google Scholar] [CrossRef]
- DeWitt, N.D.; Hong, B.; Sussman, M.R.; Harper, J.F. Targeting of Two Arabidopsis H+-ATPase Isoforms to the Plasma Membrane. Plant Physiol. 1996, 112, 833–844. [Google Scholar] [CrossRef] [Green Version]
- Kurup, S.; Runions, J.; Köhler, U.; Laplaze, L.; Hodge, S.; Haseloff, J. Marking cell lineages in living tissues. Plant J. 2005, 42, 444–453. [Google Scholar] [CrossRef]
- Keefe, D.; Hinz, U.; Meins, F. The effect of ethylene on the cell-type-specific and intracellular localization of β-1,3-glucanase and chitinase in tobacco leaves. Planta 1990, 182, 43–51. [Google Scholar] [CrossRef]
- Strompen, G.; Dettmer, J.; Stierhof, Y.-D.; Schumacher, K.; Jürgens, G.; Mayer, U. Arabidopsis vacuolar H+-ATPase subunit E isoform 1 is required for Golgi organization and vacuole function in embryogenesis. Plant J. 2005, 41, 125–132. [Google Scholar] [CrossRef]
- Kobae, Y.; Uemura, T.; Sato, M.H.; Ohnishi, M.; Mimura, T.; Nakagawa, T.; Maeshima, M. Zinc Transporter of Arabidopsis thaliana AtMTP1 is Localized to Vacuolar Membranes and Implicated in Zinc Homeostasis. Plant Cell Physiol. 2004, 45, 1749–1758. [Google Scholar] [CrossRef]
- Yelagandula, R.; Stroud, H.; Holec, S.; Zhou, K.; Feng, S.; Zhong, X.; Muthurajan, U.M.; Nie, X.; Kawashima, T.; Groth, M.; et al. The Histone Variant H2A.W Defines Heterochromatin and Promotes Chromatin Condensation in Arabidopsis. Cell 2014, 158, 98–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osakabe, A.; Lorkovic, Z.; Kobayashi, W.; Tachiwana, H.; Yelagandula, R.; Kurumizaka, H.; Berger, F. Histone H2A variants confer specific properties to nucleosomes and impact on chromatin accessibility. Nucl. Acids Res. 2018, 46, 7675–7685. [Google Scholar] [CrossRef] [PubMed]
- He, Z.-H.; Cheeseman, I.; Kohorn, B.D. A cluster of five cell wall-associated receptor kinase genes, Wak1–5, are expressed in specific organs of Arabidopsis. Plant Mol. Biol. 1999, 39, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Zardoya, R.; Villalba, S. A Phylogenetic Framework for the Aquaporin Family in Eukaryotes. J. Mol. Evol. 2001, 52, 391–404. [Google Scholar] [CrossRef] [PubMed]
- Santoni, V.; Verdoucq, L.; Sommerer, N.; Vinh, J.; Pflieger, D.; Maurel, C. Methylation of aquaporins in plant plasma membrane. Biochem. J. 2006, 400, 189–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurel, C.; Reizer, J.; Schroeder, J.; Chrispeels, M. The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes. EMBO J. 1993, 12, 2241–2247. [Google Scholar] [CrossRef] [PubMed]
- Dabney-Smith, C.; Wijngaard, P.W.J.V.D.; Treece, Y.; Vredenberg, W.J.; Bruce, B.D. The C Terminus of a Chloroplast Precursor Modulates Its Interaction with the Translocation Apparatus and PIRAC. J. Biol. Chem. 1999, 274, 32351–32359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, M.; Bennewitz, B.; Klösgen, R.B. Dual or Not Dual?—Comparative Analysis of Fluorescence Microscopy-Based Approaches to Study Organelle Targeting Specificity of Nuclear-Encoded Plant Proteins. Front. Plant Sci. 2018, 9, 1350. [Google Scholar] [CrossRef] [Green Version]
- Da Ines, O. Functional Analysis of PIP2 Aquaporins in Arabidopsis thaliana; LMU: Munich, Germany, 2008. [Google Scholar]
- Jiang, Y. Expression and functional characterization of NPA motif-null aquaporin-1 mutations. IUBMB Life 2009, 61, 651–657. [Google Scholar] [CrossRef]
- Guan, X.-G.; Su, W.-H.; Yi, F.; Zhang, D.; Hao, F.; Zhang, H.-G.; Liu, Y.-J.; Feng, X.-C.; Ma, T.-H. NPA motifs play a key role in plasma membrane targeting of aquaporin-4. IUBMB Life 2010, 62, 222–226. [Google Scholar] [CrossRef]
- Zimmermann, R.; Eyrisch, S.; Ahmad, M.; Helms, V. Protein translocation across the ER membrane. Biochim. Biophys. Acta BBA Biomembr. 2011, 1808, 912–924. [Google Scholar] [CrossRef] [Green Version]
- Cutler, S.; Ehrhardt, D.; Griffitts, J.; Somerville, C. Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc. Natl. Acad. Sci. USA 2000, 97, 3718–3723. [Google Scholar] [CrossRef] [Green Version]
- Martoglio, B.; Dobberstein, B. Signal sequences: More than just greasy peptides. Trends Cell Biol. 1998, 8, 410–415. [Google Scholar] [CrossRef]
- Ast, T.; Schuldiner, M. All roads lead to Rome (but some may be harder to travel): SRP-independent translocation into the endoplasmic reticulum. Crit. Rev. Biochem. Mol. Biol. 2013, 48, 273–288. [Google Scholar] [CrossRef]
- Zhang, C.; Gong, F.C.; Lambert, G.M.; Galbraith, D.W. Cell type-specific characterization of nuclear DNA contents within complex tissues and organs. Plant Methods 2005, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Werner, S.; Engler, C.; Weber, E.; Gruetzner, R.; Marillonnet, S. Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system. Bioeng. Bugs 2012, 3, 38–43. [Google Scholar] [CrossRef]
- Rosenthal, A.; Coutelle, O.; Craxton, M. Large-scale production of DNA sequencing templates by microtitre format PCR. Nucl. Acids Res. 1993, 21, 173–174. [Google Scholar] [CrossRef] [Green Version]
- Janik, K.; Stellmach, H.; Mittelberger, C.; Hause, B. Characterization of Phytoplasmal Effector Protein Interaction with Proteinaceous Plant Host Targets Using Bimolecular Fluorescence Complementation (BiFC). In Phytoplasmas: Methods and Protocols; Musetti, R., Pagliari, L., Eds.; Springer New York: New York, NY, USA, 2019; Volume 1875, pp. 321–331. [Google Scholar] [CrossRef]
- Yoo, S.-D.; Cho, Y.-H.; Sheen, J. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nat. Protoc. 2007, 2, 1565–1572. [Google Scholar] [CrossRef] [Green Version]
- Heslop-Harrison, J. Evaluation of Pollen Viability by Enzymatically Induced Fluorescence; Intracellular Hydrolysis of Fluorescein Diacetate. Stain Technol. 1970, 45, 115–120. [Google Scholar] [CrossRef]
- Sparkes, I.A.; Runions, J.; Kearns, A.; Hawes, C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 2006, 1, 2019–2025. [Google Scholar] [CrossRef]
Candidate | Organism | Ref. | Construct No. (Protoplasts) | Construct No. (Leaves) | |
---|---|---|---|---|---|
Plasma membrane | |||||
Plasma membrane intrinsic protein 2A | PIP2A | A. thaliana | [1] | ||
H(+)-ATPase 2 | AHA2 | A. thaliana | [28] | ||
Novel plant snare 12 | NPSN12 | A. thaliana | [10] | ||
Low temperature induced protein 6b | LTI6b | A. thaliana | [29] | pAGH1107 (C) 1 | pAGH1125 (C) |
Tonoplast | |||||
Chitinase B | CHN B | N. benthamiana | [29,30] | ||
V-ATPase ε-subunit (E1) | VHA-E1 | A. thaliana | [31] | ||
Vesicle associated membrane protein 711 | VAMP711 | A. thaliana | [10] | ||
Cation diffusion facilitator 1 | CDF1 | A. thaliana | [32] | pAGH1108 (C) | pAGH1126 (C) |
Nucleus | |||||
Histone H2A W6 | HTA6 | A. thaliana | [33,34] | pAGH1104 (C) | pAGH1122 (C) |
Endoplasmatic reticulum (ER) | |||||
Wall-associated kinase2 (aa 1–31) + mCherry-KDEL | WAK2(1–30)-mCherry-KDEL | A. thaliana | [1,35] | pAGH1106 (C) pAGH1132 (N) 1 | pAGH1124 (C) pAGH1138 (N) |
Wall-associated kinase2 (aa 1–31) + mCherry-HDEL | WAK2(1–30)-mCherry-HDEL | A. thaliana | [1,35] | pAGH1105 (C) pAGH1131 (N) | pAGH1123 (C) pAGH1137 (N) |
Golgi | |||||
α-1,2-Mannosidase (aa 1–49) | GmMan1(1–49) | Glycine max | [1] | pAGH1102 (C) | pAGH1120 (C) |
Peroxisome | |||||
mCherry-SKL (PTS1) | mCherry-SKL | [1] | pAGH1130 (N) | pAGH1136 (N) | |
Plastid | |||||
Ribulose-1,5-bisphosphate-carboxylase/-oxygenase (aa 1–79) | Rubisco(1–79) | N. benthamiana | [1] | pAGH1103 (C) | pAGH1121 (C) |
Mitochondrium | |||||
Mitochondrial Rieske protein (aa 1-100) | Ri(1–100) | S. tuberosum | [33] | pAGH1091 (C) | pAGH1109 (C) |
Cytochrome c oxidase IV (aa 1–29) | COXIV | S. cerevisiae | [1] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stellmach, H.; Hose, R.; Räde, A.; Marillonnet, S.; Hause, B. A New Set of Golden-Gate-Based Organelle Marker Plasmids for Colocalization Studies in Plants. Plants 2022, 11, 2620. https://doi.org/10.3390/plants11192620
Stellmach H, Hose R, Räde A, Marillonnet S, Hause B. A New Set of Golden-Gate-Based Organelle Marker Plasmids for Colocalization Studies in Plants. Plants. 2022; 11(19):2620. https://doi.org/10.3390/plants11192620
Chicago/Turabian StyleStellmach, Hagen, Robert Hose, Antonia Räde, Sylvestre Marillonnet, and Bettina Hause. 2022. "A New Set of Golden-Gate-Based Organelle Marker Plasmids for Colocalization Studies in Plants" Plants 11, no. 19: 2620. https://doi.org/10.3390/plants11192620
APA StyleStellmach, H., Hose, R., Räde, A., Marillonnet, S., & Hause, B. (2022). A New Set of Golden-Gate-Based Organelle Marker Plasmids for Colocalization Studies in Plants. Plants, 11(19), 2620. https://doi.org/10.3390/plants11192620