Weed Management Strategies for Tomato Plasticulture Production in Florida
Abstract
:1. Introduction
Weed a | Crop b | Yield Loss c | Reference |
---|---|---|---|
Purple nutsedge | Cucumber (Cucumis sativus L.) | 43% | [28] |
Purple nutsedge | Carrot (Daucus carota L.) | 50% | [28] |
Purple nutsedge | Radish (Raphanus sativus L.) | 100% | [29] |
Purple nutsedge | Lettuce (Lactuca sativa L.) | 54% | [30] |
Purple nutsedge | Garlic (Allium sativum L.) | 52% | [28] |
Purple nutsedge | Onion (Allium cepa L.) | 89% | [28] |
Yellow nutsedge | Asparagus (Asparagus officinalis L.) | 16% | [31] |
Purple nutsedge | Cilantro (Coriandrum annum L.) | 60% | [32] |
Weed a | Crop b | Yield Loss c | Reference(s) |
---|---|---|---|
Purple nutsedge | Tomato (Solanum lycopersicum) | 44% | [10] |
Purple nutsedge | Bell pepper (Capsicum annum L.) | 73% | [21,33] |
Purple nutsedge | Tomato (Solanum lycopersicum) | 53% | [28] |
Purple nutsedge | Eggplant (Solanum melongena L.) | 22% | [10] |
Yellow nutsedge | Tomato (Solanum lycopersicum) | 34% | [34] |
Purple nutsedge (Above-ground interface) | Tomato (Solanum lycopersicum) | 9% | [34] |
Purple nutsedge (Below-ground interface) | Tomato (Solanum lycopersicum) | 18% | [34] |
2. Mulching Raised Beds
Mulch Types a | Tomato Yield Increase b | Reference |
---|---|---|
Black plastic | 65.0% | [45] |
White plastic | 52.6% | [45] |
Rice straw | 47.1% | [45] |
Mulch Types a | Nutsedge Control b | Reference |
---|---|---|
Paper mulch | 1% | [38] |
Biodegradable plastic | 34% | [38] |
Rice straw | 52% | [38] |
Polyethylene mulch | 81% | [38] |
Maize harvest residue | 52% | [38] |
Barley straw | 59% | [38] |
3. Controlling Weeds under Plastic Mulch
4. Managing Weeds between Raised Beds
5. Environmental Fate of Herbicides Utilized in Tomato Production
6. Improving Herbicide Use in Tomato Plasticulture Production
7. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Agricultural Statistics Service. Vegetables 2019 Summary; National Agricultural Statistics Service: Washington, DC, USA, 2020.
- National Agricultural Statistics Service. Southern Region News Release Vegetables; National Agricultural Statistics Service: Washington, DC, USA, 2022.
- National Agricultural Statistics Service. Vegetables 2017 Summary; National Agricultural Statistics Service: Washington, DC, USA, 2018.
- Guan, Z.; Biswas, T.; Wu, F. The U.S. Tomato Industry: An Overview of Production and Trade; University of Florida Extension: Gainesville, FL, USA, 2017; p. 4. [Google Scholar]
- Yu, J.; Sharpe, S.S.; Boyd, N.S. PRE herbicides and POST halosulfuron for purple nutsedge control in tomato grown in plasticulture systems. Weed Technol. 2020, 34, 642–646. [Google Scholar] [CrossRef]
- Bakht, T.; Khan, I.A. Integration of row spacing, mulching and herbicides on weed management in tomato. Pak. J. Bot. 2014, 46, 543–547. [Google Scholar]
- Schroeder, J.; Thomas, S.H.; Murray, L.W. Impacts of crop pests on weeds and weed–crop interactions. Weed Sci. 2005, 53, 918–922. [Google Scholar] [CrossRef]
- Land, C.J.; Vallad, G.E.; Desaeger, J.; Van Santen, E.; Noling, J.; Lawrence, K. Supplemental Fumigant Placement Improves Root Knot and Fusarium Wilt Management for Tomatoes Produced on a Raised-Bed Plasticulture System in Florida’s Myakka Fine Sand. Plant Dis. 2022, 106, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Desneux, N.; Luna, M.G.; Guillemaud, T.; Urbaneja, A. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: The new threat to tomato world production. J. Pest Sci. 2011, 84, 403–408. [Google Scholar] [CrossRef]
- Morales-Payan, J.P.; Santos, B.M.; Stall, W.M.; Bewick, T.A. Effects of purple nutsedge (Cyperus rotundus) on tomato (Lycopersicon esculentum) and bell pepper (Capsicum annuum) vegetative growth and fruit yield. Weed Technol. 1997, 11, 672–676. [Google Scholar] [CrossRef]
- Boyd, N.S. Evaluation of preemergence herbicides for purple nutsedge (Cyperus rotundus) control in tomato. Weed Technol. 2015, 29, 480–487. [Google Scholar] [CrossRef]
- Holm, L.G.; Plucknett, D.L.; Pancho, J.V.; Herberger, J.P. The World’s Worst Weeds. Distribution and Biology; University Press of Hawaii: Honolulu, HI, USA, 1977. [Google Scholar]
- Fennimore, S.A.; Boyd, N.S. Sustainable weed control in strawberry. In Weed Control; CRC Press: Washington, DC, USA, 2018; pp. 383–403. [Google Scholar]
- Van Wychen, L. Survey of the most common and troublesome weeds in broadleaf crops, fruits & vegetables in the United States and Canada. Weed Sci. Soc. Am. Natl. Weed Surv. Dataset 2016, 5, 2017. Available online: http://wssa.net/wp-content/uploads/2016_Weed_Survey_Final.xlsx (accessed on 5 October 2017).
- Webster, T. Weed survey—Southern states: Vegetable, fruit and nut crops subsection (annual weed survey). Proc. South. Weed Sci. Soc. 2010, 63, 246–257. [Google Scholar]
- Yu, J.; Sharpe, S.M.; Boyd, N.S. Fumigants alone or in combination with herbicide for weed management in bell pepper (Capsicum annuum). Crop Prot. 2019, 118, 31–35. [Google Scholar] [CrossRef]
- Stoller, E.; Sweet, R. Biology and life cycle of purple and yellow nutsedges (Cyperus rotundus and C. esculentus). Weed Technol. 1987, 1, 66–73. [Google Scholar] [CrossRef]
- Webster, T.M. Patch expansion of purple nutsedge (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus) with and without polyethylene mulch. Weed Sci. 2005, 53, 839–845. [Google Scholar] [CrossRef]
- Gifford, E.M.; Bayer, D.E. Developmental anatomy of Cyperus esculentus (yellow nutsedge). Int. J. Plant Sci. 1995, 156, 622–629. [Google Scholar] [CrossRef]
- Gilreath, J.P.; Santos, B.M. Efficacy of methyl bromide alternatives on purple nutsedge (Cyperus rotundus) control in tomato and pepper. Weed Technol. 2004, 18, 341–345. [Google Scholar] [CrossRef]
- Motis, T.N.; Locascio, S.J.; Gilreath, J.P.; Stall, W.M. Season-long interference of yellow nutsedge (Cyperus esculentus) with polyethylene-mulched bell pepper (Capsicum annuum). Weed Technol. 2003, 17, 543–549. [Google Scholar] [CrossRef]
- Boyd, N.S.; Reed, T. Strawberry tolerance to bed-top and drip-applied preemergence herbicides. Weed Technol. 2016, 30, 492–498. [Google Scholar] [CrossRef]
- Preece, J.E.; Read, P.E.; Preece, J.E.; Read, P.E. Mulches; John Wiley & Sons: New York, NY, USA, 2005; pp. 281–291. [Google Scholar]
- Alsaadawi, I.; Salih, N. Allelopathic potential of Cyperus rotundas LI Interference with crops. Allelopath. J. 2009, 23, 297–303. [Google Scholar]
- Drost, D.C.; Doll, J.D. The allelopathic effect of yellow nutsedge (Cyperus esculentus) on corn (Zea mays) and soybeans (Glycine max). Weed Sci. 1980, 28, 229–233. [Google Scholar] [CrossRef]
- Nickle, W.R. Manual of Agricultural Nematology; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Schroeder, J.; Thomas, S.H.; Murray, L.W. Root-knot nematodes affect annual and perennial weed interactions with chile pepper. Weed Sci. 2004, 52, 28–46. [Google Scholar] [CrossRef]
- William, R.D.; Warren, G.F. Competition between Purple Nutsedge and Vegetables. Weed Sci. 1975, 23, 317–323. [Google Scholar] [CrossRef]
- Santos, B.M.; Morales-Payan, J.P.; Stall, W.M.; Bewick, T.A. Influence of purple nutsedge (Cyperus rotundus) density and nitrogen rate on radish (Raphanus sativus) yield. Weed Sci. 1998, 46, 661–664. [Google Scholar] [CrossRef]
- Morales-Payan, J.; Santos, B.; Bewick, T. Purple nutsedge (Cyperus rotundus L.) interference on lettuce under different nitrogen levels. Proc. South. Weed Sci. Soc. 1996, 49, 201. [Google Scholar]
- Agamalian, H.S. Evaluation of norflurazon for the control of yellow nutsedge (Cyperus esculentus) in established asparagus. Acta Hortic. 1993, 415, 285–288. [Google Scholar] [CrossRef]
- Morales-Payan, J.; Santos, B.; Bewick, T. Nitrogen effects on the competitive interactions of purple nutsedge (Cyperus rotundus L.) and cilantro. Weed Sci. Soc. Am. Abstr. 1996, 36, 69. [Google Scholar]
- Morales-Payan, J.P.; Santos, B.M.; Stall, W.M.; Bewick, T.A. Interference of Purple Nutsedge (Cyperus rotundus) Population Densities on Bell Pepper (Capsicum annuum) Yield as Influenced by Nitrogen. Weed Technol. 1998, 12, 230–234. [Google Scholar] [CrossRef]
- Morales-Payan, J.P.; Stall, W.M.; Shilling, D.G.; Charudattan, R.; Dusky, J.A.; Bewick, T.A. Above-and belowground interference of purple and yellow nutsedge (Cyperus spp.) with tomato. Weed Sci. 2003, 51, 181–185. [Google Scholar] [CrossRef]
- Magistad, O.; Farden, C.; Baldwin, W. Bagasse and paper mulches. J. Am. Soc. Agron. 2013, 27, 813–825. [Google Scholar] [CrossRef]
- Schonbeck, M.W.; Evanylo, G.K. Effects of mulches on soil properties and tomato production I. Soil temperature, soil moisture and marketable yield. J. Sustain. Agric. 1998, 13, 55–81. [Google Scholar] [CrossRef]
- Amayreh, J.; Al-Abed, N. Developing crop coefficients for field-grown tomato (Lycopersicon esculentum Mill.) under drip irrigation with black plastic mulch. Agric. Water Manag. 2005, 73, 247–254. [Google Scholar] [CrossRef]
- Anzalone, A.; Cirujeda, A.; Aibar, J.; Pardo, G.; Zaragoza, C. Effect of biodegradable mulch materials on weed control in processing tomatoes. Weed Technol. 2010, 24, 369–377. [Google Scholar] [CrossRef]
- Farias-Larios, J.; Orozco-Santos, M. Effect of polyethylene mulch colour on aphid populations, soil temperature, fruit quality, and yield of watermelon under tropical conditions. N. Z. J. Crop Hortic. Sci. 1997, 25, 369–374. [Google Scholar] [CrossRef]
- Croxton, S.D.; Stansly, P.A. Metalized polyethylene mulch to repel Asian citrus psyllid, slow spread of huanglongbing and improve growth of new citrus plantings. Pest Manag. Sci. 2014, 70, 318–323. [Google Scholar] [CrossRef]
- Orozco-Santos, M.; Perez-Zamora, O.; Lopez-Arriaga, O. Effect of transparent mulch on insect populations, virus diseases, soil temperature, and yield of cantaloup in a tropical region. N. Z. J. Crop Hortic. Sci. 1995, 23, 199–204. [Google Scholar] [CrossRef]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Tofanelli, M.B.; Wortman, S.E. Benchmarking the agronomic performance of biodegradable mulches against polyethylene mulch film: A meta-analysis. Agronomy 2020, 10, 1618. [Google Scholar] [CrossRef]
- Cirujeda, A.; Aibar, J.; Anzalone, Á.; Martín-Closas, L.; Meco, R.; Moreno, M.M.; Pardo, A.; Pelacho, A.M.; Rojo, F.; Royo-Esnal, A. Biodegradable mulch instead of polyethylene for weed control of processing tomato production. Agron. Sustain. Dev. 2012, 32, 889–897. [Google Scholar] [CrossRef]
- Mendonça, S.R.; Ávila, M.C.R.; Vital, R.G.; Evangelista, Z.R.; Pontes, N.d.C.; Nascimento, A.d.R. The effect of different mulching on tomato development and yield. Sci. Hortic. 2021, 275, 109657. [Google Scholar] [CrossRef]
- Anderson, D.F.; Garisto, M.-A.; Bourrut, J.-C.; Schonbeck, M.W.; Jaye, R.; Wurzberger, A.; DeGregorio, R. Evaluation of a paper mulch made from recycled materials as an alternative to plastic film mulch for vegetables. J. Sustain. Agric. 1996, 7, 39–61. [Google Scholar] [CrossRef]
- Olsen, J.; Gounder, R. Alternatives to polyethylene mulch film—A field assessment of transported materials in capsicum (Capsicum annuum L.). Aust. J. Exp. Agric. 2001, 41, 93–103. [Google Scholar] [CrossRef]
- Locascio, S.J.; Gilreath, J.P.; Dickson, D.; Kucharek, T.A.; Jones, J.; Noling, J. Fumigant alternatives to methyl bromide for polyethylene-mulched. HortScience 1997, 32, 1208–1211. [Google Scholar] [CrossRef] [Green Version]
- Hanson, B.; Shrestha, A. Weed control with methyl bromide alternatives. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour 2006, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Culpepper, A.S.; Grey, T.L.; Webster, T.M. Vegetable response to herbicides applied to low-density polyethylene mulch prior to transplant. Weed Technol. 2009, 23, 444–449. [Google Scholar] [CrossRef]
- Dayton, D.M.; Chaudhari, S.; Jennings, K.M.; Monks, D.W.; Hoyt, G.W. Effect of drip-applied metam-sodium and S-metolachlor on yellow nutsedge and common purslane in polyethylene-mulched bell pepper and tomato. Weed Technol. 2017, 31, 421–429. [Google Scholar] [CrossRef]
- Jennings, K.M. Tolerance of Fresh-Market Tomato to Postemergence-Directed Imazosulfuron, Halosulfuron, and Trifloxysulfuron. Weed Technol. 2010, 24, 117–120. [Google Scholar] [CrossRef]
- Eure, P.M.; Culpepper, A.S. Bell pepper and weed response to dimethyl disulfide plus chloropicrin and herbicide systems. Weed Technol. 2017, 31, 694–700. [Google Scholar] [CrossRef]
- McAvoy, T.; Freeman, J.H. Yellow nutsedge (Cyperus esculentus) control with reduced rates of dimethyl disulfide in combination with totally impermeable film. Weed Technol. 2013, 27, 515–519. [Google Scholar] [CrossRef]
- Pereira, W.; Crabtree, G.; William, R.D. Herbicide action on purple and yellow nutsedge (Cyperus rotundus and C. esculentus). Weed Technol. 1987, 1, 92–98. [Google Scholar] [CrossRef]
- Shaner, D.L. Herbicide Handbook, 10th ed.; Weed Science Society of America: Champaign, IL, USA, 2014; p. 513. [Google Scholar]
- Devkota, P.; Norsworthy, J.K.; Rainey, R. Efficacy and economics of herbicide programs compared to methyl bromide for weed control in polyethylene-mulched tomato. Weed Technol. 2013, 27, 580–589. [Google Scholar] [CrossRef]
- Shaner, D.L. Field dissipation of sulfentrazone and pendimethalin in Colorado. Weed Technol. 2012, 26, 633–637. [Google Scholar] [CrossRef]
- Sanyal, D.; Kulshrestha, G. Effects of repeated metolachlor applications on its persistence in field soil and degradation kinetics in mixed microbial cultures. Biol. Fertil. Soils 1999, 30, 124–131. [Google Scholar] [CrossRef]
- Haar, M.; Fennimore, S.; McGiffen, M.; Lanini, W.; Bell, C. Evaluation of preemergence herbicides in vegetable crops. Horttechnology 2002, 12, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Mohseni-Moghadam, M.; Doohan, D. Fomesafen Crop Tolerance and Weed Control in Processing Tomato. Weed Technol. 2017, 31, 441–446. [Google Scholar] [CrossRef]
- Webster, T.M.; Grey, T.L. Halosulfuron reduced purple nutsedge (Cyperus rotundus) tuber production and viability. Weed Sci. 2014, 62, 637–646. [Google Scholar] [CrossRef]
- Adcock, C.W.; Foshee, W.G.; Wehtje, G.R.; Gilliam, C.H. Herbicide combinations in tomato to prevent nutsedge (Cyperus esulentus) punctures in plastic mulch for multi-cropping systems. Weed Technol. 2008, 22, 136–141. [Google Scholar] [CrossRef]
- Boyd, N.S. Pre-and postemergence herbicides for row middle weed control in vegetable plasticulture production systems. Weed Technol. 2016, 30, 949–957. [Google Scholar] [CrossRef]
- Rich, J.; Brito, J.; Kaur, R.; Ferrell, J. Weed species as hosts of Meloidogyne: A review. Nematropica 2009, 39, 157–185. [Google Scholar]
- Wisler, G.C.; Norris, R.F. Interactions between weeds and cultivated plants as related to management of plant pathogens. Weed Sci. 2005, 53, 914–917. [Google Scholar] [CrossRef]
- French-Monar, R.D.; Jones, J.B.; Roberts, P.D. Characterization of Phytophthora capsici associated with roots of weeds on Florida vegetable farms. Plant Dis. 2006, 90, 345–350. [Google Scholar] [CrossRef] [Green Version]
- Gilreath, J.; Stall, W.; Locascio, S. Weed control in tomato row middles. In Proceedings of the Florida State Horticultural Society, Orlando, FL, USA, 2–5 November 1987; pp. 232–235. [Google Scholar]
- Clewis, S.B.; Everman, W.J.; Jordan, D.L.; Wilcut, J.W. Weed management in North Carolina peanuts (Arachis hypogaea) with S-metolachlor, diclosulam, flumioxazin, and sulfentrazone systems. Weed Technol. 2007, 21, 629–635. [Google Scholar] [CrossRef]
- Pannacci, E.; Graziani, F.; Covarelli, G. Use of herbicide mixtures for pre and post-emergence weed control in sunflower (Helianthus annuus). Crop Prot. 2007, 26, 1150–1157. [Google Scholar] [CrossRef]
- Boyd, N.S.; Kanissery, R.; Dittmar, P.J. Weed Management in Tomato; University of Florida Extension: Gainesville, FL, USA, 2019; p. 5. [Google Scholar]
- Klingman, G.C.; Ashton, F.M.; Noordhoff, L.J. Weed Science: Principles and Practice; John Wiley & Sons: New York, NY, USA, 1981. [Google Scholar]
- Das, S.K.; Mondal, T. Mode of action of herbicides and recent trends in development: A reappraisal. Int. J. Agric. Soil Sci. 2014, 2, 27–32. [Google Scholar]
- Devi, R.; Duhan, A.; Punia, S.S.; Yadav, D.B. Degradation dynamics of halosulfuron-methyl in two textured soils. Bull. Environ. Contam. Toxicol. 2019, 102, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Grey, T.L.; McCullough, P.E. Sulfonylurea herbicides’ fate in soil: Dissipation, mobility, and other processes. Weed Technol. 2012, 26, 579–581. [Google Scholar] [CrossRef]
- Grey, T.L.; Vencill, W.K.; Mantripagada, N.; Culpepper, A.S. Residual herbicide dissipation from soil covered with low-density polyethylene mulch or left bare. Weed Sci. 2007, 55, 638–643. [Google Scholar] [CrossRef]
- Matthes, B.; Schmalfuß, J.; Böger, P. Chloroacetamide mode of action, II: Inhibition of very long chain fatty acid synthesis in higher plants. Z. Für Nat. C 1998, 53, 1004–1011. [Google Scholar] [CrossRef]
- Senseman, S.A. Herbicide Handbook; Weed Science Society of America: Lawrence, KS, USA, 2007. [Google Scholar]
- Bedmar, F.; Gimenez, D.; Costa, J.L.; Daniel, P.E. Persistence of acetochlor, atrazine, and S-metolachlor in surface and subsurface horizons of 2 typic argiudolls under no-tillage. Environ. Toxicol. Chem. 2017, 36, 3065–3073. [Google Scholar] [CrossRef]
- Long, Y.; Li, R.; Wu, X. Degradation of S-metolachlor in soil as affected by environmental factors. J. Soil Sci. Plant Nutr. 2014, 14, 189–198. [Google Scholar] [CrossRef]
- Marín-Benito, J.M.; Herrero-Hernández, E.; Ordax, J.M.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. The role of two organic amendments to modify the environmental fate of S-metolachlor in agricultural soils. Environ. Res. 2021, 195, 110871. [Google Scholar] [CrossRef]
- Wu, X.; Li, M.; Long, Y.; Liu, R.; Yu, Y.; Fang, H.; Li, S. Effects of adsorption on degradation and bioavailability of metolachlor in soil. J. Soil Sci. Plant Nutr. 2011, 11, 83–97. [Google Scholar]
- Munoz, A.; Koskinen, W.C.; Cox, L.a.; Sadowsky, M.J. Biodegradation and mineralization of metolachlor and alachlor by Candida xestobii. J. Agric. Food Chem. 2011, 59, 619–627. [Google Scholar] [CrossRef]
- Kanissery, R.; Liu, W.; Tiwari, R.; Sims, G. Impact of Soil Aeration on the Environmental Fate of Pre-Emergent Herbicide Metolachlor. Appl. Sci. 2021, 11, 8567. [Google Scholar] [CrossRef]
- Grey, T.L.; Walker, R.H.; Wehtje, G.R.; Hancock, H.G. Sulfentrazone adsorption and mobility as affected by soil and pH. Weed Sci. 1997, 45, 733–738. [Google Scholar]
- Ohmes, G.A.; Mueller, T.C. Sulfentrazone adsorption and mobility in surface soil of the southern United States. Weed Technol. 2007, 21, 796–800. [Google Scholar] [CrossRef]
- Martinez, C.O.; Silva, C.M.M.; Fay, E.F.; Maia, A.d.H.N.; Abakerli, R.B.; Durrant, L.R. Degradation of the herbicide sulfentrazone in a Brazilian Typic Hapludox soil. Soil Biol. Biochem. 2008, 40, 879–886. [Google Scholar] [CrossRef] [Green Version]
- Mueller, T.C.; Boswell, B.W.; Mueller, S.S.; Steckel, L.E. Dissipation of fomesafen, saflufenacil, sulfentrazone, and flumioxazin from a Tennessee soil under field conditions. Weed Sci. 2014, 62, 664–671. [Google Scholar] [CrossRef]
- Fontanelli, M.; Martelloni, L.; Raffaelli, M.; Frasconi, C.; Ginanni, M.; Peruzzi, A. Weed management in autumn fresh market spinach: A nonchemical alternative. HortTechnology 2015, 25, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Heap, I. Global perspective of herbicide-resistant weeds. Pest Manag. Sci. 2014, 70, 1306–1315. [Google Scholar] [CrossRef]
- Pannacci, E.; Lattanzi, B.; Tei, F. Non-chemical weed management strategies in minor crops: A review. Crop Prot. 2017, 96, 44–58. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Mohsin, S.M.; Bhuyan, M.B.; Bhuiyan, T.F.; Anee, T.I.; Masud, A.A.C.; Nahar, K. Phytotoxicity, environmental and health hazards of herbicides: Challenges and ways forward. In Agrochemicals Detection, Treatment and Remediation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 55–99. [Google Scholar]
- Martins, D.; Gonçalves, C.G.; Silva Junior, A.C.d. Winter mulches and chemical control on weeds in maize. Rev. Ciência Agronômica 2016, 47, 649–657. [Google Scholar] [CrossRef] [Green Version]
- Pringnitz, B. Clearing Up Confusion on Adjuvants and Additives. Iowa State University Extension Agronomy. 1998. Available online: http://www.weeds/iastate.edu/mgmt/qtr98-2/cropoils.htm (accessed on 20 January 2015).
- McWhorter, C. The use of adjuvants. Adjuv. Herbic. 1982, 11–25. Available online: https://cir.nii.ac.jp/crid/1570009750785890304 (accessed on 20 September 2022).
- DiTomaso, J.M. Barriers to foliar penetration and uptake of herbicides. In Proceedings of the California Weed Science Society, Anaheim, CA, USA, 11–13 January 1999; pp. 150–155. [Google Scholar]
- Hull, H. Action of adjuvants on plant surfaces. Adjuv. Herbic. 1982, 26–67. [Google Scholar]
- Hess, F.D.; Foy, C.L. Interaction of surfactants with plant cuticles. Weed Technol. 2000, 14, 807–813. [Google Scholar] [CrossRef]
- de Oliveira, G.F.P.B.; Langaro, A.C.; Simões Araujo, A.L.; Pimpinato, R.F.; Tornisielo, V.L.; de Pinho, C.F. Sorption and desorption of pendimethalin alone and mixed with adjuvant in soil and sugarcane straw. J. Environ. Sci. Health Part B 2020, 55, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Green, J. Increasing efficiency with adjuvants and herbicide mixtures. In Proceedings of the First International Weed Control Congress, Melbourne, AU, USA; 1992; pp. 187–192. [Google Scholar]
- Abouziena, H.F.H.; Sharma, S.D.; Singh, M. Impact of adjuvants on bentazon efficacy on selected broadleaf weeds. Crop Prot. 2009, 28, 1081–1085. [Google Scholar] [CrossRef]
- Bellinder, R.R.; Arsenovic, M.; Shah, D.A.; Rauch, B.J. Effect of weed growth stage and adjuvant on the efficacy of fomesafen and bentazon. Weed Sci. 2003, 51, 1016–1021. [Google Scholar] [CrossRef]
- Fillols, E.; Davis, A. Effect of the soil-binding adjuvant Grounded® on herbicide efficacy and runoff losses in bare soil in ratoons. In Proceedings of the Australian Society of Sugar Cane Technologists 2021, Bundaber, Australia, 20–23 April 2021; pp. 555–562. [Google Scholar]
- Dittmar, P.J.; Monks, D.W.; Jennings, K.M.; Booker, F.L. Tolerance of tomato to herbicides applied through drip irrigation. Weed Technol. 2012, 26, 684–690. [Google Scholar] [CrossRef]
Herbicide a.i. a | Trade Name b | Mode of Action Group | Application Timing c,d | Rate (lbs. a.i./acre) |
---|---|---|---|---|
Carfentrazone | (Aim®) 2 EC or 1.9 EW Up to 2 fl. oz. | 14 | Post-emergence | 0.031 |
Clethodim | SelectMax | 1 | Post-emergence | 0.9–2.5 |
Glyphosate | Roundup | 9 | Pre-transplant; Post-emergence | 0.3–1 |
EPTC | Eptam® 7E | 8 | Pre-transplant | 2.62–3.5 |
Halosulfuron | (Sandea®, ProfineTM) 75 DG | 2 | Pre-transplant; Post-emergence | 0.024–0.036 |
Lactofen | Cobra® | 14 | Post-emergence | 0.25–0.5 |
S-metolachlor | Dual Magnum® | 15 | Pre-emergence | 1–1.3 |
Metribuzin | Sencor DF | 5 | Pre-transplant | 0.25–0.5 |
Paraquat | Gramoxone | 22 | Post-emergence | 0.62–0.94 |
Trifluralin | Treflan HFP | 3 | Pre-transplant | 0.5 |
Oxyfluorfen | (Goal®) 2 XL 1–2 pt. (GoalTender®) 4 E 0.5–1 pt. | 14 | Pre-transplant | 0.25–0.5 |
Flumioxazin | (Chateau®) 51 WDG Up to 4 oz. | 14 | Pre-emergence | Up to 0.128 |
Pendimethalin | (Prowl® H2O) 3.8 1.0–1.5 pt. | 3 | Pre-transplant | 0.48–0.72 |
Sulfentrazone | Spartan FL 4F 2.25–6.0 fl. oz. | 14 | Pre-transplant | 0.07–0.19 |
Diquat | (Reglone®) 1.5 pt. | 22 | Post-emergence | 0.38 |
Imazosulfuron | (LeagueTM) 0.5 DF 4–6.4 oz. | 2 | Post-emergence | 0.19–0.3 |
Rimsulfuron | (Matrix® FNV, Matrix® SG, PruvinTM) 25 WDG 1.0–2.0 oz. | 2 | Pre-emergence or post-emergence | 0.02–0.03 |
Sethoxydim | (Poast®) 1.5 EC 1.0–1.5 pt. | 1 | Post-emergence | 0.19–0.28 |
Trifloxysulfuron | (Envoke®) 75 DG 0.1–0.2 oz. | 2 | Post-transplant | 0.0047–0.0094 |
Fomesafen | (Reflex®) 2 SC 1–1.5 pt. | 14 | Pre-transplant | 0.25–0.38 |
Napropamide | (Devrinol)50 DF 2–4 lb. | 15 | Pre-transplant | 1–2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiwari, R.; Bashyal, M.; Kanissery, R. Weed Management Strategies for Tomato Plasticulture Production in Florida. Plants 2022, 11, 3292. https://doi.org/10.3390/plants11233292
Tiwari R, Bashyal M, Kanissery R. Weed Management Strategies for Tomato Plasticulture Production in Florida. Plants. 2022; 11(23):3292. https://doi.org/10.3390/plants11233292
Chicago/Turabian StyleTiwari, Ruby, Mahesh Bashyal, and Ramdas Kanissery. 2022. "Weed Management Strategies for Tomato Plasticulture Production in Florida" Plants 11, no. 23: 3292. https://doi.org/10.3390/plants11233292
APA StyleTiwari, R., Bashyal, M., & Kanissery, R. (2022). Weed Management Strategies for Tomato Plasticulture Production in Florida. Plants, 11(23), 3292. https://doi.org/10.3390/plants11233292