Bioprospecting of Essential Oil-Bearing Plants: Rapid Screening of Volatile Organic Compounds Using Headspace Bubble-in-Drop Single-Drop Microextraction for Gas Chromatography Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimisation of Screening Technique for the Essential Oils
2.1.1. Selection of the Extracting Solvent
2.1.2. Optimisation of Extracting Solvent (Heptadecane) Volume
2.1.3. Optimisation of Extraction Temperature
2.1.4. Optimisation of the Extraction Time
2.1.5. Optimisation of the Sample Volume
2.2. Comparison of SDME to BID-SDME on the Headspace Extraction of the VOCs
2.3. Application of the Developed Method to Real Samples
2.4. Some Applications of the Annotated Terpenes in the Different Test Plants
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instruments and Apparatus
3.3. Extraction Method Optimisation Using Commercial Pine Oil
3.4. Application of the Method on Real Plant Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paré, P.; Tumlinson, J. Plant volatiles as a defense against insect herbivores. Plant Physiol. 1999, 121, 325–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodmann, J.; Twele, R.; Francke, W.; Hölzler, G.; Zhang, Q.; Ayasse, M. Orchids mimic green-leaf volatiles to attract prey-hunting wasps for pollination. Curr. Biol. 2008, 18, 740–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Wyk, B.E. A broad review of commercially important southern African medicinal plants. J. Ethnopharmacol. 2008, 119, 342–355. [Google Scholar] [CrossRef]
- Azwanida, N.N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med. Aromat. Plant. 2015, 4, 2167-0412. [Google Scholar] [CrossRef]
- Gakuubi, M.; Wagacha, J.; Dossaji, S.; Wanzala, W. Chemical composition and antibacterial activity of essential oils of Tagetes minuta (Asteraceae) against selected plant pathogenic bacteria. Int. J. Microbiol. 2016, 2016, 7352509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillén, M.D.; Cabo, N.; Burillo, J. Characterization of the essential oils of some cultivated aromatic plants of industrial interest. J. Sci. Food Agric. 1996, 70, 359–363. [Google Scholar] [CrossRef]
- Kocić-Tanackov, S.; Dimić, G. Antifungal activity of essential oils in the control of food-borne fungi growth and mycotoxin biosynthesis in food. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2013; pp. 838–849. Available online: https://www.researchgate.net/profile/Yehya-Salih/post/Can_the_Kirby_Bauer_method_be_used_to_measure_the_antifungal_activity_of_essential_oils/attachment/59d647ff79197b80779a2bfe/AS%3A464938348093444%401487861349037/download/Antifungal+activity+of+essential+oils+2.pdf (accessed on 1 July 2021).
- Reverchon, E.; Senatore, F. Isolation of rosemary oil: Comparison between hydrodistillation and supercritical CO2 extraction. Flavour Fragr. J. 1992, 7, 227–230. [Google Scholar] [CrossRef]
- Rao, V.P.S.; Pandey, D. Extraction of Essential Oil and Its Applications. B. Tech. Dissertation, Department of Chemical Engineering, National Institute of Technology, Rourkela, Orissa, India, 2007. Available online: http://ethesis.nitrkl.ac.in/4292/ (accessed on 1 May 2020).
- Castle, L.M.; Leopold, S.; Craft, R.; Kindscher, K. Ranking tool created for medicinal plants at risk of being overharvested in the wild. Ethnobiol. Lett. 2014, 5, 77–88. [Google Scholar] [CrossRef]
- Formaceck, V.; Kubeczka, K. Essential Oil by Capillary Gas Chromatography and Carbon 13 NMR Spectroscopy; John Wiley and Sons: New York, NY, USA, 1982. [Google Scholar]
- Younis, A.; Riaz, A.; Khan, M.; Khan, A.; Pervez, M. Extraction and identification of chemical constituents of the essential oil of Rosa species. Acta Hortic. 2008, 766, 485–492. [Google Scholar] [CrossRef]
- Liberto, E.; Cagliero, C.; Cordero, C.; Rubiolo, P.; Bicchi, C.; Sgorbini, B. Fractionated dynamic headspace sampling in the analysis of matrices of vegetable origin in the food field. J. Chromatogr. A 2017, 1489, 18–28. [Google Scholar] [CrossRef]
- Soria, A.; García-Sarrió, M.; Sanz, M. Volatile sampling by headspace techniques. Trends Anal. Chem. 2015, 71, 85–99. [Google Scholar] [CrossRef]
- Zhao, J.; Boatright, W. Static headspace analysis of odorants in commercial rice proteins. Food Chem. 2017, 221, 345–350. [Google Scholar] [CrossRef] [PubMed]
- George, M.J.; Njobeh, P.B.; Sefater, G.; Adegoke, G.A.; Dubery, I.A.; Madala, N.E. Rapid screening of volatile organic compounds from Aframomum danielli seeds using headspace solid phase microextraction coupled to gas chromatography mass spectrometry. Int. J. Anal. Chem. 2018, 2018, 8976304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spietelun, A.; Pilarczyk, M.; Kloskowski, A.; Namieśnik, J. Current trends in solid-phase microextraction (SPME) fibre coatings. Chem. Soc. Rev. 2010, 39, 34524–34537. [Google Scholar] [CrossRef] [PubMed]
- Bicchi, C.; Cordero, C.; Liberto, E.; Sgorbini, B.; Rubiolo, P. Headspace sampling of the volatile fraction of vegetable matrices. J. Chromatogr. A 2008, 1184, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wang, J.; Li, D. Microextraction techniques for the determination of volatile and semivolatile organic compounds from plants: A review. Anal. Chim. Acta 2013, 799, 8–22. [Google Scholar] [CrossRef]
- Williams, D.B.G.; George, M.J.; Meyer, R.; Marjanovic, L. Bubbles in solvent microextraction: The influence of intentionally introduced bubbles on extraction efficiency. Anal. Chem. 2011, 83, 6713–6716. [Google Scholar] [CrossRef]
- Williams, D.B.G.; George, M.J.; Marjanovic, L. Rapid detection of atrazine and metolachlor in farm soils: Gas chromatography-mass spectrometry based analysis using the bubble-in-drop single drop micro-extraction (BID-SDME) enrichment method. J. Agric. Food Chem. 2014, 62, 7676–7681. [Google Scholar] [CrossRef]
- George, M.J. Monitoring of Herbicides in Aquatic Environments Using the Bubble-in-Drop Single Drop Micro-Extraction (BID-SDME) Method. S. Afr. J. Chem. 2014, 67, 56–60. [Google Scholar]
- George, M.J. Determination and Correlation of Herbicide Residues in Water and Sediments from The streams Flowing into the Caledon River in the Eastern Free State Using the Bubble-in-Drop Single Drop Micro-Extraction Method. Eur. Chem. Bull. 2014, 3, 1098–1102. Available online: https://www.eurchembull.com/?mno=63248 (accessed on 20 February 2019).
- George, M.J.; Marjanovic, L.; Williams, D.B.G. Picogram-level quantification of some growth hormones in bovine urine using mixed-solvent bubble-in-drop single drop micro-extraction. Talanta 2015, 144, 445–450. [Google Scholar] [CrossRef] [PubMed]
- George, M.J. Application of the mixed-solvent BID-SDME technique for determination of some stilbene hormones in water downstream of a cattle slaughterhouse, using gas chromatography and mass spectrometry. Int. J. Environ. Anal. Chem. 2016, 96, 247–256. [Google Scholar] [CrossRef]
- George, M.J.; Madala, N.E.; Dubery, I.A. Extraction of phthalic acid esters from soil samples using aqueous room temperature sonication coupled to bubble-in-drop single-drop microextraction. Int. J. Environ. Anal. Chem. 2019, 99, 1198–1210. [Google Scholar] [CrossRef]
- Guo, L.; binte Nawi, N.; Lee, H.K. Fully automated headspace bubble-in-drop microextraction. Anal. Chem. 2016, 88, 8409–8414. [Google Scholar] [CrossRef]
- Kouki, A.I.; Mabrouk, H.; Hanana, Y.; Jamoussi, M.; Lamia, B.H. Essential oils of Tunisian Pinus radiata D. Don, chemical composition and study of their herbicidal activity. Vietnam J. Chem. 2021, 59, 247–252. [Google Scholar] [CrossRef]
- Lucchesi, M.C.; Smadja, J. An original solvent free microwave extraction of essential oils from spices. Flavour Fragr. J. 2004, 19, 134–138. [Google Scholar] [CrossRef]
- Burdon, R.D.; Gaskin, R.E.; Zabkiewicz, J.A.; Low, C.B. Genetic Survey of Pinus radiata. 7: Variation and Inheritance of Pinene Composition in Wood Oleoresin. N. Z. J. Forest. Sci. 1992, 22, 246–256. Available online: https://www.scionresearch.com/__data/assets/pdf_file/0010/59824/NZJFS222_31992BURDON246_256.pdf (accessed on 3 March 2019).
- Sidibé, L.; Chalchat, J.C.; Garry, R.P.; Harama, M. Aromatic Plants of Mali (III): Chemical composition of essential oils of two Hyptis species: H. suaveolens (L.) Poit. and H. spicigera Lam. J. Essent. Oil Res. 2001, 13, 55–57. [Google Scholar] [CrossRef]
- Jaenson, T.G.; Pålsson, K.; Borg-Karlson, A.K. Evaluation of extracts and oils of mosquito (Diptera: Culicidae) repellent plants from Sweden and Guinea-Bissau. J. Med. Entomol. 2006, 43, 113–119. [Google Scholar] [CrossRef]
- Azeem, M.; Zaman, T.; Tahir, M.; Haris, A.; Iqbal, Z.; Binyameen, M.; Mozūraitis, R. Chemical composition and repellent activity of native plants essential oils against dengue mosquito, Aedes aegypti. Ind. Crops Prod. 2019, 140, 111609. [Google Scholar] [CrossRef]
- El-Deeb, K.S.; Abbas, F.A.; El-Fishawy, A.; Mossa, J.S. Chemical Composition of the Essential Oil of Tagetes minuta Growing in Saudi Arabia. Saudi Pharm. J. 2004, 12, 52–53. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.500.9042&rep=rep1&type=pdf (accessed on 5 October 2021).
- de Oliveira, D.H.; Abib, P.B.; Giacomini, R.X.; Lenardão, E.J.; Schiedeck, G.; Wilhelm, E.A.; Jacob, R.G. Antioxidant and antifungal activities of the flowers’ essential oil of Tagetes minuta, (Z)-tagetone and thiotagetone. J. Essent. Oil Res. 2019, 31, 160–169. [Google Scholar] [CrossRef]
- Mimoune, N.A.; Mimoune, D.A.; Yataghene, A. Chemical composition and antimicrobial activity of the essential oils of Pinus pinaster. J. Coast. Life Med. 2013, 1, 54–58. [Google Scholar] [CrossRef]
- Silbernagel, E.; Spreitzer, H.; Buchbauer, G. Non-Volatile Constituents of Artemisia afra. Monatsch Chem. 1990, 121, 433–436. Available online: https://link.springer.com/article/10.1007/BF00809460 (accessed on 3 March 2021). [CrossRef]
- Lakhdar, M. Traditional uses, phytochemistry and biological activities of Cotula cinerea Del: A review. Trop. J. Pharm. Res. 2018, 17, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhao, Z.; Yun-ting, S.U.; Zeng, Z.; Zhan, X.; Li, C.; Xie, T. A review of medicinal plant species with elemene in China. Afr. J. Pharm. Pharmacol. 2012, 6, 3034–3038. [Google Scholar] [CrossRef] [Green Version]
- Pati, G.V.; Dass, S.K.; Chanda, R. Artemesia afra and modern diseases. J. Pharmacogenom. Pharmacoproteom. 2011, 2, 2153-0645. [Google Scholar] [CrossRef]
- Sadia, S.; Khalid, S.; Qureshi, R.; Bajwa, A. Tagetes minuta L.; a useful underutilized plant of family Asteraceae: A review. Pak. J. Weed. Sci. Res. 2013, 19, 179–189. [Google Scholar]
- George, M.J.; Motsamai, T. The study of a simple pine-oil based laboratory prepared and commercial detergents using conductivity measurements. Am. J. Anal. Chem. 2015, 6, 957–964. [Google Scholar] [CrossRef] [Green Version]
- George, M.J.; Motsamai, T. Development and Characterisation of a Modified Multi-Purpose Pine Oil Detergent for a Small-Scale Manufacturer in Lesotho. Afr. J. Sci. Technol. Innov. Dev. 2016, 8, 71–78. Available online: https://hdl.handle.net/10520/EJC188055 (accessed on 3 March 2020). [CrossRef]
- Liu, N.Q.; Van der Kooy, F.; Verpoorte, R. Artemisia afra: A potential flagship for African medicinal plants? S. Afr. J. Bot. 2009, 75, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Cornelius, W.W.; Wycliffe, W. Tagetes (Tagetes minuta) oils. In Essential Oils in Food Preservation, Flavor and Safety; Academic Press; Elsevier: Amsterdam, The Netherlands, 2016; pp. 791–802. [Google Scholar] [CrossRef]
- Baron, E.P. Medicinal properties of cannabinoids, terpenes, and flavonoids in cannabis, and benefits in migraine, headache, and pain: An update on current evidence and cannabis science. Headache J. Head Face Pain 2018, 58, 1139–1186. [Google Scholar] [CrossRef]
- Hashiesh, H.M.; Meeran, M.F.; Sharma, C.; Sadek, B.; Kaabi, J.A.; Ojha, S.K. Therapeutic potential of β-caryophyllene: A dietary cannabinoid in diabetes and associated complications. Nutrient 2020, 12, 2963. [Google Scholar] [CrossRef] [PubMed]
- Klauke, A.L.; Racz, I.; Pradier, B.; Markert, A.; Zimmer, A.M.; Gertsch, J.; Zimmer, A. The cannabinoid CB2 receptor-selective phytocannabinoid beta-caryophyllene exerts analgesic effects in mouse models of inflammatory and neuropathic pain. Eur. Neuropsychopharmacol. 2014, 24, 608–620. [Google Scholar] [CrossRef] [PubMed]
Ret. Time (min) | #. Compound Name * | Relative Abundance (%) of Different VOCs $ | Presence Reported (In Similar/Different Plants) | ||
---|---|---|---|---|---|
P. radiata | T. minuta | A. afra | |||
5.75 | 1. β-Ocimene (E) | 3.67 | - | 3.68 | P. radiata, A. afra [16,28] |
6.47 | 2. Sabina ketone | - | - | 2.08 | A. afra [29] |
6.56 | 3. Sabinene | 2.10 | - | - | P. radiata [30], H. suaveolens [31] |
6.88 | 4. Myrcene | 2.51 | - | 2.55 | P. radiata, A. afra [10] |
7.70 | 5. Limonene | - | 1.53 | - | T. minuta [32] |
7.77 | 6. β-Ocimene (Z) # | - | 4.63 | - | T. minuta [33] |
8.12 | 7. Dihydrotagetone | - | 6.97 | - | T. minuta [34,35] |
8.72 | 8. Terpinolene | 5.85 | - | 5.94 | P. radiata, A. afra [9] |
8.77 | 9. Tagetone (E) | - | 3.63 | - | T. minuta [33] |
9.45 | 10. Tagetone (Z) | - | 15.37 | - | T. minuta [33] |
10.30 | 11. Terpinen-4-ol | 2.00 | - | 1.86 | P. radiata, A. afra [8] |
11.26 | 12. Ocimenone (E) | - | 15.40 | - | T. minuta [33] |
11.46 | 13. Ocimenone (Z) | - | 29.25 | - | T. minuta [33] |
12.04 | 14. β-Caryophyllene (Z) | 43.84 | - | 45.85 | P. pinaster [36] |
12.29 | 15. α-Bisabolene (Z) | - | - | 7.4 | A. afra [37] |
12.39 | 16. Santolinatriene | 5.99 | - | - | P. radiata [28], Cotula cinerea [38] |
12.78 | 17. Phenethyl isovalerate | 9.71 | - | 8.70 | P. radiata, A. afra [10] |
12.93 | 18. Caryophyllene oxide | 2.50 | - | 1.39 | P. radiata, A. afra [10] |
13.25 | 19. β-Elemene | - | - | 1.66 | A. afra [39] |
13.68 | 20. Limonene oxide (E) | - | - | 2.99 | A. afra [40] |
14.08 | 21. Caranone (Z) | 7.60 | - | - | P. radiata [28] |
15.53 | 22. Artemisia ketone | - | 6.48 | - | T. minuta [41] |
Total composition of the VOC annotated (%) | 88.14 | 83.26 | 84.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Letseka, T.E.; Sepheka, N.J.; Dubery, I.A.; George, M.J. Bioprospecting of Essential Oil-Bearing Plants: Rapid Screening of Volatile Organic Compounds Using Headspace Bubble-in-Drop Single-Drop Microextraction for Gas Chromatography Analysis. Plants 2022, 11, 2749. https://doi.org/10.3390/plants11202749
Letseka TE, Sepheka NJ, Dubery IA, George MJ. Bioprospecting of Essential Oil-Bearing Plants: Rapid Screening of Volatile Organic Compounds Using Headspace Bubble-in-Drop Single-Drop Microextraction for Gas Chromatography Analysis. Plants. 2022; 11(20):2749. https://doi.org/10.3390/plants11202749
Chicago/Turabian StyleLetseka, Thabiso E., Ntjana J. Sepheka, Ian A. Dubery, and Mosotho J. George. 2022. "Bioprospecting of Essential Oil-Bearing Plants: Rapid Screening of Volatile Organic Compounds Using Headspace Bubble-in-Drop Single-Drop Microextraction for Gas Chromatography Analysis" Plants 11, no. 20: 2749. https://doi.org/10.3390/plants11202749
APA StyleLetseka, T. E., Sepheka, N. J., Dubery, I. A., & George, M. J. (2022). Bioprospecting of Essential Oil-Bearing Plants: Rapid Screening of Volatile Organic Compounds Using Headspace Bubble-in-Drop Single-Drop Microextraction for Gas Chromatography Analysis. Plants, 11(20), 2749. https://doi.org/10.3390/plants11202749