Effects of Elevated Temperature and High and Low Rainfall on the Germination and Growth of the Invasive Alien Plant Acacia mearnsii
Abstract
:1. Introduction
2. Results
2.1. Effects of Temperature and Rainfall on Acacia mearnsii Germination and Growth
2.2. Effects of Temperature and Rainfall on Soil Properties after Acacia mearnsii Growth
3. Discussion
4. Materials and Methods
4.1. Sampling Site
4.2. Soil Collection and Experimental Design
4.3. Germination and Seedling Growth Measurements
4.4. Soil Analysis after Seedling Harvesting
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richardson, D.M.; Foxcroft, L.C.; Latombe, G.; Le Maitre, D.C. The Biogeography of South African Terrestrial Plant Invasions. In Biological Invasions in South Africa; van Wilgen, B.W., Measey, J., Richardson, D.M., Wilson, J.R., Zengeya, T.A., Eds.; Springer: Berlin, Germany, 2020; pp. 67–96. [Google Scholar]
- van Wilgen, B.W.; Measey, J.; Richardson, D.M.; Wilson, R.U.; Zengeya, T.A. Biological Invasions in South Africa: An Overview. In Biological Invasions in South Africa; van Wilgen, B.W., Measey, J., Richardson, D.M., Wilson, J.R., Zengeya, T.A., Eds.; Springer: Berlin, Germany, 2020; pp. 3–32. [Google Scholar]
- Le Maitre, D.C.; Blignaut, J.N.; Clulow, A.; Dzikiti, S.; Everson, C.G.; Örgens, A.H.M.; Gush, M.B. Impacts of Plant Invasions on Terrestrial Water Flows in South Africa. In Biological Invasions in South Africa; van Wilgen, B.W., Measey, J., Richardson, D.M., Wilson, J.R., Zengeya, T.A., Eds.; Springer: Berlin, Germany, 2020; pp. 429–456. [Google Scholar]
- O’Connor, T.; van Wilgen, B.W. The Impact of Invasive Alien Plants on Rangelands in South Africa. In Biological Invasions in South Africa; van Wilgen, B.W., Measey, J., Richardson, D.M., Wilson, J.R., Zengeya, T.A., Eds.; Springer: Berlin, Germany, 2020; pp. 457–486. [Google Scholar]
- De Lange, W.J.; van Wilgen, B.W. An economic assessment of the contribution of weed biological control to the management of invasive alien plants and to the protection of ecosystem services in South Africa. Biol. Invasions 2010, 12, 4113–4124. [Google Scholar] [CrossRef]
- van Wilgen, B.W.; Fill, J.M.; Baard, J.; Cheney, C.; Forsyth, A.T.; Kraaij, T. Historical costs and projected future scenarios for the management of invasive alien plants in protected areas in the Cape Floristic Region. Biol. Conserv. 2016, 200, 168–177. [Google Scholar] [CrossRef]
- Finch, D.M.; Butler, J.L.; Runyon, J.B.; Fettig, C.J.; Kilkenny, F.F.; Jose, S.; Frankel, S.J.; Cushman, S.A.; Cobb, R.C.; Dukes, J.S.; et al. Effects of Climate Change on Invasive Species. In Invasive Species in Forests and Rangelands of the United States: A Comprehensive Science Synthesis for the United States Forest Sector; Poland, T.M., Patel-Weynand, T., Finch, D.M., Ford, M.C., Hayes, D.C., Lopez, V.M., Eds.; Springer International Publishing: Heidelberg, Germany, 2021; pp. 57–84. [Google Scholar]
- Chen, B.-M.; Gao, Y.; Liao, H.-X.; Peng, S.-L. Differential responses of invasive and native plants to warming with simulated changes in diurnal temperature ranges. AoB Plants 2017, 9, plx028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pimentel, D.; Zuniga, R.; Morrison, D. Update on the environmental and economic costs associated with alien invasive species in the United States. Ecol. Econ. 2005, 52, 273–288. [Google Scholar] [CrossRef]
- Gong, X.; Chen, Y.; Wang, T.; Jiang, X.; Hu, X.; Feng, J. Double-edged effects of climate change on plant invasions: Ecological niche modeling global distributions of two invasive alien plants. Sci. Total Environ. 2020, 740, 139933. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group i to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Hernández-Lambraño, R.E.; González-Moreno, P.; Sánchez-Agudo, J.Á. Towards the top: Niche expansion of Taraxacum officinale and Ulex europaeus in mountain regions of South America. Austral Ecol. 2017, 42, 577–589. [Google Scholar] [CrossRef]
- Dukes, J.S. Comparison of the effect of elevated CO2 on an invasive species (Centaurea solstitialis) in monoculture and community settings. Plant Ecol. 2002, 160, 225–234. [Google Scholar] [CrossRef]
- Dukes, J.S.; Chiariello, N.R.; Loarie, S.R.; Field, C.B. Strong response of an invasive plant species (Centaurea solstitialis L.) to global environmental changes. Ecol. Appl. 2011, 21, 1887–1894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuine, I.; Morin, X.; Sonie’, L.; Collin, C.; Fabreguettes, J.; Degueldre, D.; Salager, J.; Roy, J. Climate change might increase the invasion potential of the alien C4 grass Setaria parviflora (Poaceae) in the Mediterranean Basin. Divers. Distrib. 2012, 18, 661–672. [Google Scholar] [CrossRef]
- Verlinden, M.; Van Kerkhove, A.; Nijs, I. Effects of experimental climate warming and associated soil drought on the competition between three highly invasive West European alien plant species and native counterparts. Plant Ecol. 2013, 214, 243–254. [Google Scholar] [CrossRef]
- Haeuser, E.; Dawson, W.; van Kleunen, M. Introduced garden plants are strong competitors of native and alien residents under simulated climate change. J. Ecol. 2019, 107, 1328–1342. [Google Scholar] [CrossRef]
- Brevik, E.C. The potential impact of climate change on soil properties and processes and corresponding influence on food security. Agriculture 2013, 3, 398–417. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Lin, E.; Xiong, W.; Li, Y.; Guo, L. Modeling the impact of climate change on soil organic carbon stock in upland soils in the 21st century in China. Agric. Ecosyst. Environ. 2011, 141, 23–31. [Google Scholar] [CrossRef]
- Mondal, S. Impact of Climate Change on Soil Fertility. In Climate Change and the Microbiome; Soil Biology; Choudhary, D.K., Mishra, A., Varma, A., Eds.; Springer: Cham, Switzerland, 2021; Volume 63, pp. 551–569. [Google Scholar]
- Zhang, P.; Grutters, B.M.C.; van Leeuwen, C.H.A.; Xu, J.; Petruzzella, A.; van den Berg, R.F.; Bakker, E.S. Effects of rising temperature on the growth, stoichiometry, and palatability of aquatic plants. Front. Plant Sci. 2019, 9, 1947. [Google Scholar] [CrossRef]
- Benton, T.G.; Solan, M.; Travis, J.M.J.; Sait, S.M. Microcosm experiments can inform global ecological problems. Trends Ecol. Evol. 2007, 22, 516–521. [Google Scholar] [CrossRef] [PubMed]
- van Wilgen, B.W.; Dyer, C.; Hoffmann, J.H.; Ivey, P.; Le Maitre, D.C.; Moore, J.L.; Richardson, D.M.; Rouget, M.; Wannenburgh, A.; Wilson, J.R. National-scale strategic approaches for managing introduced plants: Insights from Australian acacias in South Africa. Divers. Distrib. 2011, 17, 1060–1075. [Google Scholar] [CrossRef] [Green Version]
- Yapi, T.S.; O’Farrell, P.J.; Dziba, L.E.; Esler, K.J. Alien tree invasion into a South African montane grassland ecosystem: Impact of Acacia species on rangeland condition and livestock carrying capacity. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2018, 14, 105–116. [Google Scholar] [CrossRef]
- Le Maitre, D.C.; Gaertner, M.; Marchante, E.; Ens, E.J.; Holmes, P.M.; Pauchard, A.; O’Farrell, P.J.; Rogers, A.M.; Blanchard, R.; Blignaut, J.; et al. Impacts of invasive Australian acacias: Implications for management and restoration. Divers. Distrib. 2011, 17, 1015–1029. [Google Scholar] [CrossRef]
- Impsona, F.A.C.; Kleinjanb, C.A.; Hoffmann, J.H.; Posta, J.A. Dasineura rubiformis (Diptera: Cecidomyiidae), a new biological control agent for Acacia mearnsii in South Africa. S. Afr. J. Sci. 2008, 104, 247–249. [Google Scholar]
- Yuan, X.; Wen, B. Seed germination response to high temperature and water stress in three invasive Asteraceae weeds from Xishuangbanna, SW China. PLoS ONE 2018, 13, e0191710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.-H.; He, W.-M. Climate Warming Facilitates Seed Germination in Native but Not Invasive Solidago canadensis Populations. Front. Ecol. Evol. 2020, 8, 595214. [Google Scholar] [CrossRef]
- Udo, N.; Tarayre, M.; Atlan, A. Evolution of germination strategy in the invasive species Ulex europaeus. J. Plant Ecol. 2017, 10, 375–385. [Google Scholar]
- Dülger, E.; Heidbüchel, P.; Schumann, T.; Mettler-Altmann, T.; Hussner, A. Interactive effects of nitrate concentrations and carbon dioxide on the stoichiometry, biomass allocation and growth rate of submerged aquatic plants. Freshw. Biol. 2017, 62, 1094–1104. [Google Scholar] [CrossRef]
- Kumarathunge, D.P.; Medlyn, B.E.; Drake, J.E.; Tjoelker, M.G.; Aspinwall, M.J.; Battaglia, M.; Cano, F.J.; Carter, K.R.; Cavaleri, M.A.; Cernusak, L.A.; et al. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytol. 2019, 222, 768–784. [Google Scholar] [CrossRef] [Green Version]
- Timm, S.; Woitschach, F.; Heise, C.; Hagemann, M.; Bauwe, H. Faster removal of 2-phosphoglycolate through photorespiration improves abiotic stress tolerance of Arabidopsis. Plants 2019, 8, 563. [Google Scholar] [CrossRef] [Green Version]
- Grossiord, C.; Buckley, T.N.; Cernusak, L.A.; Novick, K.A.; Poulter, B.; Siegwolf, R.T.W.; Sperry, J.S.; McDowell, N.G. Plant responses to rising vapor pressure deficit. New Phytol. 2020, 226, 1550–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, C.E.; Meacham-Hensold, K.; Lemonnier, P.; Slattery, R.A.; Benjamin, C.; Bernacchi, C.J.; Lawson, T.; Cavanagh, A.P. The effect of increasing temperature on crop photosynthesis: From enzymes to ecosystems. J. Exp. Bot. 2012, 72, 2822–2844. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Sang, W.-G.; Baek, J.-K.; Kim, J.-H.; Shin, P.; Seo, M.-C.; Cho, J., II. The effect of concurrent elevation in CO2 and temperature on the growth, photosynthesis, and yield of potato crops. PLoS ONE 2020, 15, e0241081. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Xu, H.; Chu, C.; He, F.; Fang, S. High temperature can change root system architecture and intensify root interactions of plant seedlings. Front. Plant Sci. 2020, 11, 160. [Google Scholar] [CrossRef] [Green Version]
- Eskelinen, A.; Harrison, S. Exotic plant invasions under enhanced rainfall are constrained by soil nutrients and competition. Ecology 2014, 95, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Niu, S.; Wan, S. Precipitation regulates plant gas exchange and its long-term response to climate change in a temperate grassland. J. Plant Ecol. 2016, 9, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Nciizah, A.D.; Wakindiki, I.I.C. Rainfall intensity effects on crusting and mode of seedling emergence in some quartz-dominated South African soils. Water SA 2014, 40, 587–594. [Google Scholar] [CrossRef]
- Lei, W.; Dong, H.; Chen, P.; Lv, H.; Fan, L.; Mei, G. Study on runoff and infiltration for expansive soil slopes in simulated rainfall. Water 2020, 12, 222. [Google Scholar] [CrossRef] [Green Version]
- Vardien, W.; Richardson, D.M.; Foxcroft, L.C.; Thompson, G.D.; Wilson, J.R.U.; Le Roux, J.J. Invasion dynamics of Lantana camara L. (sensu lato) in South Africa. S. Afr. J. Bot. 2012, 81, 81–94. [Google Scholar] [CrossRef] [Green Version]
- Souza-Alonso, P.; Rodríguez, J.; González, L.; Lorenzo, P. Here to stay. Recent advances and perspectives about Acacia invasion in Mediterranean areas. Ann. For. Sci. 2017, 74, 55. [Google Scholar] [CrossRef] [Green Version]
- Mainali, K.P.; Warren, D.L.; Dhileepan, K.; McConnachie, A.; Strathie, L.; Hassan, G.; Karki, D.; Shrestha, B.B.; Parmesan, C. Projecting future expansion of invasive species: Comparing and improving methodologies for species distribution modeling. Glob. Chang. Biol. 2015, 21, 4464–4480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kooyers, N.J.; Olsen, K.M. Rapid evolution of an adaptive cyanogenesis cline in introduced North American white clover (Trifolium repens L.). Mol. Ecol. 2012, 21, 2455–2468. [Google Scholar] [CrossRef]
- Wu, J.; Yu, S. Effect of root exudates of Eucalyptus urophylla and Acacia mearnsii on soil microbes under simulated warming climate conditions. BMC Microbiol. 2019, 19, 224. [Google Scholar] [CrossRef] [Green Version]
- Kelso, M.A.; Wigginton, R.D.; Grosholz, E.D. Nutrients mitigate the impacts of extreme drought on plant invasions. Ecology 2020, 101, e02980. [Google Scholar] [CrossRef] [PubMed]
- Fahey, C.; Angelini, C.; Flory, S.L. Grass invasion and drought interact to alter the diversity and structure of native plant communities. Ecology 2018, 99, 2692–2702. [Google Scholar] [CrossRef] [PubMed]
- Orbán, I.; Szitár, K.; Kalapos, T.; Körel-Dulay, G. The role of disturbance in invasive plant establishment in a changing climate: Insights from a drought experiment. Biol. Invasions 2021, 23, 1877–1890. [Google Scholar] [CrossRef]
- Crous, C.J.; Jacobs, S.M.; Esler, K.J. Drought-tolerance of an invasive alien tree, Acacia mearnsii and two native competitors in fynbos riparian ecotones. Biol. Invasions 2012, 14, 619–631. [Google Scholar] [CrossRef]
- Adams, H.D.; Zeppel, M.J.B.; Anderegg, W.R.L.; Hartmann, H.; Landhäusser, S.M.; Tissue, D.T.; Huxman, T.E.; Hudson, P.J.; Franz, T.E.; Allen, C.D.; et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 2017, 1, 1285–1291. [Google Scholar] [CrossRef] [PubMed]
- Brodribb, T.J.; McAdam, S. Passive origins of stomatal control in vascular plants. Science 2011, 331, 582–585. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, H. Carbon starvation during drought-induced tree mortality—Are we chasing a myth? J. Plant Hydraul. 2015, 2, e005. [Google Scholar] [CrossRef]
- Pareek, N. Climate change impact on soils: Adaptation and mitigation. MOJ Ecol. Environ. Sci. 2017, 2, 136–139. [Google Scholar] [CrossRef] [Green Version]
- Guoju, X.; Qiang, Z.; Jiangtao, B.; Fengju, Z.; Chengke, L. The relationship between winter temperature rise and soil fertility and properties. Air Soil Water Res. 2012, 5, 15–22. [Google Scholar] [CrossRef]
- Geng, Y.; Baumann, F.; Song, C.; Zhang, M.; Shi, Y.; Kühn, P.; Scholten, T.; He, J.-S. Increasing temperature reduces the coupling between available nitrogen and phosphorus in soils of Chinese grasslands. Sci. Rep. 2017, 7, 43524. [Google Scholar] [CrossRef] [Green Version]
- Menge, D.N.L.; Field, C.B. Simulated global changes alter phosphorus demand in annual grassland. Glob. Chang. Biol. 2007, 13, 2582–2591. [Google Scholar] [CrossRef]
- Karmakar, R.; Das, I.; Dutta, D.; Rakshit, A. Potential effects of climate change on soil properties: A review. Sci. Int. 2016, 4, 51–73. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Dai, Q.; Gao, R.; Gan, Y.; Yi, X. Effects of rainfall intensity on runoff and nutrient loss of gently sloping farmland in a karst area of SW China. PLoS ONE 2021, 16, e0246505. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, D.; Liang, G.; Qiu, Q.; Liu, J.; Zhou, G.; Liu, G.; Chu, G.; Yan, J. Effects of precipitation on soil organic carbon fractions in three subtropical forests in southern China. J. Plant Ecol. 2015, 9, 10–19. [Google Scholar] [CrossRef]
- Mucina, L.; Rutherford, M.C. The Vegetation of South Africa, Lesotho and Swaziland; South African National Biodiversity Institute: Pretoria, South Africa, 2006. [Google Scholar]
- Department of Environmental Affairs (DEA). South Africa’s 2nd Annual Climate Change Report; Department of Environmental Affairs: Pretoria, South Africa, 2017. [Google Scholar]
- Bray, R.H.; Krutz, L.T. Determination of total, organic and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- Chan, K.Y.; Bowman, A.; Oates, A. Oxidizible organic carbon fractions and soil quality changes in an Oxic Paleustalf under different pasture leys. Soil Sci. Soc. Am. J. 2001, 166, 61–67. [Google Scholar] [CrossRef]
- Kumar, B.; Verma, S.K.; Ram, G.; Singh, H.P. Temperature relations for seed germination potential and seedling vigor in Palmarosa (Cymbopogon martinii). J. Crop Improv. 2012, 26, 791–801. [Google Scholar] [CrossRef]
- Statistica Version 14.0; Data Analysis Software System; TIBCO Software Inc.: Palo Alto, CA, USA, 2019; Available online: http://tibco.com (accessed on 10 January 2022).
Control | High Temperature | High Rainfall | Low Rainfall | F-Values | p-Values | |
---|---|---|---|---|---|---|
pH | 6.50 ± 0.10 a | 6.53 ± 0.09 a | 6.50 ± 0.06 a | 6.37 ± 0.07 a | 0.89 | 0.502 |
Total nutrient concentration | ||||||
P Bray II (mg/kg) | 38.17 ± 27.17 a | 52.70 ± 42.65 a | 12.27 ± 2.44 a | 11.93 ± 1.23 a | 0.63 | 0.614 |
C (%) | 2.72 ± 0.31 ab | 3.13 ± 0.13 a | 2.25 ± 0.36 ab | 1.85 ± 0.09 b | 5.03 | 0.030 |
N (%) | 0.14 ± 0.02 ab | 0.19 ± 0.01 a | 0.12 ± 0.02 ab | 0.10 ± 0.01 b | 5.51 | 0.023 |
Exchangeable cations (cmol/kg) | ||||||
Ca | 4.00 ± 0.47 ab | 4.57 ± 0.28 a | 3.77 ± 0.20 ab | 3.13 ± 0.03 b | 4.06 | 0.050 |
Mg | 2.43 ± 0.19 ab | 3.13 ± 0.17 a | 2.27 ± 0.32 ab | 2.10 ± 0.01 b | 5.05 | 0.030 |
K | 0.14 ± 0.01 a | 0.17 ± 0.01 a | 0.13 ± 0.01 a | 0.14 ± 0.01 a | 2.35 | 0.149 |
Na | 0.28 ± 0.03 a | 0.39 ± 0.04 a | 0.27 ± 0.03 a | 0.28 ± 0.02 a | 3.78 | 0.059 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharivha, T.; Ruwanza, S.; Thondhlana, G. Effects of Elevated Temperature and High and Low Rainfall on the Germination and Growth of the Invasive Alien Plant Acacia mearnsii. Plants 2022, 11, 2633. https://doi.org/10.3390/plants11192633
Kharivha T, Ruwanza S, Thondhlana G. Effects of Elevated Temperature and High and Low Rainfall on the Germination and Growth of the Invasive Alien Plant Acacia mearnsii. Plants. 2022; 11(19):2633. https://doi.org/10.3390/plants11192633
Chicago/Turabian StyleKharivha, Tshililo, Sheunesu Ruwanza, and Gladman Thondhlana. 2022. "Effects of Elevated Temperature and High and Low Rainfall on the Germination and Growth of the Invasive Alien Plant Acacia mearnsii" Plants 11, no. 19: 2633. https://doi.org/10.3390/plants11192633
APA StyleKharivha, T., Ruwanza, S., & Thondhlana, G. (2022). Effects of Elevated Temperature and High and Low Rainfall on the Germination and Growth of the Invasive Alien Plant Acacia mearnsii. Plants, 11(19), 2633. https://doi.org/10.3390/plants11192633