Evaluation of Chemical Composition of Miscanthus × giganteus Raised in Different Climate Regions in Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Miscanthus Samples
2.2. Chemical Composition of Miscanthus
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodrigues, R.C.; Rodrigues, B.G.; Canettieri, E.V.; Martinez, E.A.; Palladino, F.; Wisniewski, A., Jr.; Rodrigues, D., Jr. Comprehensive approach of methods for microstructural analysis and analytical tools in lignocellulosic biomass assessment–A Review. Bioresour. Technol. 2021, 348, 126627. [Google Scholar] [CrossRef] [PubMed]
- Vohra, M.; Manwar, J.; Manmode, R.; Padgilwar, S.; Patil, S. Bioethanol production: Feedstock and current technologies. J. Environ. Chem. Eng. 2014, 2, 573–584. [Google Scholar] [CrossRef]
- Davey, C.L.; Jones, L.E.; Squance, M.; Purdy, S.J.; Maddison, A.L.; Cunniff, J.; Donnison, I.; Clifton-Brown, J. Radiation capture and conversion efficiencies of Miscanthus sacchariflorus, M. sinensis and their naturally occurring hybrid M. × giganteus. Glob. Chang. Biol. 2017, 9, 385–399. [Google Scholar] [CrossRef] [Green Version]
- Azum, N.; Jawaid, M.; Kian, L.K.; Khan, A.; Alotaibi, M.M. Extraction of Microcrystalline Cellulose from Washingtonia Fibre and Its Characterization. Polymers 2021, 13, 3030. [Google Scholar] [CrossRef]
- Puițel, A.C.; Suditu, G.D.; Danu, M.; Ailiesei, G.-L.; Nechita, M.T. An Experimental Study on the Hot Alkali Extraction of Xylan-Based Hemicelluloses from Wheat Straw and Corn Stalks and Optimization Methods. Polymers 2022, 14, 1662. [Google Scholar] [CrossRef] [PubMed]
- Perlack, R.D. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2005. [Google Scholar]
- Chupakhin, E.; Babich, O.; Sukhikh, S.; Ivanova, S.; Budenkova, E.; Kalashnikova, O.; Kriger, O. Methods of Increasing Miscanthus Biomass Yield for Biofuel Production. Energies 2021, 14, 8368. [Google Scholar] [CrossRef]
- Gauder, M.; Graeff-Hönninger, S.; Lewandowski, I.; Claupein, W. Long-term yield and performance of 15 different Miscanthus genotypes in southwest Germany. Ann. Appl. Biol. 2012, 160, 126–136. [Google Scholar] [CrossRef]
- Shepherd, A.; Littleton, E.; Clifton-Brown, J.; Martin, M.; Hastings, A. Projections of global and UK bioenergy potential from Miscanthus× giganteus—Feedstock yield, carbon cycling and electricity generation in the 21st century. GCB Bioenergy 2020, 12, 287–305. [Google Scholar] [CrossRef] [Green Version]
- Van der Cruijsen, K.; Al Hassan, M.; van Erven, G.; Dolstra, O.; Trindade, L.M. Breeding targets to improve biomass quality in Miscanthus. Molecules 2021, 26, 254. [Google Scholar] [CrossRef]
- Adjuik, T.; Rodjom, A.M.; Miller, K.E.; Reza, M.T.M.; Davis, S.C. Application of hydrochar, digestate, and synthetic fertilizer to a Miscanthus × giganteus crop: Implications for biomass and greenhouse gas emissions. Appl. Sci. 2020, 10, 8953. [Google Scholar] [CrossRef]
- Edgar, V.N.; Fabián, F.L.; Julián Mario, P.C.; Ileana, V.R. Coupling plant biomass derived from phytoremediation of potential toxic-metal polluted soils to bioenergy production and high-value by-products—A review. Appl. Sci. 2021, 11, 2982. [Google Scholar] [CrossRef]
- Xue, S.; Lewandowski, I.; Wang, X.; Yi, Z. Assessment of the production potentials of Miscanthus on marginal land in China. Renew. Sustain. Energy Rev. 2016, 54, 932–943. [Google Scholar] [CrossRef]
- Turner, W.; Greetham, D.; Mos, M.; Squance, M.; Kam, J.; Du, C. Exploring the Bioethanol Production Potential of Miscanthus Cultivars. Appl. Sci. 2021, 11, 9949. [Google Scholar] [CrossRef]
- Danielewicz, D.; Surma-Ślusarska, B. Miscanthus × giganteus stalks as a potential non-wood raw material for the pulp and paper industry. Influence of pulping and beating conditions on the fibre and paper properties. Ind. Crops Prod. 2019, 141, 111744. [Google Scholar] [CrossRef]
- Baxter, X.C.; Darvell, L.I.; Jones, J.M.; Barraclough, T.; Yates, N.E.; Shield, I. Miscanthus combustion properties and variations with Miscanthus agronomy. Fuel 2014, 117, 851–869. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk-Juśko, A.; Mazur, A.; Pochwatka, P.; Janczak, D.; Dach, J. Evaluation of the Effects of Using the Giant Miscanthus (Miscanthus × giganteus) Biomass in Various Energy Conversion Processes. Energies 2022, 15, 3486. [Google Scholar] [CrossRef]
- Wang, C.; Kong, Y.; Hu, R.; Zhou, G. Miscanthus: A fast-growing crop for environmental remediation and biofuel production. GCB Bioenergy 2021, 13, 58–69. [Google Scholar] [CrossRef]
- Nakajima, T.; Yamada, T.; Anzoua, K.G.; Kokubo, R.; Noborio, K. Carbon sequestration and yield performances of Miscanthus× giganteus and Miscanthus sinensis. Carbon Manag. 2018, 9, 415–423. [Google Scholar] [CrossRef]
- Kalinina, O.; Nunn, C.; Sanderson, R.; Hastings, A.F.; Van Der Weijde, T.; Özgüven, M.; Tarakanov, I.; Schüle, H.; Trindade, L.M.; Dolstra, O.; et al. Extending Miscanthus cultivation with novel germplasm at six contrasting sites. Front. Plant Sci. 2017, 8, 563. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, Y.; Kiesel, A.; Wagner, M.; Nunn, C.; Kalinina, O.; Hastings, A.F.; Clifton-Brown, J.C.; Lewandowski, I. Harvest time optimization for combustion quality of different miscanthus genotypes across Europe. Front. Plant Sci. 2017, 8, 727. [Google Scholar] [CrossRef]
- Nunn, C.; Hastings, A.F.; Kalinina, O.; Özgüven, M.; Schüle, H.; Tarakanov, I.; Van Der Weijde, T.; Anisimov, A.A.; Iqbal, Y.; Kiesel, A.; et al. Environmental Influences on the Growing Season Duration and Ripening of Diverse Miscanthus Germplasm Grown in Six Countries. Front. Plant Sci. 2017, 8, 907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewandowski, I.; Clifton-Brown, J.; Trindade, L.M.; Van der Linden, G.C.; Schwarz, K.U.; Müller-Sämann, K.; Anisimov, A.; Chen, C.-L.; Dolstra, O.; Donnison, I.S.; et al. Progress on optimizing miscanthus biomass production for the European bioeconomy: Results of the EU FP7 project OPTIMISC. Front. Plant Sci. 2016, 7, 1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allison, G.G.; Morris, C.; Clifton-Brown, J.; Lister, S.J.; Donnison, I.S. Genotypic variation in cell wall composition in a diverse set of 244 accessions of Miscanthus. Biomass Bioenergy 2011, 35, 4740–4747. [Google Scholar] [CrossRef]
- Hodgson, E.M.; Nowakowski, D.J.; Shield, I.; Riche, A.; Bridgwater, A.V.; Clifton-Brown, J.C.; Donnison, I.S. Variation in Miscanthus chemical composition and implications for conversion by pyrolysis and thermo-chemical bio-refining for fuels and chemicals. Bioresour. Technol. 2011, 102, 3411–3418. [Google Scholar] [CrossRef]
- Lee, W.C.; Kuan, W.C. Miscanthus as cellulosic biomass for bioethanol production. Biotechnol. J. 2015, 10, 840–854. [Google Scholar] [CrossRef]
- Arnoult, S.; Brancourt-Hulmel, M. A review on miscanthus biomass production and composition for bioenergy use: Genotypic and environmental variability and implications for breeding. BioEnergy Res. 2015, 8, 502–526. [Google Scholar] [CrossRef] [Green Version]
- Wahid, R.; Nielsen, S.F.; Hernandez, V.M.; Ward, A.J.; Gislum, R.; Jørgensen, U.; Møller, H.B. Methane production potential from Miscanthus sp.: Effect of harvesting time, genotypes and plant fractions. Biosyst. Eng. 2015, 133, 71–80. [Google Scholar] [CrossRef]
- Jung, S.J.; Kim, S.H.; Chung, I.M. Comparison of lignin, cellulose, and hemicellulose contents for biofuels utilization among 4 types of lignocellulosic crops. Biomass Bioenergy 2015, 83, 322–327. [Google Scholar] [CrossRef]
- Waliszewska, H.; Zborowska, M.; Stachowiak-Wencek, A.; Waliszewska, B.; Czekała, W. Lignin Transformation of One-Year-Old Plants During Anaerobic Digestion (AD). Polymers 2019, 11, 835. [Google Scholar] [CrossRef] [Green Version]
- Bergs, M.; Völkering, G.; Kraska, T.; Pude, R.; Do, X.T.; Kusch, P.; Monakhova, Y.; Konow, C.; Schulze, M. Miscanthus × giganteus Stem Versus Leaf-Derived Lignins Differing in Monolignol Ratio and Linkage. Int. J. Mol. Sci. 2019, 20, 1200. [Google Scholar] [CrossRef]
- Stavridou, E.; Webster, R.J.; Robson, P.R. The Effects of Moderate and Severe Salinity on Composition and Physiology in the Biomass Crop Miscanthus × giganteus. Plants 2020, 9(10), 1266. [Google Scholar] [CrossRef] [PubMed]
- Voća, N.; Leto, J.; Karažija, T.; Bilandžija, N.; Peter, A.; Kutnjak, H.; Šurić, J.; Poljak, M. Energy Properties and Biomass Yield of Miscanthus × giganteus Fertilized by Municipal Sewage Sludge. Molecules 2021, 26, 4371. [Google Scholar] [CrossRef] [PubMed]
- Haffner, F.B.; Mitchell, V.D.; Arundale, R.A.; Bauer, S. Compositional analysis of Miscanthus giganteus by near infrared spectroscopy. Cellulose 2013, 20, 1629–1637. [Google Scholar] [CrossRef]
- Van der Weijde, T.; Huxley, L.M.; Hawkins, S.; Sembiring, E.H.; Farrar, K.; Dolstra, O.; Visser, R.G.F.; Trindade, L.M. Impact of drought stress on growth and quality of miscanthus for biofuel production. GCB Bioenergy 2017, 9, 770–782. [Google Scholar] [CrossRef] [Green Version]
- Bergs, M.; Do, X.T.; Rumpf, J.; Kusch, P.; Monakhova, Y.; Konow, C.; Völkering, G.; Pude, R.; Schulze, M. Comparing chemical composition and lignin structure of Miscanthus × giganteus and Miscanthus nagara harvested in autumn and spring and separated into stems and leaves. RSC Adv. 2020, 10, 10740–10751. [Google Scholar] [CrossRef] [Green Version]
- Dorogina, O.V.; Vasilyeva, O.Y.; Nuzhdina, N.S.; Buglova, L.V.; Gismatulina, Y.A.; Zhmud, E.V.; Zueva, G.A.; Komina, O.V.; Tsybchenko, E.A. Resource potential of some species of the genus Miscanthus Anderss. under conditions of continental climate of West Siberian foreststeppe. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J. Genet. Breed. 2018, 22, 553–559. [Google Scholar] [CrossRef] [Green Version]
- Huyen, T.L.N.; Rémond, C.; Dheilly, R.M.; Chabbert, B. Effect of harvesting date on the composition and saccharification of Miscanthus × giganteus. Bioresour. Technol. 2010, 101, 8224–8231. [Google Scholar] [CrossRef]
- Brosse, N.; Dufour, A.; Meng, X.; Sun, Q.; Ragauskas, A. Miscanthus: A fast-growing crop for biofuels and chemicals production. Biofuels Bioprod. Biorefin. 2012, 6, 580–598. [Google Scholar] [CrossRef]
- Van der Weijde, T.; Dolstra, O.; Visser, R.G.; Trindade, L.M. Stability of cell wall composition and saccharification efficiency in Miscanthus across diverse environments. Front. Plant Sci. 2017, 7, 2004. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Kim, M.Y.; Jeong, S.J.; Jang, M.S.; Chung, I.M. Analysis of the biomass content of various Miscanthus genotypes for biofuel production in Korea. Ind. Crops Prod. 2012, 38, 46–49. [Google Scholar] [CrossRef]
- Kurschner, K.; Hoffer, A. A new quantitative cellulose determination. Chem. Unserer Zeit 1931, 161, 1811. [Google Scholar]
- TAPPI T 222 om-83; Acid-Insoluble Lignin in Wood and Pulp. In Test Methods, 1998–1999. TAPPI Press: Atlanta, GA, USA, 1999.
- Kashcheyeva, E.I.; Gismatulina, Y.A.; Budaeva, V.V. Pretreatments of non-woody cellulosic feedstocks for bacterial cellulose synthesis. Polymers 2019, 11, 1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- TAPPI 211 om-02; Ash in Wood, Pulp, Paper and Paperboard: Combustion at 525 °C. TAPPI: Peachtree Corners, GA, USA, 2002.
- TAPPI T 204 cm-97; Solvent Extractives of Wood and Pulp. TAPPI Test Methods. TAPPI Press: Atlanta, GA, USA, 1997.
- Vanderghem, C.; Brostaux, Y.; Jacquet, N.; Blecker, C.; Paquot, M. Optimization of formic/acetic acid delignification of Miscanthus× giganteus for enzymatic hydrolysis using response surface methodology. Ind. Crops Prod. 2012, 35, 280–286. [Google Scholar] [CrossRef]
- Schläfle, S.; Tervahartiala, T.; Senn, T.; Kölling-Paternoga, R. Quantitative and visual analysis of enzymatic lignocellulose degradation. Biocatal. Agric. Biotechnol. 2017, 11, 42–49. [Google Scholar] [CrossRef]
- Baldini, M.; da Borso, F.; Ferfuia, C.; Zuliani, F.; Danuso, F. Ensilage suitability and bio-methane yield of Arundo donax and Miscanthus× giganteus. Ind. Crops Prod. 2017, 95, 264–275. [Google Scholar] [CrossRef]
- Sharma, B.; Larroche, C.; Dussap, C.-G. Comprehensive assessment of 2G bioethanol production. Bioresour. Technol. 2020, 313, 123630. [Google Scholar] [CrossRef]
- Singh, A.; Nanda, S.; Berruti, F. A Review of Thermochemical and Biochemical Conversion of Miscanthus to Biofuels. In Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals, 3rd ed; Nanda, S., Vo, D.N., Sarangi, P.K., Eds.; Springer: Singapore, 2020; pp. 195–220. [Google Scholar] [CrossRef]
- Fradj, N.B.; Rozakis, S.; Borzęcka, M.; Matyka, M. Miscanthus in the European bio-economy: A network analysis. Ind. Crops Prod. 2020, 148, 112281. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, C.; Lu, J.; Yu, H.; Zhu, J.; Zhou, J.; Zhang, X.; Liu, F.; Wang, Y.; Hao, B.; et al. An effective strategy for dual enhancements on bioethanol production and trace metal removal using Miscanthus straws. Ind. Crops Prod. 2020, 152, 112393. [Google Scholar] [CrossRef]
- Chandel, H.; Kumar, P.; Chandel, A.K.; Verma, M.L. Biotechnological advances in biomass pretreatment for bio-renewable production through nanotechnological intervention. Biomass Convers. Biorefin. 2022, 1–23. [Google Scholar] [CrossRef]
Plantation Age/Habitat/Harvesting Year | Farmer | Yield Capacity, t/ha | Sample Weight, kg | Annual Means | |
---|---|---|---|---|---|
T, °C | Rainfalls, mm | ||||
1 year old, Kaluga, 2020 | OOO Re:forma | 2.5 | 7.6 | +5.6 | 636 |
4 years old, Kaluga, 2021 | OOO Re:forma | 21.5 | 4.0 | +5.6 | 636 |
5 years old, Kaluga, 2022 | OOO Re:forma | 22.0 | 4.5 | +5.6 | 636 |
3 years old, Moscow, 2020 | OOO Master Brand | 14.5 | 11.0 | +5.8 | 739 |
7 years old, Moscow, 2020 | OOO Master Brand | 19.0 | 6.8 | +6.0 | 825 |
1 year old, Bryansk, 2021 | Farm Household Savchenko V.V. | 2.9 | 2.5 | +6.1 | 671 |
2 years old, Bryansk, 2022 | Farm Household Savchenko V.V. | 10.0 | 3.0 | +6.1 | 671 |
2 years old, Kaliningrad, 2021 | OOO Kalagra Farm | 12.0 | 2.4 | +7.9 | 750 |
8 years old, Penza, 2022 | Penza State Agrarian University | 22.0 | 15.0 | +5.2 | 521 |
1 year old, Novosibirsk, 2020 | Siberian Research Institute of Plant Cultivation and Breeding | 2.1 | 1.0 | +2.6 | 437 |
1 year old, Irkutsk, 2022 | OOO Sibgiprobum | 2.0 | 1.5 | +1.0 | 472 |
Plantation Age/Habitat/Harvesting Year | Component Content, % | ||||
---|---|---|---|---|---|
Cellulose | Lignin | Pentosans | Ash | Extractives | |
1 year old, Kaluga, 2020 | 47.8 ± 0.5 | 21.5 ± 0.5 | 22.9 ± 0.5 | 0.90 ± 0.05 | 1.2 ± 0.1 |
4 years old, Kaluga, 2021 | 49.4 ± 0.5 | 20.6 ± 0.5 | 22.3 ± 0.5 | 1.45 ± 0.05 | 0.5 ± 0.1 |
5 years old, Kaluga, 2022 | 50.2 ± 0.5 | 19.6 ± 0.5 | 20.4 ± 0.5 | 1.58 ± 0.05 | 0.6 ± 0.1 |
3 years old, Moscow, 2020 | 50.1 ± 0.5 | 21.7 ± 0.5 | 21.0 ± 0.5 | 1.55 ± 0.05 | 0.8 ± 0.1 |
7 years old, Moscow, 2020 | 50.1 ± 0.5 | 25.0 ± 0.5 | 21.7 ± 0.5 | 0.96 ± 0.05 | 0.7 ± 0.1 |
1 year old, Bryansk, 2021 | 46.8 ± 0.5 | 21.3 ± 0.5 | 22.2 ± 0.5 | 1.76 ± 0.05 | 0.5 ± 0.1 |
2 years old, Bryansk, 2022 | 50.4 ± 0.5 | 18.5 ± 0.5 | 22.6 ± 0.5 | 1.25 ± 0.05 | 0.5 ± 0.1 |
2 years old, Kaliningrad, 2021 | 53.5 ± 0.5 | 25.1 ± 0.5 | 19.7 ± 0.5 | 1.82 ± 0.05 | 0.3 ± 0.1 |
8 years old, Penza, 2022 | 55.5 ± 0.5 | 20.9 ± 0.5 | 19.5 ± 0.5 | 2.63 ± 0.05 | 0.9 ± 0.1 |
1 year old, Novosibirsk, 2020 | 43.2 ± 0.5 | 19.7 ± 0.5 | 20.2 ± 0.5 | 2.95 ± 0.05 | 0.9 ± 0.1 |
1 year old, Irkutsk, 2022 | 44.4 ± 0.5 | 17.1 ± 0.5 | 17.9 ± 0.5 | 2.61 ± 0.05 | 0.8 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gismatulina, Y.A.; Budaeva, V.V.; Kortusov, A.N.; Kashcheyeva, E.I.; Gladysheva, E.K.; Mironova, G.F.; Skiba, E.A.; Shavyrkina, N.A.; Korchagina, A.A.; Zolotukhin, V.N.; et al. Evaluation of Chemical Composition of Miscanthus × giganteus Raised in Different Climate Regions in Russia. Plants 2022, 11, 2791. https://doi.org/10.3390/plants11202791
Gismatulina YA, Budaeva VV, Kortusov AN, Kashcheyeva EI, Gladysheva EK, Mironova GF, Skiba EA, Shavyrkina NA, Korchagina AA, Zolotukhin VN, et al. Evaluation of Chemical Composition of Miscanthus × giganteus Raised in Different Climate Regions in Russia. Plants. 2022; 11(20):2791. https://doi.org/10.3390/plants11202791
Chicago/Turabian StyleGismatulina, Yulia A., Vera V. Budaeva, Aleksey N. Kortusov, Ekaterina I. Kashcheyeva, Evgenia K. Gladysheva, Galina F. Mironova, Ekaterina A. Skiba, Nadezhda A. Shavyrkina, Anna A. Korchagina, Vladimir N. Zolotukhin, and et al. 2022. "Evaluation of Chemical Composition of Miscanthus × giganteus Raised in Different Climate Regions in Russia" Plants 11, no. 20: 2791. https://doi.org/10.3390/plants11202791
APA StyleGismatulina, Y. A., Budaeva, V. V., Kortusov, A. N., Kashcheyeva, E. I., Gladysheva, E. K., Mironova, G. F., Skiba, E. A., Shavyrkina, N. A., Korchagina, A. A., Zolotukhin, V. N., & Sakovich, G. V. (2022). Evaluation of Chemical Composition of Miscanthus × giganteus Raised in Different Climate Regions in Russia. Plants, 11(20), 2791. https://doi.org/10.3390/plants11202791