Phenolic Composition and Antioxidant Activity of Alchemilla Species
Abstract
:1. Introduction
2. Methodology of Evidence Acquisition
3. Phenolic Compounds in the Alchemilla Species
4. Antioxidant Activity
5. Conclusions and Research Gaps/Future Investigations
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Sepp, S.; Paal, J. Taxonomic continuum of Alchemilla (Rosaceae) in Estonia. Nord. J. Bot. 1998, 18, 519–535. [Google Scholar] [CrossRef]
- Perry, L.M. A tentative revision of Alchemilla § Lachemilla. Contrib. Gray Herb. Harv. Univ. 1929, 84, 1–57. [Google Scholar] [CrossRef]
- Ergene, B.; Bahadir Acikara, Ö.; Bakar, F.; Saltan, G.; Nebioǧlu, S. Antioxidant activity and phytochemical analysis of Alchemilla persica Rothm. Ankara Univ. Eczac. Fak. Derg. 2010, 39, 145–154. [Google Scholar] [CrossRef]
- Available online: http://theplantlist.org/1.1/browse/A/Rosaceae/Alchemilla/ (accessed on 31 August 2022).
- Ozbek, H.; Acikara, O.B.; Keskin, I.; Kirmizi, N.I.; Ozbilgin, S.; Oz, B.E.; Kurtul, E.; Ozrenk, B.C.; Tekin, M.; Saltan, G. Evaluation of hepatoprotective and antidiabetic activity of Alchemilla mollis. Biomed. Pharmacother. 2017, 86, 172–176. [Google Scholar] [CrossRef]
- Afshar, F.H.; Maggi, F.; Ferrari, S.; Peron, G.; Dall’Acqua, S. Secondary metabolites of Alchemilla persica growing in Iran (East Azarbaijan). Nat. Prod. Commun. 2015, 10, 1705–1708. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Park, Y.G.; Yun, M.S.; Seol, J.W. Effect of herbal mixture composed of Alchemilla vulgaris and Mimosa on wound healing process. Biomed. Pharmacother. 2018, 106, 326–332. [Google Scholar] [CrossRef]
- Jarić, S.; Mačukanović-Jocić, M.; Djurdjević, L.; Mitrović, M.; Kostić, O.; Karadžić, B.; Pavlović, P. An ethnobotanical survey of traditionally used plants on Suva planina mountain (south-eastern Serbia). J. Ethnopharmacol. 2015, 175, 93–108. [Google Scholar] [CrossRef]
- Masullo, M.; Montoro, P.; Mari, A.; Pizza, C.; Piacente, S. Medicinal plants in the treatment of women’s disorders: Analytical strategies to assure quality, safety and efficacy. J. Pharm. Biomed. 2015, 113, 189–211. [Google Scholar] [CrossRef]
- Karaoglan, E.S.; Bayir, Y.; Albayrak, A.; Toktay, E.; Ozgen, U.; Kazaz, C.; Kahramanlar, A.; Cadirci, E. Isolation of major compounds and gastroprotective activity of Alchemilla caucasica on indomethacin induced gastric ulcers in rats. Eurasian J. Med. 2020, 52, 249–253. [Google Scholar] [CrossRef]
- Boroja, T.; Mihailović, V.; Katanić, J.; Pan, S.P.; Nikles, S.; Imbimbo, P.; Monti, D.M.; Stanković, N.; Stanković, M.S.; Bauer, R. The biological activities of roots and aerial parts of Alchemilla vulgaris L. S. Afr. J. Bot. 2018, 116, 175–184. [Google Scholar] [CrossRef]
- European Pharmacopoeia 6.0 (Volume 2) Alchemillae herba; Druckerei C. H. Beck: Nördlingen, Germany, 2008; p. 1123.
- Ondrejovıč, M.; Ondrıgová, Z.; Kubincová, J. Isolation of antioxidants from Alchemilla xanthochlora. Nova Biotechnol. Chim. 2009, 9, 313–318. [Google Scholar] [CrossRef]
- Usta, C.; Yildirim, A.B.; Turker, A.U. Antibacterial and antitumour activities of some plants grown in Turkey. Biotechnol. Biotechnol. Equip. 2014, 28, 306–315. [Google Scholar] [CrossRef]
- Karaoglan, E.S.; Yilmaz, B. Identification of bioactive compounds of Alchemilla caucasica using gas chromatography-mass spectrometry. Int. J. Pharmacogn. 2018, 5, 287–293. [Google Scholar]
- Shrivastava, R.; Cucuat, N.; John, G.W. Effects of Alchemilla vulgaris and glycerine on epithelial and myofibroblast cell growth and cutaneus lesion healing in rats. Phytother. Res. 2007, 21, 369–373. [Google Scholar] [CrossRef]
- Lattanzio, V. Phenolic compounds: Introduction 50. Nat. Prod. 2013, 1543–1580. [Google Scholar] [CrossRef]
- Harborne, J.B. Plant phenolics. In Encyclopedia of Plant Physiology. Secondary Plant Products; Bell, E.A., Charlwood, B.V., Eds.; Springer: Berlin, Germany, 1980; Volume 8, pp. 329–402. [Google Scholar]
- Shilova, I.V.; Suslov, N.I.; Samylina, I.A.; Baeva, V.M.; Lazareva, N.B.; Mazin, E.V. Neuroprotective properties of common lady’s mantle infusion. Pharm. Chem. J. 2020, 53, 1059–1062. [Google Scholar] [CrossRef]
- D’Agostino, M.; Dini, I.; Ramundo, E.; Senatore, F. Flavonoid glycosides of Alchemilla vulgaris L. Phyther. Res. 1998, 12, 1997–1998. [Google Scholar] [CrossRef]
- Felser, C.; Schimmer, O. Flavonoid glycosides from Alchemilla speciosa. Planta Med. 1999, 65, 1987–1989. [Google Scholar] [CrossRef]
- Kaya, B.; Menemen, Y.; Saltan, F.Z. Flavonoid compounds identified in Alchemilla L. species collected in the north-eastern Black Sea region of Turkey. Afr. J. Tradit. Complement. Altern. Med. 2012, 9, 418–425. [Google Scholar] [CrossRef] [Green Version]
- Kaya, B.; Menemen, Y.; Saltan, F.Z. Flavonoids in the endemic species of Alchemilla L., (section Alchemilla L. subsection Calycanthum Rothm. Ser. Elatae Rothm.) from north-east Black Sea region in Turkey. Pakistan J. Bot. 2012, 44, 595–597. [Google Scholar]
- Lamaison, J.L.; Carnat, A.; Petitjean-Freytet, C.; Carnat, A.P. Quercetin-3-glucuronide, the main flavonoid of Lady’s Mantle, Alchemilla xanthochlora Rothm. (Rosaceae). Ann. Pharm. Fr. 1991, 49, 186–189. [Google Scholar]
- Renda, G.; Özel, A.; Barut, B.; Korkmaz, B.; Šoral, M.; Kandemir, Ü.; Liptaj, T. Bioassay guided isolation of active compounds from Alchemilla barbatiflora Juz. Rec. Nat. Prod. 2018, 12, 76–85. [Google Scholar] [CrossRef]
- Trendafilova, A.; Todorova, M.; Gavrilova, A.; Vitkova, A. Flavonoid glycosides from Bulgarian endemic Alchemilla achtarowii Pawl. Biochem. Syst. Ecol. 2012, 43, 156–158. [Google Scholar] [CrossRef]
- Trendafilova, A.; Todorova, M.; Nikolova, M.; Gavrilova, A.; Vitkova, A. Flavonoid constituents and free radical scavenging activity of Alchemilla mollis. Nat. Prod. Commun. 2011, 6, 1851–1854. [Google Scholar] [CrossRef] [Green Version]
- Mandrone, M.; Coqueiro, A.; Poli, F.; Antognoni, F.; Choi, Y.H. Identification of a collagenase-inhibiting flavonoid from Alchemilla vulgaris using NMR-based metabolomics. Planta Med. 2018, 84, 941–946. [Google Scholar] [CrossRef] [Green Version]
- Fraisse, D.; Carnat, A.; Carnat, A.P.; Lamaison, J.L. Standardisation des parties aériennes d’alchémille. Ann. Pharm. Fr. 1999, 57, 401–405. [Google Scholar]
- Fraisse, D.; Heitz, A.; Carnat, A.; Carnat, A.P.; Lamaison, J.L. Quercetin 3-arabinopyranoside, a major flavonoid compound from Alchemilla xanthochlora. Fitoterapia 2000, 71, 463–464. [Google Scholar] [CrossRef]
- Neagu, E.; Paun, G.; Albu, C.; Radu, G.L. Assessment of acetylcholinesterase and tyrosinase inhibitory and antioxidant activity of Alchemilla vulgaris and Filipendula ulmaria extracts. J. Taiwan Inst. Chem. Eng. 2015, 52, 1–6. [Google Scholar] [CrossRef]
- Denev, P.; Kratchanova, M.; Ciz, M.; Lojek, A.; Vasicek, O.; Blazheva, D.; Nedelcheva, P.; Vojtek, L.; Hyrsl, P. Antioxidant, antimicrobial and neutrophil-modulating activities of herb extracts. Acta Biochim. Pol. 2014, 61, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Akkol, E.K.; Demirel, M.A.; Acıkara, O.B.; Süntar, I.; Ergene, B.; Ilhan, M.; Ozbilgin, S.; Saltan, G.; Keleş, H.; Tekin, M. Phytochemical analyses and effects of Alchemilla mollis (Buser) Rothm. and Alchemilla persica Rothm. in rat endometriosis model. Arch. Gynecol. Obstet. 2015, 292, 619–628. [Google Scholar] [CrossRef]
- Duckstein, S.M.; Lotter, E.M.; Meyer, U.; Lindequist, U.; Stintzing, F.C. Phenolic constituents from Alchemilla vulgaris L. and Alchemilla mollis (Buser) Rothm. at different dates of harvest. Zeitschrift Naturforsch. Sect. C J. Biosci. 2012, 67, 529–540. [Google Scholar] [CrossRef] [Green Version]
- Filippova, E.I. Antiviral activity of Lady’s Mantle (Alchemilla vulgaris L.) extracts against Orthopoxviruses. Bull. Exp. Biol. Med. 2017, 163, 374–377. [Google Scholar] [CrossRef]
- Karatoprak, G.S.; Ilgun, S.; Kosar, M. Phenolic composition, anti-inflammatory, antioxidant, and antimicrobial activities of Alchemilla mollis (Buser) Rothm. Chem. Biodivers. 2017, 14, e1700150. [Google Scholar] [CrossRef]
- El-Hadidy, E.M.; Refat, O.G.; Halaby, M.S.; Elmetwaly, E.M.; Omar, A.A. Effect of Lion’s Foot (Alchemilla vulgaris) on liver and renal functions in rats induced by CCl4. Food Nutr. Sci. 2018, 09, 46–62. [Google Scholar] [CrossRef]
- Tasić-Kostov, M.; Arsić, I.; Pavlović, D.; Stojanović, S.; Najman, S.; Naumović, S.; Tadić, V. Towards a modern approach to traditional use: In vitro and in vivo evaluation of Alchemilla vulgaris L. gel wound healing potential. J. Ethnopharmacol. 2019, 238, 111789. [Google Scholar] [CrossRef]
- Vlaisavljević, S.; Jelača, S.; Zengin, G.; Mimica-Dukić, N.; Berežni, S.; Miljić, M.; Stevanović, Z.D. Alchemilla vulgaris agg. (Lady’s mantle) from central Balkan: Antioxidant, anticancer and enzyme inhibition properties. RSC Adv. 2019, 9, 37474–37483. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos Szewczyk, K.; Pietrzak, W.; Klimek, K.; Gogacz, M. LC-ESI-MS/MS identification of biologically active phenolics in different extracts of Alchemilla acutiloba Opiz. Molecules 2022, 27, 621. [Google Scholar] [CrossRef]
- Radović, J.; Suručić, R.; Niketić, M.; Kundaković-Vasović, T. Alchemilla viridiflora Rothm.: The potent natural inhibitor of angiotensin I converting enzyme. Moll. Cell. Biochem. 2022, 477, 1893–1903. [Google Scholar] [CrossRef]
- Geiger, C.; Scholz, E.; Rimpler, H. Ellagitannins from Alchemilla xanthochlora and Potentilla erecta. Planta Med. 1994, 60, 384–385. [Google Scholar] [CrossRef]
- Nikolova, M.; Dincheva, I.; Vitkova, A.; Badjakov, I. Phenolic acids and free radical scavenging activity of Bulgarian endemic—Alchemilla jumrukczalica Pawl. Planta Med. 2011, 77, 802–804. [Google Scholar] [CrossRef]
- Ilić-Stojanović, S.; Nikolić, V.; Kundaković, T.; Savić, I.; Savić-Gajić, I.; Jocić, E.; Nikolić, L. Thermosensitive hydrogels for modified release of ellagic acid obtained from Alchemilla vulgaris L. extract. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 553–563. [Google Scholar] [CrossRef] [Green Version]
- Condrat, D.; Mosoarca, C.; Zamfir, A.D.; Crişan, F.; Szabo, M.R.; Lupea, A.X. Qualitative and quantitative analysis of gallic acid in Alchemilla vulgaris, Allium ursinum, Acorus calamus and Solidago virga-aurea by chip-electrospray ionization mass spectrometry and high performance liquid chromatography. Cent. Eur. J. Chem. 2010, 8, 530–535. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Inci, Ş.; Eren, A.; Kirbağ, S. Determination of antimicrobial and antioxidant activity of Alchemilla alpina L. Turk J. Food Agric. Sci. 2021, 9, 2260–2264. [Google Scholar]
- Hazar, A.; Raed, A.; Nidal, J.; Motasem, M. Evaluation of phytochemical and pharmacological activities of Taraxacum syriacum and Alchemilla arvensis. Jordan J. Pharm. Sci. 2021, 14, 457–471. [Google Scholar]
- Vitkova, A.; Nikolova, M.; Delcheva, M.; Tashev, A.; Gavrilova, A.; Aneva, I.; Dimitrov, D. Influence of species composition on total phenolic content and antioxidant properties of Herba Alchemillae. Bulg. J. Agric. Sci. 2015, 21, 990–997. [Google Scholar]
- Acet, T.; Özcan, K. Determination of antioxidant and antimicrobial properties of lady’s mantle (Alchemilla ellenbergiana) extracts. GÜFBED/GUSTIJ 2018, 8, 113–121. [Google Scholar] [CrossRef]
- Uçar Sözmen, E.; Eruygur, N.; Akpolat, A.; Çetin, M.D.; Durukan, H.; Demirbaş, A.; Karaköy, T. Sivas İli Doğal Florasından Toplanan Sarı Kantaron (Hypericum scabrum L.) ve Aslan Pençesi (Alchemilla mollis (Buser) Rothm) Bitkilerinin Bazı Kalite Kriterlerinin Belirlenmesi. J. Inst. Sci. Tech. 2020, 10, 1410–1418. [Google Scholar] [CrossRef]
- Stanilova, M.; Gorgorov, R.; Trendafilova, A.; Nikolova, M.; Vitkova, A. Influence of nutrient medium composition on in vitro growth, polyphenolic content and antioxidant activity of Alchemilla mollis. Nat. Prod. Commun. 2012, 7, 761–766. [Google Scholar]
- Hwang, E.; Ngo, H.T.T.; Seo, S.A.; Park, B.; Zhang, M.; Yi, T.-H. Protective effect of dietary Alchemilla mollis on UVB-irradiated premature skin aging through regulation of transcription factor NFATc1 and Nrf2/ARE pathways. Phytomedicine 2018, 39, 125–136. [Google Scholar] [CrossRef]
- Karatoprak, G.S.; Ilgun, S.; Kosar, M. Antiradical, antimicrobial and cytotoxic activity evaluations of Alchemilla mollis (Buser) Rothm. Int. J. Herb. Med. 2018, 6, 33–38. [Google Scholar]
- Nedyalkov, P.; Kaneva, M.; Mihaylova, D.; Kostov, G.; Kemilev, S. Influence of the ethanol concentration on the antioxidant capacity and polyphenol content of Alchemilla mollis extracts. Comptes Rendus Acad. Bulg. Sci. Sci. Math. Nat. 2015, 68, 1491–1502. [Google Scholar]
- Shafaghat, A. Chemical constituents, antioxidant and antibacterial activities of the hexane extract of Alchemilla sericata Reichenb. J. Food Biochem. 2019, 43, 9–14. [Google Scholar] [CrossRef]
- Oktyabrsky, O.; Vysochina, G.; Muzyka, N.; Samoilova, Z.; Kukushkina, T.; Smirnova, G. Assessment of antioxidant activity of plant extracts using microbial test systems. J. Appl. Microbiol. 2009, 106, 1175–1183. [Google Scholar] [CrossRef]
- Boroja, T.; Mihailović, V.; Katanić, J.; Stanković, N.; Mladenović, M. Alchemilla vulgaris L. as a potential source of natural antioxidants. Zb. Rad. 2014, 19, 233–237. [Google Scholar]
- Hamid, K.; Azman, N.; Sharaani, S.; Zain, N.; Ahmad, N.; Sulaiman, A.; Chik, S.; Ishak, W.; Pablos, M. Alchemilla vulgaris and Filipendula ulmaria extracts as potential natural preservatives in beef patties. Malaysian J. Anal. Sci. 2017, 21, 986–995. [Google Scholar] [CrossRef] [Green Version]
- Tadić, V.; Krgović, N.; Žugić, A. Lady’s mantle (Alchemilla vulgaris L., Rosaceae): A review of traditional uses, phytochemical profile, and biological properties. Lek. Sirovine 2020, 40, 66–74. [Google Scholar] [CrossRef]
Compound | R | R1 | R2 | R3 | MW (g/mol) |
---|---|---|---|---|---|
1 | OH | H | H | H | 286 |
2 | O-glc | H | H | H | 448 |
3 | p-coumaroyl-robinobioside | H | H | H | 918 |
4 | xyl | H | H | H | 418 |
5 | 2″-O-α-L-rha-β-D-glc | H | H | H | 594 |
6 | glcA | H | H | H | 462 |
7 | 6″-O-(E)-p-coumaroyl)glc | H | H | H | 594 |
8 | O-rha-glc | H | H | H | 594 |
51 | O-rha | H | rha | H | 578 |
53 | 2-p-coumaroyl-glc | H | H | H | 594 |
Compound | R1 | R2 | R3 | R4 | R5 | R6 | R7 | MW (g/mol) |
---|---|---|---|---|---|---|---|---|
9 | H | OH | H | H | OH | H | H | 302 |
10 | H | H | H | OH | O-α-L-ara | H | H | 434 |
11 | H | OH | H | H | O- glc(6→1)rha | H | H | 610 |
12 | H | H | H | OH | O-glucuronide | H | H | 478 |
13 | H | OH | H | H | O- gal | H | H | 464 |
14 | H | OH | H | H | O- glc | H | H | 464 |
15 | H | OH | H | H | O- rha | H | H | 448 |
19 | H | OH | H | H | O-β-D-xyl-(2→1)- β-D-glc | H | H | 596 |
20 | H | OH | H | H | O-β-D-xyl-(2→1)- β-D-glc | glc | H | 758 |
21 | H | OH | H | H | O- α-D-ara-furanoside | H | H | 434 |
54 | H | OH | H | H | OH | CH3 | H | 316 |
56 | H | OH | H | H | O-ara-furanoside | H | H | 434 |
Compound | R1 | R2 | R3 | R4 | R5 | R6 | R7 | MW (g/mol) |
---|---|---|---|---|---|---|---|---|
24 | H | OH | H | H | H | H | H | 286 |
25 | H | OH | H | H | H | H | C-β-D-glc | 448 |
26 | H | OH | H | H | H | O-β-D-glc | H | 448 |
27 | H | OH | H | H | H | rha-glc | H | 594 |
28 | H | OCH3 | H | H | OH | H | H | 316 |
29 | H | OCH3 | H | H | O-glc | H | H | 478 |
30 | H | OCH3 | H | H | O-rha glc | H | H | 624 |
42 | H | OCH3 | H | H | H | H | H | 300 |
Compound | R1 | R2 | R3 | MW (g/mol) |
---|---|---|---|---|
34 | OH | H | OH | 290 |
35 | OH | H | OH | 290 |
Compound | R1 | R2 | R3 | R4 | R5 | R6 | MW (g/mol) |
---|---|---|---|---|---|---|---|
31 | OH | H | H | H | H | OH | 270 |
32 | OH | H | H | glc | H | OH | 432 |
33 | OH | H | glc | H | H | OH | 432 |
57 | OH | H | H | H | H | OCH3 | 284 |
Compound | R1 | R2 | R3 | R4 | MW (g/mol) |
---|---|---|---|---|---|
43 | H | H | OH | H | 272 |
44 | H | OH | OH | H | 288 |
Constituent Name | Species | Part of Plant | References |
---|---|---|---|
1. Kaempferol | A. acutiloba | aerial parts, roots | [40] |
A. vulgaris | aerial parts | [31,35,37,38,39] | |
2. Astragalin | A. acutiloba | aerial parts, roots | [40] |
A. achtarowii | aerial parts | [26] | |
A. speciosa | leaves | [21] | |
A. viridiflora | aerial parts | [41] | |
A. vulgaris | aerial parts | [38,39] | |
3. Variabiloside G | A. achtarowii | aerial parts | [26] |
4. Kaempferol-3-O-β-D-xylopyranoside | A. barbatiflora | aerial parts | [25] |
5. Kaempferol 3-O-β-(2″-O-α-L-rhamnopyranosyl)-glucopyranoside uronic acid | A. speciosa | leaves | [21] |
6. Kaempferol 3-O-β-D-glucuronide | A. speciosa | leaves | [21] |
7. Kaempferol 3-O-β-D-(6”-O-(E)-p-coumaroyl) glucopyranoside | A. achtarowii | aerial parts | [26] |
A. barbatiflora | aerial parts | [25] | |
A. mollis | aerial parts | [27] | |
A. speciosa | aerial parts | [21] | |
A. viridiflora | aerial parts | [41] | |
A. vulgaris | aerial parts | [20,38] | |
8. Nicotiflorin | A. acutiloba | aerial parts, roots | [40] |
A. persica | aerial parts | [6] | |
9. Quercetin | A. acutiloba | aerial parts, roots | [40] |
A. vulgaris | aerial parts leaves | [31,35,37,38,39] | |
10. Guaijaverin | A. achtarowii | aerial parts | [26] |
A. barbatiflora | aerial parts | [25] | |
A. xanthochlora | aerial parts | [30] | |
11. Rutin | A. acutiloba | aerial parts | [40] |
A. hirtipedicellata A. procerrima A. sericata A. stricta | leaves | [22] | |
A. glabra | aerial parts | [32] | |
A. bursensis A. cimilensis A. hirsutiflora A. ikizdereensis A. orduensis A. oriturcica | aerial parts | [23] | |
A. mollis | aerial parts | [27,36] | |
A. speciosa | aerial parts | [21] | |
A. viridiflora | aerial parts | [41] | |
A. vulgaris | aerial parts | [20,31,35,37,38,39] | |
12. Miquelianin | A. barbatiflora | aerial parts | [25] |
A. caucasica | aerial parts | [10] | |
A. achtarowii | aerial parts | [26] | |
A. mollis | aerial parts | [27] | |
A. persica | aerial parts | [6] | |
A. speciosa | aerial parts | [21] | |
A. viridiflora | aerial parts | [41] | |
A. vulgaris | aerial parts | [28] | |
A. xanthochlora | aerial parts | [24] | |
13. Hyperoside | A. achtarowii | aerial parts | [26] |
A. acutiloba | aerial parts, roots | [40] | |
A. hirtipedicellata A. procerrima A. sericata A. stricta | leaves | [22] | |
A. barbatiflora | aerial parts | [25] | |
A. coriacea A. filicaulis A. glabra | aerial parts | [29] | |
A. armeniaca A. bursensis A. cimilensis A. hirsutiflora A. ikizdereensis A. orduensis A. oriturcica | aerial parts | [23] | |
A. mollis | aerial parts | [27,33] | |
A. persica | aerial parts | [33] | |
A. speciosa | leaves | [21] | |
A. viridiflora | aerial parts | [41] | |
A. vulgaris | aerial parts | [38] | |
14. Isoquercitrin | A. achtarowii | aerial parts | [26] |
A. acutiloba | aerial parts, roots | [40] | |
A. hirtipedicellata A. procerrima A. sericata A. stricta | leaves | [22] | |
A. bursensis A. cimilensis A. erzincanensis A. orduensis A. oriturcica | aerial parts | [23] | |
A. mollis | aerial parts | [27,33] | |
A. persica | aerial parts | [33] | |
A. speciosa | aerial parts | [21] | |
A. viridiflora | aerial parts | [41] | |
A. vulgaris | aerial parts | [20,31,38] | |
15. Quercitrin | A. acutiloba | aerial parts, roots | [40] |
A. hirtipedicellata A. procerrima A. sericata A. stricta | leaves | [22] | |
A. hirsutiflora A. orduensis | aerial parts | [23] | |
A. speciosa | aerial parts | [21] | |
A. vulgaris | aerial parts | [39] | |
16. Methyl-quercetin glucuronide | A. mollis | leaves | [34] |
A. viridiflora | aerial parts | [41] | |
17. Quercetin hexoside | A. mollis | leaves | [34] |
18. Quercetin 3-O-β-(2″-O-α-L-rhamnopyranosyl)-glucopyranoside uronic acid | A. speciosa | leaves | [21] |
19. Quercetin 3-O-β-D-sambubioside | A. speciosa | leaves | [21] |
20. Quercetin 3-O-β-ʋ-sambubioside-7-O-β-D-glucoside | A. speciosa | leaves | [21] |
21. Quercetin-3-O-α-D-arabinofuranoside | A. vulgaris | aerial parts | [20] |
22. Quercetin-feruloyl hexose | A. vulgaris | leaves | [34] |
23. Quercetin hexoside-deoxyhexoside | A. vulgaris | leaves | [34] |
24. Luteolin | A. acutiloba | aerial parts, roots | [40] |
A. vulgaris | aerial parts | [31,37,38,39] | |
25. Orientin | A. hirtipedicellata A. procerrima A. sericata A. stricta | leaves | [22] |
A. armeniaca A. cimilensis A. hirsutiflora A. ikizdereensis A. orduensis | aerial parts | [23] | |
26. Cynaroside | A. mollis | aerial parts | [36] |
A. speciosa | aerial parts | [21] | |
A. vulgaris | aerial parts | [38,39] | |
27. Scolymoside | A. speciosa | aerial parts | [21] |
28. Isorhamnetin | A. acutiloba | aerial parts, roots | [40] |
29. Isorhamnetin-3-glucoside | A. acutiloba | aerial parts | [40] |
30. Narcissoside | A. acutiloba | aerial parts, roots | [40] |
31. Apigenin | A. caucasica | aerial parts | [10] |
A. vulgaris | aerial parts leaves | [37,39] | |
32. Vitexin | A. hirtipedicellata A. procerrima A. sericata A. stricta | leaves | [22] |
A. armeniaca A. erzincanensis A. ikizdereensis A. orduensis | aerial parts | [23] | |
33. Cosmosiin | A. mollis | aerial parts | [36] |
A. vulgaris | aerial parts | [38,39] | |
leaves | [37] | ||
34. Catechin | A. barbatiflora | aerial parts | [25] |
A. caucasica | aerial parts | [10] | |
A. glabra | aerial parts | [32] | |
A. mollis | aerial parts | [36] | |
A. persica | aerial parts | [6] | |
A. vulgaris | aerial parts leaves roots | [35,37,39] | |
35. Epicatechin | A. glabra | aerial parts | [32] |
A. mollis | aerial parts | [36] | |
A. persica | aerial parts | [6] | |
A. vulgaris | aerial parts leaves | [31,37] | |
36. Rhodiolgin | A. mollis | aerial parts | [27] |
37. Gossypetin-3-O-β-D-galactopyranosyl-7-O-α-L-rhamnopyranoside | A. mollis | aerial parts | [27] |
38. Myricetin | A. vulgaris | aerial parts | [31] |
39. Genistein | A. vulgaris | aerial parts | [31,39] |
40. Daidzein | A. vulgaris | aerial parts | [31] |
41. Morin | A. vulgaris | aerial parts | [38] |
42. Chrysoeriol | A. vulgaris | aerial parts | [39] |
43. Naringenin | A. vulgaris | aerial partsleaves | [37,39] |
44. Eriodictyol | A. acutiloba | aerial parts | [40] |
45. Sinocrassoside D2 | A. mollis | aerial parts | [27] |
46. Luteolin 6-arabinose 8-glucose | A. vulgaris | leaves | [37] |
47. Luteolin 6-glucose 8-arabinose | A. vulgaris | leaves | [37] |
48. Apigenin 6-arabinose 8-galactose | A. vulgaris | leaves | [37] |
49. Apigenin 6-rhamnose 8-glucose | A. vulgaris | leaves | [37] |
50. Apigenin 7-O-neohesperidoside | A. vulgaris | leaves | [37] |
51. Kaempferol 3,7-dirhamoside | A. vulgaris | leaves | [37] |
52. Hesperetin | A. vulgaris | leaves | [37] |
53. Kaempferol 3-(2-p-comaroyl)glucose | A. vulgaris | leaves | [37] |
54. Rhamnetin | A. vulgaris | leaves | [37] |
55. Aromadendrin glucoside | A. persica | aerial parts | [6] |
56. Avicularin | A. vulgaris | aerial parts | [35] |
57. Acacetin | A. vulgaris | leaves | [37] |
58. Agrimoniin | A. mollis | leaves | [34] |
A. persica | aerial parts | [6] | |
A. viridiflora | aerial parts | [41] | |
A. vulgaris | leaves | [34] | |
A. xanthochlora | aerial parts | [42] | |
59. Pedunculagin | A. mollis | leaves | [34] |
A. persica | aerial parts | [6] | |
A. vulgaris | leaves | [34] | |
A. viridiflora | aerial parts | [41] | |
A. xanthochlora | aerial parts | [42] | |
60. Laevigatin F | A. xanthochlora | aerial part | [42] |
61. Castalagin/vescalagin isomer | A. mollis | leaves | [34] |
A. vulgaris | leaves | [34] | |
62. Galloyl-HHDP hexose | A. mollis | leaves | [34] |
A. persica | aerial parts | [6] | |
A. vulgaris | leaves | [34] | |
63. Trigalloyl hexose | A. mollis | leaves | [34] |
64. Sanguiin | A. mollis | leaves | [34] |
A. persica | aerial parts | [6] | |
A. viridiflora | aerial parts | [41] | |
A. vulgaris | leaves | [34] | |
65. Methyl gallate | A. mollis | aerial parts | [36] |
A. persica | aerial parts | [6] | |
66. Casuarictin | A. persica | aerial parts | [6] |
67. Digalloyl-galloyl galloside | A. persica | aerial parts | [6] |
68. HHDP-hexoside | A. viridiflora | aerial parts | [41] |
69. Brevifolincarboxylic acid | A. viridiflora | aerial parts | [41] |
70. Tellimagrandin I | A. viridiflora | aerial parts | [41] |
71. Tellimagrandin II | A. viridiflora | aerial parts | [41] |
72. Benzoic acid | A. vulgaris | leaves | [37,43] |
A. jumrukczalica | leaves | [43] | |
73. Caffeic acid | A. acutiloba | aerial parts, roots | [40] |
A. glabra | aerial parts | [32] | |
A. jumrukczalica | leaves | [43] | |
A. mollis | aerial parts | [36] | |
A. vulgaris | aerial parts leaves | [37,39,43] | |
74. Chlorogenic acid | A. glabra | aerial parts | [32] |
A. mollis | leaves | [34] | |
A. persica | aerial parts | [6] | |
A. vulgaris | aerial parts leaves | [31,34,37,39] | |
75. 2,5-Dihydroxybenzoic acid | A. vulgaris | aerial parts | [39] |
76. 3,4-Dihydroxybenzoic acid | A. glabra | aerial parts | [32] |
77. Ellagic acid | A. mollis | leaves | [34] |
A. persica | aerial parts | [6] | |
A. vulgaris | aerial parts leaves | [31,38,44] [31,34,37] | |
78. Ferulic acid | A. acutiloba | aerial parts | [40] |
A. vulgaris | aerial parts leaves | [37,38,39] | |
79. Gallic acid | A. acutiloba | aerial parts roots | [40] |
A. glabra | aerial parts | [32] | |
A. jumrukczalica | leaves | [43] | |
A. mollis | aerial parts leaves | [34,36] | |
A. persica | aerial parts | [6] | |
A. vulgaris | aerial parts leaves roots | [31,34,35] [37,39,43] [45] | |
80. Gentisic acid | A. acutiloba | aerial parts, roots | [40] |
A. jumrukczalica | leaves | [43] | |
A. mollis | aerial parts | [36] | |
A. vulgaris | leaves | [43] | |
81. Protocatechuic acid | A. acutiloba | aerial parts, roots | [40] |
A. jumrukczalica | leaves | [43] | |
A. vulgaris | aerial parts leaves | [37,39,43] | |
82. p-Coumaric acid | A. acutiloba | aerial parts roots | [40] |
A. jumrukczalica | leaves | [43] | |
A. vulgaris | aerial parts leaves | [31,37,39,43] | |
83. 4-Hydroxybenzoic acid | A. acutiloba | aerial parts roots | [40] |
A. jumrukczalica | leaves | [43] | |
A. vulgaris | aerial parts leaves | [37,39,43] | |
84. Mandelic acid | A. jumrukczalica | leaves | [43] |
A. vulgaris | leaves | [43] | |
85. 3,4,5-Methoxycinnamic acid | A. vulgaris | leaves | [37] |
86. β-Resorcylic acid | A. jumrukczalica | leaves | [43] |
A. vulgaris | leaves | [43] | |
87. Rosmarinic acid | A. acutiloba | aerial parts roots | [40] |
A. vulgaris | aerial parts leaves | [31,37] | |
88. Salicylic acid | A. acutiloba | aerial parts roots | [40] |
A. jumrukczalica | leaves | [43] | |
A. vulgaris | leaves | [37,43] | |
89. Sinapic acid | A. jumrukczalica | leaves | [43] |
A. vulgaris | aerial parts leaves | [31,43] | |
90. Syringic acid | A. acutiloba | aerial parts roots | [40] |
A. jumrukczalica | leaves | [43] | |
A. vulgaris | leaves | [43] | |
91. Trans-cinnamic acid | A. jumrukczalica | leaves | [43] |
A. vulgaris | leaves | [37,43] | |
92. 3,4,5-Trimethoxymandelic acid | A. jumrukczalica | leaves | [43] |
A. vulgaris | leaves | [43] | |
93. Vanillic acid | A. acutiloba | aerial parts roots | [40] |
A. jumrukczalica | leaves | [43] | |
A. vulgaris | leaves | [37,43] | |
94. Quinic acid | A. vulgaris | aerial parts | [39] |
Compound | R1 | R2 | R3 | R4 | R5 | MW |
---|---|---|---|---|---|---|
73 | H | OH | OH | H | H | 180 |
78 | H | OCH3 | H | OH | H | 194 |
82 | H | H | OH | H | H | 164 |
85 | H | OCH3 | OCH3 | OCH3 | H | 238 |
89 | H | OCH3 | OH | OCH3 | H | 224 |
91 | H | H | H | H | H | 148 |
Compound | R1 | R2 | R3 | R4 | R5 | MW |
---|---|---|---|---|---|---|
72 | H | H | H | H | H | 122 |
79 | H | OH | OH | OH | H | 170 |
80 | OH | H | H | OH | H | 154 |
81 | H | OH | OH | H | H | 154 |
83 | H | H | OH | H | H | 138 |
86 | OH | H | OH | H | H | 154 |
88 | OH | H | H | H | H | 138 |
90 | OH | OCH3 | OH | OCH3 | H | 198 |
93 | H | OCH3 | OH | H | H | 168 |
Species | Plant Part/Extract | Antioxidant Assay | Antioxidant Effect | References |
---|---|---|---|---|
A. acutiloba | aerial parts, 60% methanol | DPPH | IC50 = 18.69 µg/mL DE | [40] |
aerial parts, 60% methanol | ABTS | IC50 = 6.17 µg/mL DE | ||
aerial parts, 60% methanol | CHEL | IC50 = 21.60 µg/mL DE | ||
roots, 60% methanol | DPPH | IC50 = 29.87 µg/mL DE | ||
roots, 60% methanol | ABTS | IC50 = 14.29 µg/mL DE | ||
roots, 60% methanol | CHEL | IC50 = 25.76 µg/mL DE | ||
aerial parts, butanol fraction | DPPH | IC50 = 8.96 µg/mL DE | ||
aerial parts, butanol fraction | ABTS | IC50 = 1.42 µg/mL DE | ||
aerial parts, butanol fraction | CHEL | IC50 = 11.43 µg/mL DE | ||
roots, butanol fraction | DPPH | IC50 = 12.08 µg/mL DE | ||
roots, butanol fraction | ABTS | IC50 = 8.78 µg/mL DE | ||
roots, butanol fraction | CHEL | IC50 = 12.33 µg/mL DE | ||
aerial parts, diethyl acetate fraction | DPPH | IC50 = 8.83 µg/mL DE | ||
aerial parts, diethyl acetate fraction | ABTS | IC50 = 6.54 µg/mL DE | ||
aerial parts, diethyl acetate fraction | CHEL | IC50 = 18.89 µg/mL DE | ||
roots, diethyl acetate fraction | DPPH | IC50 = 15.37 µg/mL DE | ||
roots, diethyl acetate fraction | ABTS | IC50 =10.39 µg/mL DE | ||
roots, diethyl acetate fraction | CHEL | IC50 = 19.30 µg/mL DE | ||
aerial parts, diethyl ether fraction | DPPH | IC50 = 41.46 µg/mL DE | ||
aerial parts, diethyl ether fraction | ABTS | IC50 = 16.28 µg/mL DE | ||
aerial parts, diethyl ether fraction | CHEL | IC50 = 25.51 µg/mL DE | ||
roots, diethyl ether fraction | DPPH | IC50 = 51.42 µg/mL DE | ||
roots, diethyl ether fraction | ABTS | IC50 = 24.82 µg/mL DE | ||
roots, diethyl ether fraction | CHEL | IC50 = 44.12 µg/mL DE | ||
A. alpina | aerial parts, methanol | DPPH | % Inhibition = 45.4–94.4% | [47] |
A. arvensis | leaves, methanol | DPPH | IC50 = 97.72 µg/mL | [48] |
leaves, hexane | IC50 = 11.22 µg/mL | |||
leaves, acetone | IC50 = 4.86 µg/mL | |||
A. barbatiflora | aerial parts, methanol | DPPH | % Inhibition = 83.44–95.35% | [25] |
aerial parts, hexane fraction | % Inhibition = 18.6–59.62% | |||
aerial parts, chloroform fraction | % Inhibition = 67.17–91.11% | |||
aerial parts, water fraction | % Inhibition = 83.06–97.17% | |||
aerial parts, methanol | SOD | % Inhibition = 83.34–85.83% | ||
aerial parts, hexane fraction | % Inhibition = 9.80% | |||
aerial parts, chloroform fraction | % Inhibition = 12.84–42.73% | |||
aerial parts, water fraction | % Inhibition = 81.07% | |||
aerial parts, methanol | PRA | Absorbance 0.932–1.280 | ||
aerial parts, hexane fraction | Absorbance 0.355–0.612 | |||
aerial parts, chloroform fraction | Absorbance 0.640–0.820 | |||
aerial parts, water fraction | Absorbance 1.158–1.516 | |||
aerial parts, methanol | FRAP | 44.32 mg BHAE/g DE | ||
aerial parts, chloroform fraction | 15.76 mg BHAE/g DE | |||
aerial parts, water fraction | 93.46 mg BHAE/g DE | |||
A. bulgarica | aerial parts, 80% methanol | DPPH | IC50 = 75.63 µg/mL | [49] |
A. crinita | aerial parts, 80% methanol | DPPH | IC50 = 46.03 µg/mL | [49] |
A. ellenbergiana | aerial parts, hexane | DPPH | IC50 = 7.1 µg/mL | [50] |
A. ellenbergiana | aerial parts, ethanol | DPPH | IC50 = 243.6 µg/mL | [51] |
aerial parts, methanol | IC50 = 243.1 µg/mL | |||
A. erythropoda | aerial parts, 80% methanol | DPPH | IC50 = 30.67 µg/mL | [50] |
A. glabra | aerial parts, 80% acetone in 0.2% formic acid | ORAC | IC50 = 1337 μmol TE/g | [32] |
TRAP | IC50 = 1815 μmol TE/g | |||
HORAC | IC50 = 1999 μmol GAE/g | |||
A. glabra | aerial parts, 80% methanol | DPPH | IC50 = 34.89 µg/mL | [49] |
A. glaucescens | aerial parts, 80% methanol | DPPH | IC50 = 36.10 µg/mL | [49] |
A. jumrukczalica | leaves, 80% methanol | DPPH | IC50 = 12.09 µg/mL | [43] |
A. mollis | shoots grown in vitro on different nutrient media | DPPH | IC50 = 18.6–38.1 μg/mL | [52] |
leaves of ex vitro adapted plants in Bulgarian mountains Vitosha | IC50 = 13.1 μg/mL | |||
one year old in vivo plantsgrown in Bulgarian mountains Viotsha | IC50 = 27.5 μg/mL | |||
one year old in vivo plantsgrown in Bulgarian mountains Rhodopes | IC50 = 22.2 μg/mL | |||
A. mollis | leaves, 50% ethanol | DPPH | IC50 = 42.4 μg/mL | [53] |
ABTS | IC50 = 7.8 μg/mL | |||
A. mollis | aerial parts, water | DPPH | IC50 = 0.264 mg/mL | [54] |
aerial parts, deodorized water | IC50 = 0.146 mg/mL | |||
aerial parts, 50% methanol | IC50 = 0.161 mg/mL | |||
aerial parts, water | ABTS | 0.90 mmol/L/Trolox | ||
aerial parts,deodorized water | 0.4 mmol/L/Trolox | |||
aerial parts,50% methanol | 0.4 mmol/L/Trolox | |||
A. mollis | aerial parts, 70% methanol | DPPH | IC50 = 0.21 mg/mL | [36] |
aerial parts,water | IC50 = 0.24 mg/mL | |||
aerial parts, 70% methanol | ABTS | TEAC = 0.75 mmol/Trolox | ||
aerial parts,water | TEAC = 0.83 mmol/Trolox | |||
aerial parts,hexane, ethyl acetate, methanol, butanol, 70% methanol, water | Inhibition of β-carotene/linoleic acid co-oxidation | no data | ||
A. mollis | dry stalks, aqueous ethanol | FRAP | TEAC = 382.78 mmol TE/g DW | [55] |
dry stalks, aqueous ethanol | CUPRAC | TEAC = 363.79 mmol TE/g DW | ||
dry stalks, aqueous ethanol | DPPH | TEAC = 247.58 mmol TE/g DW | ||
dry stalks, aqueous ethanol | ABTS | TEAC = 308.44 mmol TE/g DW | ||
A. mollis | aerial parts, methanol | DPPH | IC50 = 31.7 μg/mL | [27] |
aerial parts, ethyl acetate fraction | IC50 = 9.8 μg/mL | |||
aerial parts, petroleum fraction | IC50 = > 200 μg/mL | |||
aerial parts, chloroform fraction | IC50 = > 200 μg/mL | |||
aerial parts, water residue fraction | IC50 = 42.5 μg/mL | |||
A. persica | aerial parts, 80% methanol | DPPH | IC50 = 0.055 M | [3] |
roots, 80% methanol | IC50 = 0.151 M | |||
aerial parts, 80% methanol | TBARS | MDA = 5.9 nmol/mL | ||
roots, 80% methanol | MDA = 19.08 nmol/mL | |||
A. monticola | aerial parts, 80% methanol | DPPH | IC50 = 32.72 μg/mL | [49] |
A. obtusa | aerial parts, 80% methanol | DPPH | IC50 = 26.35 μg/mL | [49] |
A. sericata | aerial parts, hexane | DPPH | IC50 = 185 μg/mL | [56] |
A. vulgaris | leaves, 50% ethanol | DPPH | % Inhibition = 71.8% | [57] |
A. vulgaris | aerial parts, methanol | DPPH | IC50 = 5.40 µg/mL | [58] |
ABTS | IC50 = 60.10 µg/mL | |||
A. vulgaris | aerial parts, methanol | DPPH | IC50 = 5.96 µg/mL | [11] |
roots, methanol | IC50 = 11.86 µg/mL | |||
aerial parts, methanol | ABTS | IC50 = 14.80 µg/mL | ||
roots, methanol | IC50 = 32.49 µg/mL | |||
aerial parts, methanol | Hydroxyl radical scavenging activity | IC50 = 13.06 µg/mL | ||
roots, methanol | IC50 = 18.44 µg/mL | |||
aerial parts, methanol | Inhibition of lipid peroxidation | IC50 = 31.91 µg/mL | ||
roots, methanol | IC50 = 475.13 µg/mL | |||
aerial parts, methanol | Reducing power | IC50 = 632.99 mg TE/g DE | ||
roots, methanol | IC50 = 607.52 mg TE/g DE | |||
aerial parts, methanol | Total antioxidant activity | IC50 = 265.62 mg AA/g DE | ||
roots, methanol | IC50 = 316.47 mg AA/g DE | |||
A. vulgaris | leaves, 80% ethanol | DPPH | % inhibition = 131.74% | [37] |
A. vulgaris | roots, 50% ethanol | TEAC | 68.21 mmol TE/g DW | [59] |
FRAP | 40.12 mmol TE/g DW | |||
A. vulgaris | aerial parts, cyclohexane | DPPH | IC50 = 23.12 µg/mL | [44] |
A. vulgaris | aerial parts, 80% methanol | DPPH | 153.30 mg TE/g DE | [39] |
ABTS | 143.55 mg TE/g DE | |||
CUPRAC | 216.14 mg TE/g DE | |||
PRAP | 1.77 mmol TE/g DE | |||
CHEL | 42.58 mg EDTAE/g DE | |||
FRAP | 7899.45 mg AAE/g DE | |||
aerial parts, 70% ethanol | DPPH | 95.99 mg TE/g DE | ||
ABTS | 119.62 mg TE/g DE | |||
CUPRAC | 203.53 mg TE/g DE | |||
PRAP | 1.57 mmol TE/g of DE | |||
CHEL | 42.32 mg EDTAE/g DE | |||
FRAP | 6405.75 mg AAE/g DE | |||
aerial parts, 70% ethyl-acetate | DPPH | 502.56 mg TE/g DE | ||
ABTS | 174.05 mg TE/g DE | |||
CUPRAC | 283.16 mg TE/g DE | |||
PRAP | 2.22 mmol TE/g DE | |||
CHEL | 37.96 mg EDTAE/g DE | |||
FRAP | 8745.31 AAE/g DE | |||
aerial parts, water | DPPH | 89.25 mg TE/g DE | ||
ABTS | 37.50 mg TE/g DE | |||
CUPRAC | 78.56 mg TE/g DE | |||
PRAP | 0.53 mmol TE/g DE | |||
CHEL | 39.23 mg EDTAE/g DE | |||
FRAP | 3240.09 mg AAE/g DE | |||
A. vulgaris | aerial parts, ethanol | DPPH | IC50 = 0.11 μg/mL | [38] |
aerial parts, water | IC50 = 27.22 μg/mL | |||
aerial parts, propylene glycolic | IC50 = 2.88 μL/mL | |||
A. vulgaris | aerial parts, 70% ethanol | DPPH | 87.95% (at 3 mg/mL) and 80.71% (at 1.5 mg/mL) | [31] |
A. vulgaris | leaves, 80% methanol | DPPH | IC50 = 19.62 µg/mL | [43] |
A. xanthochlora | aerial parts, 80% methanol | DPPH | IC50 = 41.78 µg/mL | [49] |
A. xanthochlora | leaves,hexane | TLC-DPPH analysis, DPPH | no data | [13] |
leaves, chloroform | no data | |||
leaves, ethylacetate | no data | |||
leaves, methanol | no data | |||
leaves, water | no data |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanak, S.; Krzemińska, B.; Celiński, R.; Bakalczuk, M.; Dos Santos Szewczyk, K. Phenolic Composition and Antioxidant Activity of Alchemilla Species. Plants 2022, 11, 2709. https://doi.org/10.3390/plants11202709
Kanak S, Krzemińska B, Celiński R, Bakalczuk M, Dos Santos Szewczyk K. Phenolic Composition and Antioxidant Activity of Alchemilla Species. Plants. 2022; 11(20):2709. https://doi.org/10.3390/plants11202709
Chicago/Turabian StyleKanak, Sebastian, Barbara Krzemińska, Rafał Celiński, Magdalena Bakalczuk, and Katarzyna Dos Santos Szewczyk. 2022. "Phenolic Composition and Antioxidant Activity of Alchemilla Species" Plants 11, no. 20: 2709. https://doi.org/10.3390/plants11202709
APA StyleKanak, S., Krzemińska, B., Celiński, R., Bakalczuk, M., & Dos Santos Szewczyk, K. (2022). Phenolic Composition and Antioxidant Activity of Alchemilla Species. Plants, 11(20), 2709. https://doi.org/10.3390/plants11202709