Cuscuta australis Parasitism-Induced Changes in the Proteome and Photosynthetic Parameters of Arabidopsis thaliana
Abstract
:1. Introduction
2. Results
2.1. Effect of Parasitism on Photosynthetic Parameters
2.2. Quantitative Analysis of Protein Spots on 2D Gels
2.3. Protein MS/MS Identification
3. Discussion
4. Materials and Methods
4.1. Plant Material and Growing Conditions
4.2. Photosynthesis Measurements
4.3. Protein Extraction and Quantification
4.4. Two-Dimensional Gel Electrophoresis
4.5. Image Analysis and Mass Spectrometric Identification
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaiser, B.; Vogg, G.; Fürst, U.B.; Albert, M. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants. Front. Plant Sci. 2015, 6, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revill, M.J.; Stanley, S.; Hibberd, J.M. Plastid genome structure and loss of photosynthetic ability in the parasitic genus Cuscuta. J. Exp. Bot. 2005, 56, 2477–2486. [Google Scholar] [CrossRef] [PubMed]
- Birschwilks, M.; Haupt, S.; Hofius, D.; Neumann, S. Transfer of phloem-mobile substances from the host plants to the holoparasite Cuscuta sp. J. Exp. Bot. 2006, 57, 911–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hibberd, J.M.; Dieter Jeschke, W. Solute flux into parasitic plants. J. Exp. Bot. 2001, 52, 2043–2049. [Google Scholar] [CrossRef] [Green Version]
- Parker, C. Parasitic weeds: A world challenge. Weed Sci. 2012, 60, 269–276. [Google Scholar] [CrossRef]
- Koch, A.M.; Binder, C.; Sanders, I.R. Does the generalist parasitic plant Cuscuta campestris selectively forage in heterogeneous plant communities? New Phytol. 2004, 162, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Liu, J.; He, W.-M.; Miao, S.-L.; Dong, M. Cuscuta australis restrains three exotic invasive plants and benefits native species. Biol. Invasions 2011, 13, 747–756. [Google Scholar]
- Yu, H.; He, W.-M.; Liu, J.; Miao, S.-L.; Dong, M. Native Cuscuta campestris restrains exotic Mikania micrantha and enhances soil resources beneficial to natives in the invaded communities. Biol. Invasions 2009, 11, 835. [Google Scholar] [CrossRef]
- Yu, H.; Liu, J.; He, W.-M.; Miao, S.-L.; Dong, M. Restraints on Mikania micrantha by Cuscuta campestris facilitates restoration of the disturbed ecosystems. Biodiversity 2009, 10, 72–78. [Google Scholar] [CrossRef]
- Benvenuti, S.; Dinelli, G.; Bonetti, A.; Catizone, P. Germination ecology, emergence and host detection in Cuscuta campestris. Weed Res. 2005, 45, 270–278. [Google Scholar] [CrossRef]
- Runyon, J.B.; Mescher, M.C.; De Moraes, C.M. Volatile chemical cues guide host location and host selection by parasitic plants. Science 2006, 313, 1964–1967. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Aoki, K. Development of parasitic organs of a stem holoparasitic plant in genus Cuscuta. Front. Plant Sci. 2019, 10, 1435. [Google Scholar] [PubMed] [Green Version]
- Vaughn, K. Attachment of the parasitic weed dodder to the host. Protoplasma 2002, 219, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Striberny, B.; Krause, K. Cell wall glycoproteins at interaction sites between parasitic giant dodder (Cuscuta reflexa) and its host Pelargonium zonale. Plant Signal. Behav. 2015, 10, e1086858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bleischwitz, M.; Albert, M.; Fuchsbauer, H.-L.; Kaldenhoff, R. Significance of Cuscutain, a cysteine protease from Cuscuta reflexa, in host-parasite interactions. BMC Plant Biol. 2010, 10, 227. [Google Scholar] [CrossRef] [Green Version]
- Olsen, S.; Striberny, B.; Hollmann, J.; Schwacke, R.; Popper, Z.; Krause, K. Getting ready for host invasion: Elevated expression and action of xyloglucan endotransglucosylases/hydrolases in developing haustoria of the holoparasitic angiosperm Cuscuta. J. Exp. Bot. 2016, 67, 695–708. [Google Scholar] [CrossRef] [Green Version]
- Jeschke, W.; Hilpert, A. Sink-stimulated photosynthesis and sink-dependent increase in nitrate uptake: Nitrogen and carbon relations of the parasitic association Cuscuta reflexa–Ricinus communis. Plant Cell Environ. 1997, 20, 47–56. [Google Scholar] [CrossRef]
- Shen, H.; Hong, L.; Ye, W.; Cao, H.; Wang, Z. The influence of the holoparasitic plant Cuscuta campestris on the growth and photosynthesis of its host Mikania micrantha. J. Exp. Bot. 2007, 58, 2929–2937. [Google Scholar] [CrossRef] [Green Version]
- Le, Q.V.; Tennakoon, K.U.; Metali, F.; Lim, L.B.; Bolin, J.F. Impact of Cuscuta australis infection on the photosynthesis of the invasive host, Mikania micrantha, under drought condition. Weed Biol. Manag. 2015, 15, 138–146. [Google Scholar]
- Zagorchev, L.; Traianova, A.; Teofanova, D.; Li, J.; Kouzmanova, M.; Goltsev, V. Influence of Cuscuta campestris Yunck. on the photosynthetic activity of Ipomoea tricolor Cav.—In Vivo chlorophyll a fluorescence assessment. Photosynthetica 2020, 58, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Goldwasser, Y.; Rabinovitz, O.; Hayut, E.; Kuzikaro, H.; Sibony, M.; Rubin, B. Selective and effective control of field dodder (Cuscuta campestris) in chickpea with granular pendimethalin. Weed Technol. 2019, 33, 586–594. [Google Scholar] [CrossRef]
- Jhu, M.-Y.; Farhi, M.; Wang, L.; Philbrook, R.N.; Belcher, M.S.; Nakayama, H.; Zumstein, K.S.; Rowland, S.D.; Ron, M.; Shih, P.M. Heinz-resistant tomato cultivars exhibit a lignin-based resistance to field dodder (Cuscuta campestris) parasitism. Plant Physiol. 2022, 189, 129–151. [Google Scholar] [CrossRef] [PubMed]
- Córdoba, E.M.; Fernández-Aparicio, M.; González-Verdejo, C.I.; López-Grau, C.; del Valle Muñoz-Muñoz, M.; Nadal, S. Search for Resistant Genotypes to Cuscuta campestris Infection in two legume species, Vicia sativa and Vicia ervilia. Plants 2021, 10, 738. [Google Scholar] [CrossRef] [PubMed]
- Hegenauer, V.; Fürst, U.; Kaiser, B.; Smoker, M.; Zipfel, C.; Felix, G.; Stahl, M.; Albert, M. Detection of the plant parasite Cuscuta reflexa by a tomato cell surface receptor. Science 2016, 353, 478–481. [Google Scholar] [CrossRef]
- Runyon, J.B.; Mescher, M.C.; Felton, G.W.; De Moraes, C.M. Parasitism by Cuscuta pentagona sequentially induces JA and SA defence pathways in tomato. Plant Cell Environ. 2010, 33, 290–303. [Google Scholar] [CrossRef]
- Birschwilks, M.; Sauer, N.; Scheel, D.; Neumann, S. Arabidopsis thaliana is a susceptible host plant for the holoparasite Cuscuta spec. Planta 2007, 226, 1231–1241. [Google Scholar] [CrossRef]
- Liu, N.; Shen, G.; Xu, Y.; Liu, H.; Zhang, J.; Li, S.; Li, J.; Zhang, C.; Qi, J.; Wang, L. Extensive inter-plant protein transfer between Cuscuta parasites and their host plants. Mol. Plant 2020, 13, 573–585. [Google Scholar] [CrossRef]
- Yang, B.; Li, J.; Zhang, J.; Yan, M. Effects of nutrients on interaction between the invasive Bidens pilosa and the parasitic Cuscuta australis. Pak. J. Bot. 2015, 47, 1693–1699. [Google Scholar]
- Li, J.; Hettenhausen, C.; Sun, G.; Zhuang, H.; Li, J.-H.; Wu, J. The parasitic plant Cuscuta australis is highly insensitive to abscisic acid-induced suppression of hypocotyl elongation and seed germination. PLoS ONE 2015, 10, e0135197. [Google Scholar] [CrossRef]
- Chen, H.; Shen, H.; Ye, W.; Cao, H.; Wang, Z. Involvement of ABA in reduced photosynthesis and stomatal conductance in Cuscuta campestris—Mikania micrantha association. Biol. Plant. 2011, 55, 545–548. [Google Scholar] [CrossRef]
- Flexas, J.; Medrano, H. Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. Ann. Bot. 2002, 89, 183–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonfig, K.B.; Schreiber, U.; Gabler, A.; Roitsch, T.; Berger, S. Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta 2006, 225, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Price, G.D.; Evans, J.R.; von Caemmerer, S.; Yu, J.-W.; Badger, M.R. Specific reduction of chloroplast glyceraldehyde-3-phosphate dehydrogenase activity by antisense RNA reduces CO2 assimilation via a reduction in ribulose bisphosphate regeneration in transgenic tobacco plants. Planta 1995, 195, 369–378. [Google Scholar] [CrossRef]
- Elena López-Calcagno, P.; Omar Abuzaid, A.; Lawson, T.; Anne Raines, C. Arabidopsis CP12 mutants have reduced levels of phosphoribulokinase and impaired function of the Calvin–Benson cycle. J. Exp. Bot. 2017, 68, 2285–2298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zagorchev, L.; Albanova, I.; Tosheva, A.; Li, J.; Teofanova, D. Salinity effect on Cuscuta campestris Yunck. Parasitism on Arabidopsis thaliana L. Plant Physiol. Biochem. 2018, 132, 408–414. [Google Scholar] [CrossRef]
- Portis, A.R.; Parry, M.A. Discoveries in Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase): A historical perspective. Photosynth. Res. 2007, 94, 121–143. [Google Scholar] [CrossRef]
- Murakami, R.; Ifuku, K.; Takabayashi, A.; Shikanai, T.; Endo, T.; Sato, F. Functional dissection of two Arabidopsis PsbO proteins: PsbO1 and PsbO2. FEBS J. 2005, 272, 2165–2175. [Google Scholar]
- Borsics, T.; Lados, M. Dodder infection induces the expression of a pathogenesis-related gene of the family PR-10 in alfalfa. J. Exp. Bot. 2002, 53, 1831–1832. [Google Scholar] [CrossRef] [Green Version]
- Li, D.-M.; Staehelin, C.; Wang, W.-T.; Peng, S.-L. Molecular cloning and characterization of a chitinase-homologous gene from Mikania micrantha infected by Cuscuta campestris. Plant Mol. Biol. Rep. 2010, 28, 90–101. [Google Scholar] [CrossRef]
- Gullner, G.; Komives, T.; Király, L.; Schröder, P. Glutathione S-transferase enzymes in plant-pathogen interactions. Front. Plant Sci. 2018, 9, 1836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [PubMed]
- Bhuiyan, N.H.; Selvaraj, G.; Wei, Y.; King, J. Role of lignification in plant defense. Plant Signal. Behav. 2009, 4, 158–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnsen, H.R.; Striberny, B.; Olsen, S.; Vidal-Melgosa, S.; Fangel, J.U.; Willats, W.G.; Rose, J.K.; Krause, K. Cell wall composition profiling of parasitic giant dodder (Cuscuta reflexa) and its hosts: A priori differences and induced changes. New Phytol. 2015, 207, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Westwood, J.H. Macromolecule exchange in Cuscuta–host plant interactions. Curr. Opin. Plant Biol. 2015, 26, 20–25. [Google Scholar] [CrossRef]
- Park, S.-Y.; Shimizu, K.; Brown, J.; Aoki, K.; Westwood, J.H. Mobile Host mRNAs Are Translated to Protein in the Associated Parasitic Plant Cuscuta campestris. Plants 2021, 11, 93. [Google Scholar] [CrossRef]
- Wu, X.; Xiong, E.; Wang, W.; Scali, M.; Cresti, M. Universal sample preparation method integrating trichloroacetic acid/acetone precipitation with phenol extraction for crop proteomic analysis. Nat. Protoc. 2014, 9, 362. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Neuhoff, V.; Arold, N.; Taube, D.; Ehrhardt, W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 1988, 9, 255–262. [Google Scholar]
- Shevchenko, A.; Tomas, H.; Havli, J.; Olsen, J.V.; Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 2006, 1, 2856. [Google Scholar] [CrossRef]
- Sharmin, S.A.; Alam, I.; Rahman, M.A.; Kim, K.-H.; Kim, Y.-G.; Lee, B.-H. Mapping the leaf proteome of Miscanthus sinensis and its application to the identification of heat-responsive proteins. Planta 2013, 238, 459–474. [Google Scholar] [CrossRef]
Traits | Non-Parasitized | Parasitized |
---|---|---|
Photosynthetic rate (Pn)/(μmol CO2 m−2 s−1) | 3.61 ± 0.73a | 2.71 ± 0.33b |
Stomatal conductance (gs)/(μmol H2O m−2 s−1) | 0.19 ± 0.05a | 0.12 ± 0.01b |
Concentration of intercellular CO2 (Ci) /(μmol CO2 m−2 s−1) | 305.66 ± 1.34a | 301.58 ± 6.23a |
Transpiration rate (Tr)/(μmol CO2 m−2 s−1) | 3.30 ± 0.74a | 2.31 ± 0.097b |
Relative chlorophyll content | 17.51 ± 2.06a | 8.79 ± 1.96b |
SSP | Mascot Score | UniProt Accession | Protein Identity | GO Localization | GO Biological Process |
---|---|---|---|---|---|
Leaves | |||||
0002 | 98 | Q41932 | Oxygen-evolving enhancer protein 3-2, chloroplastic | chloroplast thylakoid membrane | photosynthetic electron transport chain |
0101 | 69 | Q9LUT2 | S-adenosylmethionine synthase 4 | cytoplasm | lignin biosynthetic process response to cold stress |
2101 | 54 | Q9SAJ4 | Phosphoglycerate kinase 3, cytosolic | Cytoplasm | gluconeogenesis |
2601 | 175 | Q8RWV0 | Transketolase-1, chloroplastic | Chloroplast | Pentose-phosphate shunt Response to cadmium ions/salt stress |
2602 | 53 | P10795 | Ribulose bisphosphate carboxylase small chain 1A, chloroplastic | Chloroplast | chloroplast ribulose bisphosphate carboxylase complex assembly response to cold |
2107 | 130 | O49344 | Putative oxygen-evolving enhancer protein 2-2 | Chloroplast | photosynthesis |
1301 | 212 | Q42560 | Aconitate hydratase 1 | Mitochondrion Cytoplasm | citrate metabolic process response to salt stress |
Stem | |||||
0407 | 269 | O65396 | Glycine cleavage T-protein family | Mitochondrion | glycine decarboxylation via glycine cleavage system response to cadmium ion |
1405 | 229 | B9DHX4 | Malate dehydrogenase | carbohydrate metabolic process | |
0315 | 194 | Q56YR4 | aspartate aminotransferase | Multiple | Biosynthetic process |
0203 | 229 | A0A178UUR9 | VDAC2 | Mitochondrial outer membrane | voltage-gated anion channel |
2201 | 169 | Q8LC43 | Atpm24.1 glutathione S transferase | Cytosol/ER | response to bacteria response to abiotic stress |
1501 | 49 | A0A178VU56 | Succinate-CoA ligase [ADP-forming] subunit beta | Mitochondrion | tricarboxylic acid cycle |
0317 | 352 | Q9FWA3 | 6-phosphogluconate dehydrogenase family protein | Cytosol/Peroxisome | D-gluconate metabolic process response to salt stress |
0313 | 49 | A0A178VDL9 | Pectin methyl esterase 3 | Cell Wall | Cell wall modification |
0704 | 550 | O50008 | methionine synthase | Cytoplasm | response to cadmium ion response to salt stress |
1403 | 551 | P46645 | aspartate aminotransferase 2 | Cytoplasm | 2-oxoglutarate metabolic process |
2402 | 191 | Q944G9 | Fructose-bisphosphate aldolase 2 | Chloroplast stroma | gluconeogenesis response to abscisic acid/response to cadmium ion |
0401 | 170 | Q96533 | glutathione-dependent formaldehyde dehydrogenase | Cytoplasm | ethanol oxidation |
1715 | 197 | Q8RWV0 | Transketolase-1 | chloroplast stroma | pentose-phosphate shunt response to cadmium ion/response to salt stress |
0001 | 111 | A0A178VBH5 | PSBO2 | Chloroplast thylakoid | photosystem II assembly |
2908 | 334 | Q93ZF2 | putative 2,3-bisphosphoglycerate-independent phosphoglycerate mutase | Cytoplasm | glucose catabolic process |
3001 | 168 | Q8LC43 | Atpm24.1 glutathione S transferase | Cytosol/ER | response to bacteria response to abiotic stress |
0210 | 76 | O24616 | Proteasome subunit alpha type-7-B | Nucleus/Cytoplasm | proteasomal protein catabolic process |
1210 | 127 | Q42029 | photosystem II subunit P-1 | chloroplast thylakoid | Photosynthesis defense response to bacterium |
SSP | Mascot Score | UniProt Accession | Protein Identity | GO Localization | GO Biological Process |
---|---|---|---|---|---|
Leaves | |||||
1213 | 259 | A0A178VKK2 | Glyceraldehyde-3-phosphate dehydrogenase | glucose metabolic process | |
1103 | 138 | A0A0K1CVP8 | Ribulose bisphosphate carboxylase large chain | Chloroplast | Photorespiration |
1303 | 232 | A0A178VKK2 | Glyceraldehyde 3-phosphate dehydrogenase A subunit | glucose metabolic process | |
1402 | 138 | P22954 | dnaK-type molecular chaperone hsc70.1—like, partial | Nucleus Cytoplasm | cellular response to heat response to multiple stresses |
1212 | 213 | A0A178VKK2 | Glyceraldehyde-3-phosphate dehydrogenase | glucose metabolic process | |
0105 | 200 | O65396 | Glycine cleavage T-protein family | Mitochondrion | glycine decarboxylation via glycine cleavage system response to cadmium ion |
1210 | 137 | P25856 | Glyceraldehyde 3-phosphate dehydrogenase A subunit | Chloroplast | glucose metabolic process response to cold |
0103 | 82 | F4KDZ4 | Peroxisomal NAD-malate dehydrogenase 2 | Peroxisome | carbohydrate metabolic process |
0508 | 99 | P25697 | Phosphoribulokinase, chloroplastic | Chloroplast | defense response to bacterium response to cold |
Stem | |||||
8008 | 40 | P25697 | Phosphoribulokinase, chloroplastic | Chloroplast | Defense response to bacteria Response to cold |
2301 | 115 | P06525 | Alcohol dehydrogenase class-P | Cytoplasm | Response to multiple abiotic stresses |
6001 | 47 | P31265 | translationally controlled tumor protein-like protein | Cytosol | Auxin homeostasis Response to multiple stresses |
4803 | 481 | O23654 | vacuolar ATP synthase subunit A | Vacuole | ATP hydrolysis coupled proton transport Response to salt stress |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zagorchev, L.; Du, Z.; Shi, Y.; Teofanova, D.; Li, J. Cuscuta australis Parasitism-Induced Changes in the Proteome and Photosynthetic Parameters of Arabidopsis thaliana. Plants 2022, 11, 2904. https://doi.org/10.3390/plants11212904
Zagorchev L, Du Z, Shi Y, Teofanova D, Li J. Cuscuta australis Parasitism-Induced Changes in the Proteome and Photosynthetic Parameters of Arabidopsis thaliana. Plants. 2022; 11(21):2904. https://doi.org/10.3390/plants11212904
Chicago/Turabian StyleZagorchev, Lyuben, Zhaokui Du, Yongbin Shi, Denitsa Teofanova, and Junmin Li. 2022. "Cuscuta australis Parasitism-Induced Changes in the Proteome and Photosynthetic Parameters of Arabidopsis thaliana" Plants 11, no. 21: 2904. https://doi.org/10.3390/plants11212904
APA StyleZagorchev, L., Du, Z., Shi, Y., Teofanova, D., & Li, J. (2022). Cuscuta australis Parasitism-Induced Changes in the Proteome and Photosynthetic Parameters of Arabidopsis thaliana. Plants, 11(21), 2904. https://doi.org/10.3390/plants11212904