Cultivation of Lemna Minor on Industry-Derived, Anaerobically Digested, Dairy Processing Wastewater
Abstract
:1. Introduction
2. Results
2.1. Physicochemical Analysis of AD-DPW
2.2. The Effect of Varying AD-DPW Concentration on L. minor Growth
2.3. Growth of L. minor on Varying Concentrations of AD-DPW over a Six-Week Period
2.4. Growth of L. minor in Semi-Outdoor, Recirculating Systems
2.5. Nutrient Depletion and Removal Rates in the Semi-Outdoor, Recirculatory System
3. Discussion
3.1. Presence in Appropriate Quantities of All Essential Macro- and Micronutrients
3.2. Low BOD and COD Levels to Avoid Excessive Microbial Growth
3.3. A Favourable Combination of pH and Ammonia for Plant Growth
3.4. A Suitable Calcium-to-Magnesium Ratio for Growth
4. Materials and Methods
4.1. Stock Cultivation and Anaerobically Digested DPW (AD-DPW) Source
4.2. Experimental Designs
4.2.1. The Effect of Varying AD-DPW Concentrations on L. minor Growth
4.2.2. Growth of L. minor on Varying Concentrations of AD-DPW over a Six-Week Period
4.2.3. Growth of L. minor in Semi-Outdoor Recirculating Systems
4.3. Data Collection
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Water Scarcity. 2007. Available online: https://www.un.org/waterforlifedecade/scarcity.shtml (accessed on 20 May 2022).
- Evans, R.G.; Sadler, E.J. Methods and technologies to improve efficiency of water use. J. Water Resour. Res. 2008, 44, W00E04. [Google Scholar] [CrossRef]
- Wu, W.D.; Ju, X.; Li, C.; Xia, X.H.; Chen, G.Q. Water footprint of thermal power in China: Implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system. J. Energy Policy 2019, 132, 452–461. [Google Scholar] [CrossRef]
- FAO. Progress on Change in Water-Use Efficiency: Global Status and Acceleration Needs for SDG Indicators 6.4.1; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Wang, Y.; Serventi, L. Sustainability of dairy and soy processing: A review on wastewater recycling. Clean. Prod. 2019, 237, 117821. [Google Scholar] [CrossRef]
- Baskaran, K.; Palmowski, L.M.; Watson, B.M. Wastewater reuse and treatment options for the dairy industry. Water Sci. Technol. Water Supply 2003, 3, 85–91. [Google Scholar] [CrossRef]
- Ahmad, T.; Aadil, R.M.; Ahmed, H.; Rahman, U.U.; Soares, B.C.V.; Souza, S.L.Q.; Pilmentel, T.C.; Scudino, H.; Guimaraes, J.T.; Esmerino, E.A.; et al. Treatment and utilization of dairy industrial waste: A review. Trends Food Sci. Technol. 2019, 88, 361–372. [Google Scholar] [CrossRef]
- Furness, M.; Bello-Mendoza, R.; Dassonvalle, J.; Chamy-Maggi, R. Building the ‘bio-factory’: A bibliometric analysis of circular economies and life cycle sustainability assessment in wastewater treatment. J. Clean. Prod. 2021, 323, 129127. [Google Scholar] [CrossRef]
- Bol, R.; Gruau, G.; Mellander, P.-E.; Dupas, R.; Bechmann, M.; Skarbovik, E.; Bieroza, M.; Djodijic, F.; Glendell, M.; Jordan, P.; et al. Challenges of Reducing Phosphorous Based Water Eutrophication in the Agricultural Landscapes of Northwest Europe. Front. Mar. Sci. 2018, 5, 276. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, F.; Prazeres, A.R.; Rivas, J. Cheese whey wastewater: Characterization and treatment. Sci. Total Environ. 2013, 445, 385–396. [Google Scholar] [CrossRef]
- Guo, J.; Peng, Y.; Ni, B.J.; Han, X.; Fan, L.; Yuan, Z. Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microb. Cell Factories 2015, 14, 33. [Google Scholar] [CrossRef]
- Campos, J.L.; Crutchik, D.; Franchi, Ó.; Pavissich, J.P.; Belmonte, M.; Pedrouso, A.; Mosquera-Corral, A.; Val del Río, Á. Nitrogen and Phosphorous Recovery from Anaerobically Pretreated Agro-Food Wastes: A Review. Front. Sustain. Food Syst. 2019, 2, 91. [Google Scholar] [CrossRef] [Green Version]
- Yonar, T.; Sivrioglu, O.; Ozengin, N. Physico-Chemical Treatment of Dairy Industry Wastewaters: A Review. Technological Approaches for Novel Applications in Dairy Processing; IntechOpen: London, UK, 2018. [Google Scholar]
- Elser, J.; Bennett, E. A broken biogeochemical cycle. Nature 2011, 478, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Walsh, É.; Paolacci, S.; Burnell, G.; Jansen, M.A.K. The importance of the calcium-to-magnesium ratio for phytoremediation of dairy industry wastewater using the aquatic plant Lemna minor L. Int. J. Phytoremediation 2020, 22, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Bog, M.; Appenroth, K.J.; Sree, S.K. Key to the determination of taxa of Lemnaceae: An update. Nord. J. Bot. 2020, 38. [Google Scholar] [CrossRef]
- Ziegler, P.; Adelmann, K.; Zimmer, S.; Schmidt, C.; Appenroth, K.J. Relative in vitro growth rates of duckweeds (Lemnaceae)—The most rapidly growing higher plants. Plant Biol. 2015, 17, 33–41. [Google Scholar] [CrossRef]
- Zhao, Z.; Shi, H.; Liu, Y.; Zhao, H.; Su, H.; Wang, M.; Zhao, Y. The influence of duckweed species diversity on biomass productivity and nutrient removal efficiency in swine wastewater. Bioresour. Technol. 2014, 167, 383–389. [Google Scholar] [CrossRef]
- Calicioglu, O.; Richard, T.L.; Brennan, R.A. Anaerobic bioprocessing of wastewater-derived duckweed: Maximizing product yields in a biorefinery value cascade. J. Bioresour. Technol. 2019, 289, 121716. [Google Scholar] [CrossRef]
- Cheng, J.; Landesman, L.; Bergmann, B.; Classen, J.J.; Howard, J.W.; Yamamoto, Y.T. Nutrient Removal from swine lagoon liquid by Lemna minor 8627. Trans. Am. Soc. Agric. Eng. 2002, 45, 1003–1010. [Google Scholar] [CrossRef]
- Adhikari, U.; Harrigan, T.; Reinhold, D.M. Use of duckweed-based constructed wetlands for nutrient recovery and pollutant reduction from dairy wastewater. Ecol. Eng. 2015, 78, 6–14. [Google Scholar] [CrossRef]
- Cheng, J.J.; Stomp, A.M. Growing Duckweed to Recover Nutrients from Wastewaters and for Production of Fuel Ethanol and Animal Feed. CLEAN Soil Air Water 2009, 37, 17–26. [Google Scholar] [CrossRef]
- Walsh, É.; Margassery, L.; Coughlan, N.; Broughton, R.; Kühnhold, H.; Fricke, A.; Burnell, G.; O’Mahoney, M.; Wall, D.; Bolger, P.; et al. Innovative Valorisation of Dairy Processing Wastewater Using a Circular Economy Approach (Newtrients); Report No. 441; EPA: Dublin, Ireland, 2022. [Google Scholar]
- Körner, S.; Das, S.K.; Veenstra, S.; Vermaat, J.E. The effect of pH variation at the ammonium/ammonia equilibrium in wastewater and its toxicity to Lemna gibba. J. Aquat. Bot. 2001, 71, 71–78. [Google Scholar] [CrossRef]
- Sree, K.S.; Adelmann, K.; Garcia, C.; Lam, E.; Appenroth, K.-J. Natural variance in salt tolerance and induction of starch accumulation in duckweeds. Planta 2015, 241, 1395–1404. [Google Scholar] [CrossRef] [PubMed]
- Landolt, E.; Kandeler, R. Biosystematic Investigations in the Family of Duckweeds (Lemnaceae), Vol. 4: The Family of Lemnaceae—A Monographic Study, Vol. 2. (Phytochemistry, Physiology, Application, Bibliography); ETH: Zürich, Switserland, 1987. [Google Scholar]
- Wang, W. Toxicity tests of aquatic pollutants by using common duckweed. Environ. Pollut. Ser. B Chem. Phys. 1986, 11, 1–14. [Google Scholar] [CrossRef]
- Lahive, E.; O’Halloran, J.; Jansen, M.A.K. Frond development gradients are a determinant of the impact of zinc on photosynthesis in three species of Lemnaceae. J. Aquat. Bot. 2012, 101, 55–63. [Google Scholar] [CrossRef]
- Paolacci, S.; Harrison, S.; Jansen, M.A.K. A comparative study of the nutrient responses of the invasive duckweed Lemna minuta, and the native, co-generic species Lemna minor. J. Aquat. Bot. 2016, 134, 47–53. [Google Scholar] [CrossRef]
- Chrismadha, T.; Suryono, T.; Magfiroh, M.; Mardiati, Y.; Mulyana, E. Phytoremediation of Maninjau Lake water using Minute Duckweed (Lemna perpusilla Torr.). IOP Conf. Ser. Earth Environ. Sci. 2019, 308, 012021. [Google Scholar] [CrossRef] [Green Version]
- Gil-Pulido, B.; Tarpey, E.; Almeida, E.L.; Finnegan, W.; Zhan, X.; Dobson, A.D.W.; O’Leary, N. Evaluation of dairy processing wastewater in an IASBR system: Aeration rate impacts on performance and microbial ecology. Biotechnol. Rep. 2018, 19, e00263. [Google Scholar] [CrossRef]
- Caicedo, J.R.; Van Der Steen, N.P.; Arce, O.; Gijzen, H.J. Effect of total ammonia nitrogen concentration and pH on growth rates of duckweed (Spirodela polyrrhiza). J. Water Res. 2000, 34, 3829–3835. [Google Scholar] [CrossRef]
- Walsh, É.; Cialis, E.; Dillane, E.; Jansen, M.A.K. Lemnaceae clones collected from a small geographic region display diverse traits relevant for the remediation of wastewater. J. Environ. Technol. Innov. 2022, 28, 102599. [Google Scholar] [CrossRef]
- Körner, S.; Vermaat, J.E. The relative importance of Lemna gibba L.; bacteria and algae for the nitrogen and phosphorus removal in duckweed-covered domestic wastewater. Water Res. 1998, 32, 3651–3661. [Google Scholar] [CrossRef]
- Mohedano, R.A.; Costa, R.H.R.; Tavares, F.A.; Filho, P.B. High nutrient removal rate from swine wastes and protein biomass production by full-scale duckweed ponds. Bioresour. Technol. 2012, 112, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Coughlan, N.E.; Walsh, É.; Bolger, P.; Burnell, G.; O’Leary, N.; O’Mahoney, M.; Paolacci, S.; Wall, D.; Jansen, M.A.K. Duckweed bioreactors: Challenges and opportunities for large-scale indoor cultivation of Lemnaceae. J. Clean. Prod. 2022, 336, 130285. [Google Scholar] [CrossRef]
- Coughlan, N.E.; Walsh, É.; Ahern, R.; Burnell, G.; O’Mahoney, R.; Kuehnhold, H.; Jansen, M.A.K. Flow Rate and Water Depth Alters Biomass Production and Phytoremediation Capacity of Lemna minor. Plants 2022, 11, 2170. [Google Scholar] [CrossRef] [PubMed]
- Grasshoff, K.; Kremling, K.; Ehrhardt, M. Methods of Seawater Analysis, 3rd ed.; John Wiley and Sons: Weinheim, Germany, 2009. [Google Scholar]
- Rice, E.W.; Baird, R.B.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA); American Water Works Association (AWWA); Water Environmental Federation (WEF): Washington, DC, USA, 2005. [Google Scholar]
- Hutner, S.H. Comparative Physiology of Heterotrophic Growth in Higher Plants: Growth and Differentiation in Plants; Iowa State College Press: Ames, IA, USA, 1953; pp. 417–447. [Google Scholar]
- McLay, C.L. The effect of pH on the population growth of three species of duckweed: Spirodela oligorrhiza, Lemna minor and Wolffia arrhiza. Freshw. Biol. 1976, 6, 125–136. [Google Scholar] [CrossRef]
Parameters | 100% AD-DPW c | Min. Required a (mg L−1) | Max. Tolerated a (mg L−1) | Optimal Range for Duckweed a (mg L−1) |
---|---|---|---|---|
pH | 7.9 e | - | - | - |
BOD (mg O2 L−1) | 28.1 | ND b | ND | ND |
COD (mg O2 L−1) | 117 | ND | ND | ND |
Total Solids (g L−1) | 3.29 | ND | ND | ND |
Total Nitrogen (mg N L−1) | 105 | 0.07 | 2101 | 2.8–350 |
Ammonia (mg N L−1) | 95 | ND | 98 | 20–50 d |
Nitrate (mg N L−1) | <0.010 | 3 | >1000 | 3–300 |
Nitrite (mg N L−1) | <0.001 | ND | ND | ND |
Total phosphorus (mg P L−1) | 27.7 | 0.003 | 310 | 0.3–54.2 |
Orthophosphate (mg P L−1) | 24.8 | 0.003 | 310 | 0.1–50 |
Chloride (mg Cl− L−1) | 1319 | 0.035 | 3545 | 0.035–350 |
Sulphate (mg SO42− L−1) | ND | 0.32 | 1924 | 16–641 |
Potassium (mg K L−1) | 77 | 1.95 | 1564 | 20–782 |
Sodium (mg Na L−1) | 1040 | 0 | 4600 | 0–230 |
Calcium (mg Ca L−1) | 112 | 0.4 | 1600 | 8–800 |
Magnesium (mg Mg L−1) | 11.6 | 0.1 | 800 | 1.2–240 |
Iron (mg Fe L−1) | 0.42 | 0.06 | 56 | 0.06–11 |
Zinc (mg Zn L−1) | 0.54 | 0.04 | 523 | 0.13–13 |
Copper (mg Cu L−1) | 0.01 | 0.006 | 64 | 0.006–3.8 |
Manganese (mg Mn L−1) | 0.03 | 0.005 | 55 | 0.05–5.5 |
Nickel (mg Ni L−1) | ND | 0 | 1 | 0–0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Mahoney, R.; Coughlan, N.E.; Walsh, É.; Jansen, M.A.K. Cultivation of Lemna Minor on Industry-Derived, Anaerobically Digested, Dairy Processing Wastewater. Plants 2022, 11, 3027. https://doi.org/10.3390/plants11223027
O’Mahoney R, Coughlan NE, Walsh É, Jansen MAK. Cultivation of Lemna Minor on Industry-Derived, Anaerobically Digested, Dairy Processing Wastewater. Plants. 2022; 11(22):3027. https://doi.org/10.3390/plants11223027
Chicago/Turabian StyleO’Mahoney, Rachel, Neil E. Coughlan, Éamonn Walsh, and Marcel A. K. Jansen. 2022. "Cultivation of Lemna Minor on Industry-Derived, Anaerobically Digested, Dairy Processing Wastewater" Plants 11, no. 22: 3027. https://doi.org/10.3390/plants11223027
APA StyleO’Mahoney, R., Coughlan, N. E., Walsh, É., & Jansen, M. A. K. (2022). Cultivation of Lemna Minor on Industry-Derived, Anaerobically Digested, Dairy Processing Wastewater. Plants, 11(22), 3027. https://doi.org/10.3390/plants11223027