Native Rhizobia Improve Plant Growth, Fix N2, and Reduce Greenhouse Emissions of Sunnhemp More than Commercial Rhizobia Inoculants in Florida Citrus Orchards
Abstract
:1. Introduction
2. Results
2.1. REP-PCR, 16S rRNA, recA, glnII, and atpD Phylogenetic Analyses
2.2. nodC and nifH Phylogenetic Analyses
2.3. N2-Fixation Rates and Nitrous Oxide and Dinitrogen Emissions from Free-Living Cells and Nodules
2.4. Plant Nodulation and Inoculation Assays
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Sample Collection and Rhizobia Trapping Experiment
5.2. Isolation of Bacteria from Nodules and Culture Conditions
5.3. DNA Isolation and Quantification
5.4. REP-PCR Fingerprinting
5.5. PCR Amplifications
5.6. Plant Nodulation Tests
5.7. Acetylene Reduction Activity (ARA)
5.8. N2O and N2 Emissions
5.9. Plant Inoculation Assays
5.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tonitto, C.M.; David, M.B.; Drinkwater, L.E. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics. Agric. Ecosyst. Environ. 2006, 112, 58–72. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover Crops and ecosystem services: Insights from studies in temperate soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef] [Green Version]
- Kaye, J.P.; Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain Dev. 2017, 37, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Morugán-Coronado, A.; Linares, C.; Gómez-López, M.D.; Faz, Á.; Zornoza, R. The impact of intercropping, tillage and fertilizer type on soil and crop yield in fruit orchards under Mediterranean conditions: A meta-analysis of field studies. Agric. Syst. 2020, 178, 102736. [Google Scholar] [CrossRef]
- Castellano-Hinojosa, A.; Strauss, S.L. Impact of cover crops on the soil microbiome of tree crops. Microorganisms 2020, 8, 328. [Google Scholar] [CrossRef] [Green Version]
- Peix, A.; Ramírez-Bahena, M.H.; Velázquez, E.; Bedmar, E.J. Bacterial associations with legumes bacterial associations with legumes. Crit. Rev. Plant Sci. 2015, 34, 17–42. [Google Scholar] [CrossRef]
- Andrews, M.; Andrews, M.E. Specificity in legume-rhizobia symbioses. Int. J. Mol. Sci. 2017, 18, 705. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Carvalhais, L.C.; Crawford, M.; Singh, E.; Dennis, P.G.; Pieterse, C.M.J.; Schenk, P.M. Inner plant values: Diversity, colonization and benefits from endophytic bacteria. Front. Microbiol. 2017, 8, 2552. [Google Scholar] [CrossRef]
- Ríos-Ruiz, W.F.; Valdez-Nuñez, R.A.; Bedmar, E.J.; Castellano-Hinojosa, A. Utilization of endophytic bacteria isolated from legume root nodules for plant growth promotion. In Field Crops: Sustainable Management by PGPR. Sustainable Development and Biodiversity; Maheshwari, D., Dheeman, S., Eds.; Springer: Cham, Switzerland, 2019; pp. 145–176. [Google Scholar]
- Oldroyd, G.E.D. Speak, friend, and enter: Signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 2013, 11, 252–263. [Google Scholar] [CrossRef]
- Laguerre, G.; Nour, S.M.; Macheret, V.; Sanjuan, J.; Drouin, P.; Amarger, N. Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 2001, 147, 981–993. [Google Scholar] [CrossRef]
- Rivas, R.; Laranjo, M.; Mateos, P.F.; Oliveira, S.; Martínez-Molina, E.; Velázquez, E. Strains of Mesorhizobium amorphae and Mesorhizobium tianshanense, carrying symbiotic genes of common chickpea endosymbiotic species, constitute a novel biovar (ciceri) capable of nodulating Cicer arietinum. Lett. Appl. Microbiol. 2007, 44, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Xu, R.; Canadell, J.G.; Thompson, R.L.; Winiwarter, W.; Suntharalingam, P.; Davidson, E.A.; Ciais, P.; Jackson, R.B.; Janssens-Maenhout, G.; et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef]
- Obando, M.; Correa-Galeote, D.; Castellano-Hinojosa, A.; Gualpa, J.; Hidalgo, A.; Alché, J.D.; Bedmar, E.; Cassán, F. Analysis of the denitrification pathway and greenhouse gases emissions in Bradyrhizobium sp. strains used as biofertilizers in South America. J. Appl. Microbiol. 2019, 127, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Bueno, E.; Mesa, S.; Bedmar, E.J.; Richardson, D.J.; Delgado, M.J. bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: Redox control. Antioxid. Redox Signal 2012, 16, 819–852. [Google Scholar] [CrossRef] [Green Version]
- Woliy, K.; Degefu, T.; Frostegård, Å. Host range and symbiotic effectiveness of N2O reducing Bradyrhizobium strains. Front. Microbiol. 2019, 10, 2746. [Google Scholar] [CrossRef] [PubMed]
- Kebede, E. Competency of rhizobial inoculation in sustainable agricultural production and biocontrol of plant diseases. Front. Sustain. Food Syst. 2021, 5, 298. [Google Scholar] [CrossRef]
- Takács, T.; Cseresnyés, I.; Kovács, R.; Parádi, I.; Kelemen, B.; Szili-Kovács, T.; Füzy, A. Symbiotic effectivity of dual and tripartite associations on soybean (Glycine max L. Merr.) cultivars inoculated with Bradyrhizobium japonicum and AM fungi. Front. Plant Sci. 2018, 871, 1631. [Google Scholar] [CrossRef]
- Aserse, A.A.; Markos, D.; Getachew, G.; Yli-Halla, M.; Lindström, K. Rhizobial inoculation improves drought tolerance, biomass and grain yields of common bean (Phaseolus vulgaris L.) and soybean (Glycine max L.) at Halaba and Boricha in Southern Ethiopia. Arch. Agron. Soil Sci. 2019, 6, 488–501. [Google Scholar] [CrossRef]
- Meghvansi, M.K.; Prasad, K.; Mahna, S.K. Symbiotic potential, competitiveness and compatibility of indigenous Bradyrhizobium japonicum isolates to three soybean genotypes of two distinct agro-climatic regions of Rajasthan, India. Saudi J. Biol. Sci. 2010, 17, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-Suárez, M.; Andersen, S.U.; Poole, P.S.; Sánchez-Cañizares, C. Competition, nodule occupancy, and persistence of inoculant strains: Key factors in the Rhizobium-legume symbioses. Front. Plant Sci. 2021, 12, 1684. [Google Scholar] [CrossRef]
- Mathu, S.; Herrmann, L.; Pypers, P.; Matiru, V.; Mwirichia, R.; Lesueur, D. Potential of indigenous bradyrhizobia versus commercial inoculants to improve cowpea (Vigna unguiculata L. walp.) and green gram (Vigna radiata L. wilczek.) yields in Kenya. Soil Sci. Plant Nutr. 2012, 58, 750–763. [Google Scholar] [CrossRef]
- Koskey, G.; Mburu, S.W.; Njeru, E.M.; Kimiti, J.M.; Ombori, O.; Maingi, J.M. Potential of native rhizobia in enhancing nitrogen fixation and yields of climbing beans (Phaseolus vulgaris L.) in contrasting environments of eastern Kenya. Front. Plant Sci. 2017, 8, 443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simbine, M.G.; Mohammed, M.; Jaiswal, S.K.; Dakora, F.D. Functional and genetic diversity of native rhizobial isolates nodulating cowpea (Vigna unguiculata L. Walp.) in Mozambican soils. Sci. Rep. 2021, 11, 12747. [Google Scholar] [CrossRef] [PubMed]
- Polhill, R.M. Crotalaria in Africa and Madagascar; Balkema, A.A., Ed.; CRC Press: Rotterdam, The Netherlands, 1992. [Google Scholar]
- Castellano-Hinojosa, A.; Martens-Habbena, W.; Smyth, A.R.; Kadyampakeni, D.M.; Strauss, S.L. Short-term effects of cover crops on soil properties and the abundance of N-cycling genes in citrus agroecosystems. Appl. Soil Ecol. 2022, 172, 104341. [Google Scholar] [CrossRef]
- Doignon-Bourcier, F.; Willems, A.; Coopman, R.; Laguerre, G.; Gillis, M.; De Lajudie, P. Genotypic characterization of Bradyrhizobium strains nodulating small Senegalese legumes by 16S-23S rRNA intergenic gene spacers and amplified fragment length polymorphism fingerprint analyses. Appl. Environ. Microbiol. 2000, 66, 3987–3997. [Google Scholar] [CrossRef] [Green Version]
- Aserse, A.A.; Räsänen, L.A.; Aseffa, F.; Hailemariam, A.; Lindström, K. Phylogenetically diverse groups of Bradyrhizobium isolated from nodules of Crotalaria spp., Indigofera spp., Erythrina brucei and Glycine max growing in Ethiopia. Mol. Phylogenet. Evol. 2012, 65, 595–609. [Google Scholar] [CrossRef]
- Sy, A.; Giraud, E.; Samba, R.; de Lajudie, P.; Gillis, M.; Breyfus, B. Nodulation of certain legumes of the genus Crotalaria by the new species Methylobacterium. Can. J. Microbiol. 2001, 47, 503–508. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Vicente, J.L.; García-Ruiz, R.; Francaviglia, R.; Aguilera, E.; Smith, P. Soil carbon sequestration rates under Mediterranean woody crops using recommended management practices: A meta-analysis. Agric. Ecosyst. Environ. 2016, 235, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Frąc, M.; Lipiec, J.; Usowicz, B.; Oszust, K.; Brzezińska, M. Structural and functional microbial diversity of sandy soil under cropland and grassland. Peer J. 2020, 8, e9501. [Google Scholar] [CrossRef]
- Schneider, M.; De Bruijn, F.J. Rep-PCR mediated genomic fingerprinting of rhizobia and computer-assisted phylogenetic pattern analysis. World J. Microbiol. Biotechnol. 1996, 12, 163–174. [Google Scholar] [CrossRef]
- Liu, X.Y.; Wang, E.T.; Li, Y.; Chen, W.X. Diverse bacteria isolated from root nodules of Trifolium, Crotalaria and Mimosa grown in the subtropical regions of China. Arch. Microbiol. 2007, 188, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ormeño-Orrillo, E.; Menna, P.; Almeida, L.G.P.; Ollero, F.J.; Nicolás, M.F.; Pains Rodrigues, E.; Shigueyoshi Nakatani, A.; Silva Batista, J.S.; Oliveira Chueire, L.M.; Souza, R.C.; et al. Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genom. 2012, 13, 735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, R.A.; Roge, M.A.; López-López, A.; Ormeño-Orrillo, E.; Barcellos, F.G.; Martínez, J.; Thompson, F.L.; Martínez-Romero, E.; Hungria, M. Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov. Int. J. Syst. Evol. Microbiol. 2012, 62, 1179–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hungria, M.; Andrade, D.D.S.; Chueire, L.M.D.O.; Probanza, A.; Guttierrez-Mañero, F.J.; Megías, M. Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol. Biochem. 2000, 32, 1515–1528. [Google Scholar] [CrossRef]
- Hungria, M.; Campo, R.J.; Mendes, I.C. Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biol. Fertil. Soils 2003, 39, 88–93. [Google Scholar] [CrossRef]
- Samba, R.T.; de Lajudiel, P.; Gillis, M.; Neyra, M.; Barreto, M.M.P.; Dreyfus, B. Diversity of rhizobia nodulating Crotalaria spp. from Senegal. Symbiosis 1999, 27, 259–268. [Google Scholar]
- Jaiswal, S.K.; Dakora, F.D. Widespread distribution of highly adapted Bradyrhizobium species nodulating diverse legumes in Africa. Front. Microbiol. 2019, 10, 310. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.Y.; Kan, F.L.; Wang, E.T.; Wei, G.H.; Chen, W.X. Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int. J. Syst. Evol. Microbiol. 2002, 52, 2219–2230. [Google Scholar]
- Kaneko, T.; Maita, H.; Hirakawa, H.; Uchiike, N.; Minamisawa, K.; Watanabe, A.; Sato, S. Complete genome sequence of the soybean symbiont Bradyrhizobium japonicum strain USDA6T. Genes 2011, 2, 763. [Google Scholar] [CrossRef]
- Palmer, K.M.; Young, J.P.W. Higher diversity of Rhizobium leguminosarum biovar viciae populations in arable soils than in grass soils. Appl. Environ. Microbiol. 2000, 66, 2445–2450. [Google Scholar] [CrossRef] [Green Version]
- Stȩpkowski, T.; Hughes, C.E.; Law, I.J.; Markiewicz, Ł.; Gurda, D.; Chlebicka, A.; Moulin, L. Diversification of lupine Bradyrhizobium strains: Evidence from nodulation gene trees. Appl. Environ. Microbiol. 2007, 73, 3254–3264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wielbo, J.; Podleśna, A.; Kidaj, D.; Podleśny, J.; Skorupska, A. The diversity of pea microsymbionts in various types of soils and their effects on plant host productivity. Microbes Environ. 2015, 30, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.E.; Fischer, S.I.; Magris, S.; Mori, G.B. Isolation and characterization of bacteria from the rhizosphere of wheat. World J. Microbiol. Biotechnol. 2007, 23, 895–903. [Google Scholar] [CrossRef]
- Verma, J.P.; Yadav, J.; Tiwari, K.N.; Kumar, A. Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol. Eng. 2013, 51, 282–286. [Google Scholar] [CrossRef]
- Monza, J.; Irisarri, P.; Díaz, P.; Delgado, M.J.; Mesa, S.; Bedmar, E.J. Denitrification ability of rhizobial strains isolated from Lotus sp. Antonie Van Leeuwenhoek 2006, 89, 479–484. [Google Scholar] [CrossRef]
- Zhong, Z.; Lemke, R.L.; Nelson, L.M. Nitrous oxide emissions associated with nitrogen fixation by grain legumes. Soil Biol. Biochem. 2009, 41, 2283–2291. [Google Scholar] [CrossRef]
- Rösch, C.; Mergel, A.; Bothe, H. Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl. Environ. Microbiol. 2002, 68, 3818–3829. [Google Scholar] [CrossRef] [Green Version]
- Hallin, S.; Philippot, L.; Löffler, F.E.; Sanford, R.A.; Jones, C.M. Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol. 2018, 26, 43–55. [Google Scholar] [CrossRef]
- Sameshima-Saito, R.; Chiba, K.; Minamisawa, K. Correlation of denitrifying capability with the existence of nap, nir, nor and nos genes in diverse strains of soybean bradyrhizobia. Microbes Environ. 2006, 21, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Rigaud, J.R.; Puppo, A. Indole 3 acetic acid catabolism by soybean bacteroids. J. Gen. Microbiol. 1975, 88, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Vincent, J.M. A Manual for the Practical Study of Root Nodule Bacteria; Blackwell Scientific Publications: Oxford, UK, 1970. [Google Scholar]
- Mellal, H.; Yacine, B.; Boukaous, L.; Khouni, S.; Benguedouar, A.; Castellano-Hinojosa, A.; Bedmar, E.J. Phylogenetic diversity of Bradyrhizobium strains isolated from root nodules of Lupinus angustifolius grown wild in the North East of Algeria. Syst. Appl. Microbiol. 2019, 42, 397–402. [Google Scholar] [CrossRef] [PubMed]
- De Bruijn, F.J. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl. Environ. Microbiol. 1992, 58, 2180–2187. [Google Scholar] [CrossRef] [PubMed]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Vinuesa, P.; Silva, C.; Werner, D.; Martínez-Romero, E. Population genetics and phylogenetic inference in bacterial molecular systematics: The roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol. Phylogenet. Evol. 2005, 34, 29–54. [Google Scholar] [CrossRef] [PubMed]
- Vinuesa, P.; Rojas-Jiménez, K.; Contreras-Moreira, B.; Mahna, S.; Prasad, B.N.; Moe, H.; Selvaraju, S.B.; Thierfelder, H.; Werner, D. Multilocus sequence analysis for assessment of the biogeography and evolutionary genetics of four Bradyrhizobium species that nodulate soybeans on the Asiatic continent. Appl. Environ. Microbiol. 2008, 74, 6987–6996. [Google Scholar] [CrossRef] [Green Version]
- Tong, W.; Li, X.; Huo, Y.; Zhang, L.; Cao, Y.; Wang, E.; Chen, W.; Tao, S.; Wei, G. Genomic insight into the taxonomy of Rhizobium genospecies that nodulate Phaseolus vulgaris. Syst. Appl. Microbiol. 2018, 41, 300–310. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef] [Green Version]
- Rogers, J.S.; Swofford, D.L. Fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Syst. Biol. 1998, 47, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Castellano-Hinojosa, A.; Correa-Galeote, D.; Palau, J.; Bedmar, E.J. Isolation of N2-fixing rhizobacteria from Lolium perenne and evaluating their plant growth promoting traits. J. Basic Microbiol. 2016, 56, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Castellano-Hinojosa, A.; González-López, J.; Bedmar, E.J. Distinct effect of nitrogen fertilisation and soil depth on nitrous oxide emissions and nitrifiers and denitrifiers abundance. Biol. Fertil. Soils 2018, 54, 829–840. [Google Scholar] [CrossRef]
Strain * | REP-PCR Pattern | Closest Relative Species According to 16S rRNA Gene Sequence | % Similarity (According to EzTaxon-e) |
---|---|---|---|
COA1, COA2 | 1 | Bacillus paranthracis | 99.95 |
COA3 | 2 | Rhizobium sp./R. tropici | 99.87 |
COA4 | 3 | Bacillus paramycoides | 100 |
COA5 | 4 | Herbaspirillum seropedicae | 99.85 |
COA6 | 5 | Rhizobium sp./R. tropici | 99.78 |
CO7, COA8 | 6 | Bacillus cereus | 100 |
COA9, COA10, COA11 | 7 | Bacillus nitratoreducens | 99.84 |
COA12 | 8 | Bacillus sp. | 99.10 |
COA13 | 9 | Paenibacillus polymyxa | 99.58 |
COB1 | 10 | Burkholderia cepacia | 99.90 |
COB2, COB7 | 11 | Burkholderia territori | 99.85 |
COB3, COB9 | 12 | Bacillus megaterium | 100 |
COB4, COB10 | 13 | Herbaspirillum robiniae | 99.90 |
COB5 | 14 | Rhizobium sp./R. tropici | 99.85 |
COB6 | 15 | Rhizobium sp./R. tropici | 99.82 |
COB8, COB11 | 16 | Paenarthrobacter nicotinovorans | 99.84 |
COB12, COB13 | 17 | Bacillus sp. | 100 |
COB14, COB15, COB17 | 18 | Bacillus aryabhattai | 99.95 |
COB16, COB18, COB19 | 19 | Paenibacillus polymyxa | 99.85 |
MI1, MI3, MI4 | 20 | Bacillus sp. | 99.85 |
MI2, MI5 | 21 | Paenibacillus sp. | 99.70 |
MI6, MI10, MI15 | 22 | Burkholderia cepacia | 99.84 |
MI7, MI8, MI13 | 23 | Bacillus sp. | 99.90 |
MI9, MI12 | 24 | Bacillus sp. | 100 |
MI11, MI14 | 25 | Bacillus aryabhattai | 100 |
MI13 | 26 | Bradyrhizobium sp. | 99.90 |
A. | |||
---|---|---|---|
Free-Living Cells | |||
Rhizobacterial Strain | N2-Fixation (nmol C2H4 h−1 mL−1) | N2O Production (nmol N2O h−1 mL−1) | N2 Production (nmol N2O h−1 mL−1) |
COA3 | 18.9 ± 2.4 a | 23.9 ± 4.2 b | 18.9 ± 1.0 a |
COA6 | 16.9 ± 2.2 a | 25.9 ± 3.7 b | 18.1 ± 1.2 a |
COB5 | 10.9 ± 1.0 b | 27.9 ± 3.1 b | 17.9 ± 1.1 a |
COB6 | 10.5 ± 1.2 b | 24.9 ± 3.3 b | 17.7 ± 1.2 a |
MI13 | 11.9 ± 3.8 b | 45.9 ± 3.2 a | 16.9 ± 1.2 a |
B. | |||
Nodules | |||
Rhizobacterial Strain/Treatment | N2-Fixation (nmol l−1 C2H4 h−1 g Nodule Dry Weight−1) | N2O Production (nmol l−1 N2O h−1 g Nodule Dry Weight−1) | N2 Production (nmol l−1 N2O h−1 g Nodule Dry Weight−1) |
COA3 | 152.7 ± 11.8 a | 12.7 ± 5.6 b | 10.9 ± 0.8 a |
COA6 | 162.7 ± 17.6 a | 11.8 ± 6.7 b | 9.8 ± 0.6 a |
COB5 | 111.7 ± 14.7 b | 12.7 ± 7.8 b | 10.8 ± 0.9 a |
COB6 | 120.7 ± 12.9 b | 15.8 ± 6.9 b | 12.9 ± 0.6 a |
MI13 | 85.7 ± 10.8 c | 41.7 ± 11.5 a | 15.1 ± 0.4 a |
Rhizobacterial Strain | Number of Nodules per Plant | Root Dry Weight (g) | Shoot dry Weight (g) | Total N (mg/g) | Total C (mg/g) |
---|---|---|---|---|---|
COA3 | 65 ± 10 a | 45.8 ± 5.4 a | 19.2 ± 1.4 a | 43.6 ± 1.2 a | 399.1 ± 3.2 a |
COA6 | 69 ± 12 a | 42.8 ± 4.6 a | 18.2 ± 1.3 a | 45.1 ± 1.9 a | 398.1 ± 2.9 a |
COB5 | 42 ± 11 b | 28.8 ± 7.1 b | 14.8 ± 1.1 b | 36.2 ± 0.6 b | 390.6 ± 1.6 b |
COB6 | 44 ± 10 b | 34.7 ± 4.5 b | 15.5 ± 1.3 b | 34.6 ± 1.1 b | 391.5 ± 1.1 b |
MI13 | 48 ± 12 b | 25.3 ± 3.5 c | 12.3 ± 1.0 c | 29.1 ± 0.6 c | 384.6 ± 1.6 c |
Negative control | - | 20.8 ± 2.1 c | 11.6 ± 1.0 c | 20.6 ± 0.5 d | 360.6 ± 1.5 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castellano-Hinojosa, A.; Mora, C.; Strauss, S.L. Native Rhizobia Improve Plant Growth, Fix N2, and Reduce Greenhouse Emissions of Sunnhemp More than Commercial Rhizobia Inoculants in Florida Citrus Orchards. Plants 2022, 11, 3011. https://doi.org/10.3390/plants11223011
Castellano-Hinojosa A, Mora C, Strauss SL. Native Rhizobia Improve Plant Growth, Fix N2, and Reduce Greenhouse Emissions of Sunnhemp More than Commercial Rhizobia Inoculants in Florida Citrus Orchards. Plants. 2022; 11(22):3011. https://doi.org/10.3390/plants11223011
Chicago/Turabian StyleCastellano-Hinojosa, Antonio, Christoph Mora, and Sarah L. Strauss. 2022. "Native Rhizobia Improve Plant Growth, Fix N2, and Reduce Greenhouse Emissions of Sunnhemp More than Commercial Rhizobia Inoculants in Florida Citrus Orchards" Plants 11, no. 22: 3011. https://doi.org/10.3390/plants11223011
APA StyleCastellano-Hinojosa, A., Mora, C., & Strauss, S. L. (2022). Native Rhizobia Improve Plant Growth, Fix N2, and Reduce Greenhouse Emissions of Sunnhemp More than Commercial Rhizobia Inoculants in Florida Citrus Orchards. Plants, 11(22), 3011. https://doi.org/10.3390/plants11223011