Towards a Discovery of a Zinc-Dependent Phosphate Transport Road in Plants
Abstract
:1. Introduction
2. Pi Uptake Is the First Limiting Step for Pi Accumulation
3. Zinc Starvation Bypasses the Pi-Deficiency Signaling Pathway
4. The Growing Role of Lipids in Regulating Pi Homeostasis in Plants, but Which One?
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shahzad, Z.; Rouached, H. Protecting plant nutrition from the effects of climate change. Curr. Biol. 2022, 32, R725–R727. [Google Scholar] [CrossRef]
- Sandhu, J.; Rouached, H. All Roads Lead to PHO1. Nat. Plants 2022, 8, 986–987. [Google Scholar] [CrossRef] [PubMed]
- Bouain, N.; Cho, H.; Sandhu, J.; Tuiwong, P.; Prom-u-thai, C.; Zheng, L.; Shahzad, Z.; Rouached, H. Plant Growth Stimulation by High CO2 Depends on Phosphorus Homeostasis in Chloroplasts. Curr. Biol. 2022, 32, 4493–4500.e5. [Google Scholar] [CrossRef] [PubMed]
- Nussaume, L.; Kanno, S.; Javot, H.; Marin, E.; Pochon, N.; Ayadi, A.; Nakanishi, T.M.; Thibaud, M.C. Phosphate Import in Plants: Focus on the PHT1 Transporters. Front. Plant Sci. 2011, 2, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heuer, S.; Gaxiola, R.; Schilling, R.; Herrera-Estrella, L.; López-Arredondo, D.; Wissuwa, M.; Delhaize, E.; Rouached, H. Improving phosphorus use efficiency: A complex trait with emerging opportunities. Plant J. 2017, 90, 868–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Graedel, T.E. The Potential for Mining Trace Elements from Phosphate Rock. J. Clean. Prod. 2015, 91, 337–346. [Google Scholar] [CrossRef]
- Approaching Peak Phosphorus. Nat. Plants 2022, 8, 979. [CrossRef]
- Everaert, M.; Degryse, F.; McLaughlin, M.J.; de Vos, D.; Smolders, E. Agronomic Effectiveness of Granulated and Powdered P-Exchanged Mg-Al LDH Relative to Struvite and MAP. J. Agric. Food Chem. 2017, 65, 6736–6744. [Google Scholar] [CrossRef]
- Mao, X.; Lu, Q.; Mo, W.; Xin, X.; Chen, X.; He, Z. Phosphorus Availability and Release Pattern from Activated Dolomite Phosphate Rock in Central Florida. J. Agric. Food Chem. 2017, 65, 4589–4596. [Google Scholar] [CrossRef]
- Khan, G.A.; Bouraine, S.; Wege, S.; Li, Y.; de Carbonnel, M.; Berthomieu, P.; Poirier, Y.; Rouached, H. Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1; H3 in Arabidopsis. J. Exp. Bot. 2013, 65, 871–884. [Google Scholar] [CrossRef]
- Barragán-Rosillo, A.C.; Peralta-Alvarez, C.A.; Ojeda-Rivera, J.O.; Arzate-Mejía, R.G.; Recillas-Targa, F.; Herrera-Estrella, L. Genome Accessibility Dynamics in Response to Phosphate Limitation Is Controlled by the PHR1 Family of Transcription Factors in Arabidopsis. Proc. Natl. Acad. Sci. USA 2021, 118, e2107558118. [Google Scholar] [CrossRef] [PubMed]
- Ueda, Y.; Sakuraba, Y.; Yanagisawa, S. Environmental Control of Phosphorus Acquisition: A Piece of the Molecular Framework Underlying Nutritional Homeostasis. Plant Cell Physiol. 2021, 62, 573–581. [Google Scholar] [CrossRef]
- Ham, B.K.; Chen, J.; Yan, Y.; Lucas, W.J. Insights into Plant Phosphate Sensing and Signaling. Curr. Opin. Biotechnol. 2018, 49, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Secco, D.; Wang, C.; Arpat, B.A.; Wang, Z.; Poirier, Y.; Tyerman, S.D.; Wu, P.; Shou, H.; Whelan, J. The emerging importance of the SPX domain-containing proteins in phosphate homeostasis. New Phytol. 2012, 4, 842–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouain, N.; Shahzad, Z.; Rouached, A.; Khan, G.A.; Berthomieu, P.; Abdelly, C.; Poirier, Y.; Rouached, H. Phosphate and Zinc Transport and Signalling in Plants: Toward a Better Understanding of Their Homeostasis Interaction. J. Exp. Bot. 2014, 65, 5725–5741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouached, H.; Rhee, S.Y. System-level understanding of plant mineral nutrition in the big data era. Curr. Opin. Syst. Biol. 2017, 4, 71–77. [Google Scholar] [CrossRef]
- Huang, C.; Barker, S.J.; Langridge, P.; Smith, F.W.; Graham, R.D. Zinc Deficiency Up-Regulates Expression of High-Affinity Phosphate Transporter Genes in Both Phosphate-Sufficient and -Deficient Barley Roots. Plant Physiol. 2000, 124, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Sinilal, B.; Dhandapani, G.; Meagher, R.B.; Sahi, S.V. Effects of Deficiency and Excess of Zinc on Morphophysiological Traits and Spatiotemporal Regulation of Zinc-Responsive Genes Reveal Incidence of Cross Talk between Micro- and Macronutrients. Environ. Sci. Technol. 2013, 47, 5327–5335. [Google Scholar] [CrossRef]
- Pal, S.; Kisko, M.; Dubos, C.; Lacombe, B.; Berthomieu, P.; Krouk, G.; Rouached, H. TransDetect Identifies a New Regulatory Module Controlling Phosphate Accumulation. Plant Physiol. 2017, 175, 916–926. [Google Scholar] [CrossRef] [Green Version]
- Ova, E.A.; Kutman, U.B.; Ozturk, L.; Cakmak, I. High Phosphorus Supply Reduced Zinc Concentration of Wheat in Native Soil but Not in Autoclaved Soil or Nutrient Solution. Plant Soil 2015, 393, 147–162. [Google Scholar] [CrossRef]
- Kisko, M.; Bouain, N.; Rouached, A.; Choudhary, S.P.; Rouached, H. Molecular Mechanisms of Phosphate and Zinc Signalling Crosstalk in Plants: Phosphate and Zinc Loading into Root Xylem in Arabidopsis. Environ. Exp. Bot. 2015, 114, 57–64. [Google Scholar] [CrossRef]
- Kisko, M.; Bouain, N.; Safi, A.; Medici, A.; Akkers, R.C.; Secco, D.; Fouret, G.; Krouk, G.; Aarts, M.G.M.; Busch, W.; et al. LPCAT1 Controls Phosphate Homeostasis in a Zinc-Dependent Manner. eLife 2018, 7, e32077. [Google Scholar] [CrossRef] [PubMed]
- Testerink, C.; Munnik, T. Phosphatidic Acid: A Multifunctional Stress Signaling Lipid in Plants. Trends. Plant Sci. 2005, 10, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Spector, A.A.; Yorek, M.A. Membrane Lipid Composition and Cellular Function. J. Lipid. Res. 1985, 26, 1015–1035. [Google Scholar] [CrossRef]
- Drissner, D.; Kunze, G.; Callewaert, N.; Gehrig, P.; Tamasloukht, M.; Boller, T.; Felix, G.; Amrhein, N.; Bucher, M. Lyso-Phosphatidylcholine Is a Signal in the Arbuscular Mycorrhizal Symbiosis. Science 2007, 318, 265–268. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Liebisch, G.; Buer, B.; Xue, L.; Gerlach, N.; Blau, S.; Schmitz, J.; Bucher, M. Integrated Multi-Omics Analysis Supports Role of Lysophosphatidylcholine and Related Glycerophospholipids in the Lotus Japonicus-Glomus Intraradices Mycorrhizal Symbiosis. Plant Cell Environ. 2016, 39, 393–415. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Andrés, F.; Kanehara, K.; Liu, Y.C.; Dörmann, P.; Coupland, G. Arabidopsis Florigen FT Binds to Diurnally Oscillating Phospholipids That Accelerate Flowering. Nat. Commun. 2014, 5, 3553. [Google Scholar] [CrossRef] [Green Version]
- Mulder, C.; Wahlund, L.O.; Teerlink, T.; Blomberg, M.; Veerhuis, R.; van Kamp, G.J.; Scheltens, P.; Scheffer, P.G. Decreased Lysophosphatidylcholine/Phosphatidylcholine Ratio in Cerebrospinal Fluid in Alzheimer’s Disease. J. Neural. Transm. 2003, 110, 949–955. [Google Scholar] [CrossRef]
- Klavins, K.; Koal, T.; Dallmann, G.; Marksteiner, J.; Kemmler, G.; Humpel, C. The Ratio of Phosphatidylcholines to Lysophosphatidylcholines in Plasma Differentiates Healthy Controls from Patients with Alzheimer’s Disease and Mild Cognitive Impairment. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2015, 1, 295–302. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, H.-K.; Sandhu, J.; Bouain, N.; Prom-u-thai, C.; Rouached, H. Towards a Discovery of a Zinc-Dependent Phosphate Transport Road in Plants. Plants 2022, 11, 3066. https://doi.org/10.3390/plants11223066
Cho H-K, Sandhu J, Bouain N, Prom-u-thai C, Rouached H. Towards a Discovery of a Zinc-Dependent Phosphate Transport Road in Plants. Plants. 2022; 11(22):3066. https://doi.org/10.3390/plants11223066
Chicago/Turabian StyleCho, Hui-Kyong, Jaspreet Sandhu, Nadia Bouain, Chanakan Prom-u-thai, and Hatem Rouached. 2022. "Towards a Discovery of a Zinc-Dependent Phosphate Transport Road in Plants" Plants 11, no. 22: 3066. https://doi.org/10.3390/plants11223066
APA StyleCho, H. -K., Sandhu, J., Bouain, N., Prom-u-thai, C., & Rouached, H. (2022). Towards a Discovery of a Zinc-Dependent Phosphate Transport Road in Plants. Plants, 11(22), 3066. https://doi.org/10.3390/plants11223066