Hyperhydricity in Plant Tissue Culture
Abstract
:1. Introduction
2. Microscopic and Histochemical Features of Hyperhydric Tissues
3. Causes and Physiological Bases of Hyperhydricity
4. Influence of Medium Composition and Culture Conditions on Hyperhydricity Level
4.1. Influence of Nitrogen Ions
4.2. Influence of Other Ions
4.3. Influence of Hormones and Growth Regulators
4.4. Effect of Gelling Agents
4.5. Influence of Culture Vessel Atmosphere
4.6. Influence of Light
4.7. The use of Exogenous Additives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hazarika, B.N. Morpho-physiological disorders in in vitro culture of plants. Sci. Hortic. 2006, 108, 105–120. [Google Scholar] [CrossRef]
- Kevers, C.; Franck, T.; Strasser, R.J.; Dommes, S.; Gaspar, T. Hyperhydricity of micropropagated shoots: A typically stress-induced change of physiological state. Plant Cell Tissue Organ Cult. 2004, 77, 181–191. [Google Scholar] [CrossRef]
- Gaspar, T.; Kevers, C.; Franck, T.; Bisbis, B.; Billard, J.P.; Huault, C.; Le Dily, F.; Petit-Paly, G.; Rideau, U.; Penel, C.; et al. Paradoxical results in the analysis of hyperhydric tissues considered as being under stress: Questions for a debate. Bulg. J. Plant Physiol. 1995, 21, 80–97. [Google Scholar]
- Ziv, M. Quality of micropropagated plants–vitrification. In Vitro Cell. Dev. Biol.–Plant 1991, 2, 64–69. [Google Scholar] [CrossRef]
- Picoli, E.A.; Otoni, W.C.; Figueir, M.L.; Carolino, S.M.; Almeida, R.S.; Silva, E.A.; Carvalho, C.R.; Fontes, E.P. Hyperhydricity in vitro eggplant regenerated plants: Structural characteristics and involvement of BiP (Binding Protein). Plant Sci. 2001, 160, 857–868. [Google Scholar] [CrossRef]
- Casanova, E.; Moysset, L.; Trillas, M.I. Effects of agar concentration and vessel closure on the organogenesis and hyperhydricity of adventitious carnation shoots. Biol. Plant. 2008, 52, 1–8. [Google Scholar] [CrossRef]
- Fernandez-García, N.; Piqueras, A.; Olmos, E. Sub-cellular location of H2O2, peroxidases and pectin epitopes in control and hyperhydric shoots of carnation. Environ. Exp. Bot. 2008, 62, 168–175. [Google Scholar] [CrossRef]
- Sen, A.; Alikamanoglu, S. Antioxidant enzyme activities, malondialdehyde, and total phenolic content of PEG-induced hyperhydric leaves in sugar beet tissue culture. In Vitro Cell. Dev. Biol. –Plant 2013, 49, 396–404. [Google Scholar] [CrossRef]
- van den Dries, N.; Gianní, S.; Czerednik, A.; Krens, F.A.; de Klerk, G.J. Flooding of the apoplast is a key factor in the development of hyperhydricity. J. Exp. Bot. 2013, 64, 5221–5230. [Google Scholar] [CrossRef]
- Tian, J.; Jiang, F.L.; Wu, Z. The apoplastic oxidative burst as a key factor of hyperhydricity in garlic plantlet in vitro. Plant Cell Tissue Organ Cult. 2015, 120, 571–584. [Google Scholar] [CrossRef]
- Gao, H.; Li, J.; Ji, H.; An, L.; Xia, X. Hyperhydricity-induced ultrastructural and physiological changes in blueberry (Vaccinium spp.). Plant Cell Tissue Organ Cult. 2018, 133, 65–76. [Google Scholar] [CrossRef]
- Ziv, M.; Schwartz, A.; Fleminger, D. Malfunctioning stomata in vitreous leaves of carnation (Dianthus caryophyllus) plants propagated in vitro; implications for hardening. Plant Sci. 1987, 52, 127–134. [Google Scholar] [CrossRef]
- Saher, S.; Piqueras, A.; Hellin, E.; Olmos, E. Hyperhydricity in micropropagated carnation shoots: The role of oxidative stress. Physiol. Plant. 2004, 120, 152–161. [Google Scholar] [CrossRef]
- Hassannejad, S.; Bernard, F.; Mirzajani, F.; Gholami, M. SA improvement of hyperhydricity reversion in Thymus daenensis shoots culture may be associated with polyamines changes. Plant Physiol. Biochem. 2012, 51, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Jiang, F.; Kong, X.; Tian, J.; Wu, Z.; Wu, Z. Effects of multiple factors on hyperhydricity of Allium sativum L. Sci. Hortic. 2017, 217, 285–296. [Google Scholar] [CrossRef]
- Polivanova, O.B.; Cherednichenko, M.Y. Ways of vitrification overcoming of Agastache foeniculum (Pursh) Kuntze (Lamiaceae) in in vitro culture. Izv. Timiryazev Agric. Acad. 2017, 5, 17–28, (In Russian, English summary). [Google Scholar] [CrossRef]
- Nikam, T.D.; Mulye, K.V.; Chambhare, M.R.; Nikule, H.A.; Ahire, M.L. Reduction in hyperhydricity and improvement in in vitro propagation of commercial hard fibre and medicinal glycoside yielding Agave sisalana Perr. ex Engelm by NaCl and polyethylene glycol. Plant Cell Tissue Organ Cult. 2019, 138, 67–78. [Google Scholar] [CrossRef]
- Ivanova, M.; van Staden, J. Effect of ammonium ions and cytokinins on hyperhydricity and multiplication rate of in vitro regenerated shoots of Aloe polyphylla. Plant Cell Tissue Organ Cult. 2008, 92, 227–231. [Google Scholar] [CrossRef]
- Ivanova, M.; van Staden, J. Influence of gelling agent and cytokinins on the control of hyperhydricity in Aloe polyphylla. Plant Cell Tissue Organ Cult. 2011, 104, 13–21. [Google Scholar] [CrossRef]
- Ivanova, M.; van Staden, J. Natural ventilation effectively reduces hyperhydricity in shoot cultures of Aloe polyphylla Schonland ex Pillans. Plant Growth Regul. 2008, 60, 143–150. [Google Scholar] [CrossRef]
- Petruş-Vancea, A. Cell ultrastructure and chlorophyll pigments in hyperhydric and non-hyperhydric Beta vulgaris var. Conditiva plantlets, treated with deuterium depleted water. Plant Cell Tissue Organ Cult. 2018, 135, 13–21. [Google Scholar] [CrossRef]
- Isah, T. Changes in the biochemical parameters of albino, hyperhydric and normal green leaves of Caladium bicolor cv. “Bleeding hearts” in vitro long-term cultures. J. Photochem. Photobiol. B 2019, 191, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Saez, P.L.; Bravo, L.A.; Latsague, M.I.; Sanchez, M.E.; Rios, D.G. Increased light intensity during in vitro culture improves water loss control and photosynthetic performance of Castanea sativa grown in ventilated vessels. Sci. Hortic. 2012, 138, 7–16. [Google Scholar] [CrossRef]
- Vinoth, A.; Ravindhran, R. Reduced hyperhydricity in watermelon shoot cultures using silver ions. In Vitro Cell. Dev. Biol.–Plant 2015, 51, 258–264. [Google Scholar] [CrossRef]
- Soundararajan, P.; Manivannan, A.; Cho, Y.S.; Jeong, B.R. Exogenous supplementation of silicon improved the recovery of hyperhydric shoots in Dianthus caryophyllus L. by stabilizing the physiology and protein expression. Front. Plant Sci. 2017, 8, 738. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Xia, X.; An, L.; Xin, X.; Liang, Y. Reversion of hyperhydricity in pink (Dianthus chinensis L.) plantlets by AgNO3 and its associated mechanism during in vitro culture. Plant Sci. 2017, 254, 1–11. [Google Scholar] [CrossRef]
- Sreelekshmi, R.; Siril, E.A. Influence of polyamines on hyperhydricity reversion and its associated mechanism during micropropagation of China pink (Dianthus chinensis L.). Physiol. Mol. Biol. Plants 2020, 26, 2035–2045. [Google Scholar] [CrossRef]
- Sreelekshmi, R.; Siril, E.A. Effective reversal of hyperhydricity leading to efficient micropropagation of Dianthus chinensis L. 3 Biotech. 2021, 11, 95. [Google Scholar] [CrossRef]
- Chandrika, R.; Shivakameshwari, M.N.; Thara Saraswathi, K.J. Reduction of vitrification in in vitro shoot cultures of Eryngium foetidum L.—A potential aromatic and medicinal herb. Indian J. Plant Sci. 2015, 4, 52–58. [Google Scholar]
- Mayor, M.L.; Nestares, G.; Zorzoli, R.; Picardi, L.A. Reduction of hyperhydricity in sunflower tissue culture. Plant Cell Tissue Organ Cult. 2003, 72, 99–103. [Google Scholar] [CrossRef]
- Palhares Neto, L.; de Souza, L.M.; de Morais, M.B.; de Albuquerque, C.C.; Camara, T.R.; Ulisses, C. Controlling hyperhydricity in micropropagated plants of Lippia grata Schauer (Verbenaceae), a native species of a dry seasonal tropical forest with pharmacological potential. Braz. J. Bot. 2018, 41, 529–538. [Google Scholar] [CrossRef]
- Li, L.; An, Q.; Wang, Q.M.; Liu, W.; Qi, X.; Cui, J.; Wang, Y.; Ke, H. The mechanism of bud dehyperhydricity by the method of ‘starvation drying combined with AgNO3’ in Lycium ruthenicum. Tree Physiol. 2022, 42, 1841–1857. [Google Scholar] [CrossRef] [PubMed]
- Tabart, J.; Franck, T.; Kevers, C.; Dommes, J. Effect of polyamines and polyamine precursors on hyperhydricity in micropropagated apple shoots. Plant Cell Tissue Organ Cult. 2015, 120, 11–18. [Google Scholar] [CrossRef]
- El-Dawayati, M.M.; Zayed, Z.E. Controlling hyperhydricity in date palm in vitro culture by reduced concentration of nitrate nutrients. Methods Mol. Biol. 2017, 1637, 175–183. [Google Scholar] [CrossRef]
- Abdouli, D.; Plačková, L.; Doležal, K.; Bettaieb, T.; Werbrouck, S.P.O. Topolin cytokinins enhanced shoot proliferation, reduced hyperhydricity and altered cytokinin metabolism in Pistacia vera L. seedling explants. Plant Sci. 2022, 322, 111360. [Google Scholar] [CrossRef] [PubMed]
- Lotfi, M.; Mars, M.; Werbrouck, S. Optimizing pear micropropagation and rooting with light emitting diodes and trans-cinnamic acid. Plant Growth Regul. 2019, 88, 173–180. [Google Scholar] [CrossRef]
- Jan, T.; Gul, S.; Khan, A.; Pervez, S.; Noor, A.; Amin, H.; Bibi, S.; Nawaz, M.A.; Rahim, A.; Ahmad, M.S.; et al. Range of factors in the reduction of hyperhydricity associated with in vitro shoots of Salvia santolinifolia Bioss. Braz. J. Biol. 2021, 83, e246904. [Google Scholar] [CrossRef]
- Tsay, H.S.; Lee, C.Y.; Agrawal, D.C.; Basker, S. Influence of ventilation closure, gelling agent and explant type on shoot bud proliferation and hyperhydricity in Scrophularia yoshimurae—A medicinal plant. In Vitro Cell. Dev. Biol. –Plant 2006, 42, 445–449. [Google Scholar] [CrossRef]
- Bernard, F.; Moghadam, N.N.; Mirzajani, F. The effect of colloidal silver nanoparticles on the level of lignification and hyperhydricity syndrome in Thymus daenensis vitro shoots: A possible involvement of bonded polyamines. In Vitro Cell. Dev. Biol.–Plant 2015, 51, 546–553. [Google Scholar] [CrossRef]
- Jausoro, V.; Llorente, B.E.; Apostolo, N.M. Structural differences between hyperhydric and normal in vitro shoots of Handroanthus impetiginosus (Mart. ex DC) Mattos (Bignoniaceae). Plant Cell Tissue Organ Cult. 2010, 101, 183–191. [Google Scholar] [CrossRef]
- Marques, M.P.; Martins, J.; de Carvalho, L.A.E.B.; Zuzarte, M.R.; Costa, R.D.; Canhoto, C. Study of physiological and biochemical events leading to vitrification of Arbutus unedo L. cultured in vitro. Trees 2021, 35, 241–253. [Google Scholar] [CrossRef]
- Apostolo, N.; Llorente, B. Anatomy of normal and hyperhydric leaves and shoots of in vitro grown Simmondsia chinensis (Link) Schn. In Vitro Cell. Dev. Biol.–Plant 2000, 36, 243–249. [Google Scholar] [CrossRef]
- Sonriza, M. In vitro shoot vitrification (hyperhydricity) in shallot (Allium cepa var. gr. aggregatum). Philipp. J. Crop. Sci. 1997, 22, 14–22. [Google Scholar]
- Chakrabarty, D.; Park, S.Y.; Ali, M.B.; Shin, K.S.; Paek, K.Y. Hyperhydricity in apple: Ultrastuctural and physiological aspects. Tree Physiol. 2006, 26, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Fauguel, C.; Vega, T.; Nestares, G. Anatomy of normal and hyperhydric sunflower shoots regenerated in vitro. HELIA 2008, 48, 17–26. [Google Scholar] [CrossRef]
- Debergh, P.C. Effects of agar brand and concentration on the tissue culture medium. Physiol. Plant. 1983, 5, 270–276. [Google Scholar] [CrossRef]
- Rojas-Martinez, L.; Visser, R.G.F.; de Klerk, G.J. The hyperhydricity syndrome: Waterlogging of plant tissues as a major cause. Propag. Ornam. Plants 2010, 10, 169–175. [Google Scholar]
- van den Dries, N.; Krens, F.A.; Gianní, S.; De Klerk, G.J.M. Volumes of apoplastic water and air in hyperhydric leaves of Arabidopsis thaliana seedlings. Acta Hortic. 2012, 961, 519–524. [Google Scholar] [CrossRef]
- Kemat, N.; Visser, R.G.F.; Krens, F.A. Hypolignification: A Decisive Factor in the Development of Hyperhydricity. Plants 2021, 10, 2625. [Google Scholar] [CrossRef]
- Mamedes-Rodrigues, T.C.; Batista, D.S.; Napoleão, T.A.; Fortini, E.A.; Cruz, A.C.F.; Costa, M.G.C.; Otoni, C. Regulation of cell wall development in Brachypodium distachyon in vitro as affected by cytokinin and gas exchange. Plant Cell Tissue Organ Cult. 2019, 136, 207–219. [Google Scholar] [CrossRef]
- Vasudevan, R.; van Staden, J. Cytokinin and explant types influence in vitro plant regeneration of Leopard Orchid (Ansellia africana Lindl.). Plant Cell Tissue Organ Cult. 2011, 10, 123–129. [Google Scholar] [CrossRef]
- Park, S.W.; Jeon, J.H.; Kim, H.S.; Park, Y.M.; Aswath, C.; Joung, H. Effect of sealed and vented gaseous microenvironments on the hyperhydricity of potato shoots in vitro. Sci. Hortic. 2004, 99, 199–205. [Google Scholar] [CrossRef]
- Fei, L.W.; Weathers, P. From leaf explants to rooted plantlets in a mistreactor. In Vitro Cell. Dev. Biol.–Plant 2015, 51, 669–681. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Chakrabarty, D.; Ali, M.B.; Hahn, E.J.; Paek, K.Y. Lipid peroxidation and antioxidant enzyme activities of Euphorbia millii hyperhydric shoots. Environ. Exp. Bot. 2006, 58, 93–99. [Google Scholar] [CrossRef]
- Balen, B.; Tkalec, M.; Pavoković, D.; Pevalek-Kozlina, B.; Krsnik-Rasol, M. Growth conditions in in vitro culture can induce oxidative stress in Mammillaria gracilis tissues. J. Plant Growth Regul. 2009, 28, 36–45. [Google Scholar] [CrossRef]
- Jaspers, P.; Kangasjärvi, J. Reactive oxygen species in abioticstress signaling. Physiol. Plant. 2010, 138, 405–413. [Google Scholar] [CrossRef]
- Muneer, S.; Soundararajan, P.; Jeong, B.R. Proteomic and antioxidant analysis elucidates the underlying mechanism of tolerance to hyperhydricity stress in in vitro shoot cultures of Dianthus caryophyllus. J. Plant Growth Regul. 2016, 35, 667–679. [Google Scholar] [CrossRef]
- Tian, J.; Cheng, Y.; Kong, X.; Liu, M.; Jiang, F.; Wu, Z. Induction of reactive oxygen species and the potential role of NADPH oxidase in hyperhydricity of garlic plantlets in vitro. Protoplasma 2016, 254, 379–388. [Google Scholar] [CrossRef]
- Li, T.; Yun, Z.; Zhang, D.; Yang, C.; Hong, Z.; Jiang, Y.; Duan, X. Proteomic analysis of differentially expressed proteins involved in ethylene-induced chilling tolerance in harvested banana fruit. Front. Plant Sci. 2015, 6, 845. [Google Scholar] [CrossRef] [Green Version]
- Wi, S.J.; Su, J.J.; Park, K.Y. Inhibition of biphasic ethylene production enhances tolerance to abiotic stress by reducing the accumulation of reactive oxygen species in Nicotiana tabacum. Mol. Cells 2010, 30, 37–49. [Google Scholar] [CrossRef]
- Bakir, Y.; Eldem, V.; Zararsiz, G.; Unver, T. Global transcriptome analysis reveals differences in gene expression patterns between nonhyperhydric and hyperhydric peach leaves. Plant Genome 2016, 9, 27898837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diler, E.; Unver, T.; Karakülah, G. Differential expression of hyperhydricity responsive peach miRNAs. J. Integr. Bioinform. 2016, 13, 308. [Google Scholar] [CrossRef] [PubMed]
- Sunkar, R.; Li, Y.F.; Jagadeeswaran, G. Functions of microRNAs in plant stress responses. Trends Plant Sci. 2012, 17, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Shi, M.; Su, S.; Zheng, S.; Wang, M.; Lv, J.; Wang, X.; Gao, H. Whole-genome methylation analysis reveals epigenetic differences in the occurrence and recovery of hyperhydricity in Dendrobium officinale plantlets. In Vitro Cell. Dev. Biol. –Plant 2022, 58, 290–301. [Google Scholar] [CrossRef]
- Gao, H.; Xia, X.; An, L. Critical roles of the activation of ethylene pathway genes mediated by DNA demethylation in Arabidopsis hyperhydricity. Plant Genome 2022, 15, e20202. [Google Scholar] [CrossRef]
- Daguin, F.; Letouz, R. Ammonium-induced vitrification in cultured tissues. Physiol. Plant. 1986, 66, 94–98. [Google Scholar] [CrossRef]
- Brand, M.H. Agar and ammonium nitrate influence hyperhydricity, tissue nitrate and total nitrogen content of serviceberry (Amelanchier arborea) shoots in vitro. Plant Cell Tissue Organ Cult. 1993, 35, 203–209. [Google Scholar] [CrossRef]
- Singha, S.; Townsend, E.C.; Oberly, G.E. Relationship between calcium and agar on vitrification and shoot-tip necrosis of quince (Cydonia oblonga Mill.) shoots in vitro. Plant Cell Tissue Organ Cult. 1990, 23, 135–142. [Google Scholar] [CrossRef]
- Pasqualetto, P.L.; Zimmerman, R.H.; Fordham, I. Influence of cations and gelling agent concentrations on vitrification of apple cultivars in vitro. Plant Cell Tissue Organ Cult. 1988, 14, 31–40. [Google Scholar] [CrossRef]
- Kataeva, N.V.; Alexandrova, I.G.; Butenko, R.G.; Dragavtceva, E.V. Effect of applied and internal hormones on vitrification and apical necrosis of different plants cultured in vitro. Plant Cell Tissue Organ Cult. 1991, 27, 149–154. [Google Scholar] [CrossRef]
- Ivanova, M.; Novak, O.; Strnad, V.; van Staden, J. Endogenous cytokinins in shoots of Aloe polyphylla cultured in vitro in relation to hyperhydricity, exogenous cytokinins and gelling agents. Plant Growth Regul. 2006, 50, 219–230. [Google Scholar] [CrossRef]
- Sharma, U.; Mohan, J.S.S. Reduction of vitrification in vitro raised shoots of Chlorophytum borivilianum Sant. & Fernand., a rare potent medical herb. Indian J. Exp. Biol. 2006, 44, 499–506. [Google Scholar] [PubMed]
- Gantait, S.; Mahanta, M. Hyperhydricity-induced changes among in vitro regenerants of gerbera. S. Afr. J. Bot. 2022, 149, 496–501. [Google Scholar] [CrossRef]
- Leshem, B.; Warker, E.; Shalev, D.P. The effect of cytokinins on vitrification in melon and carnation. Ann. Bot. 1988, 62, 271–276. [Google Scholar] [CrossRef]
- Žd’árská, M.; Zatloukalová, P.; Benítez, M.; Šedo, O.; Potěšil, D.; Novák, O.; Svačinová, J.; Pešek, B.; Malbeck, J.; Vašíčková, J.; et al. Proteome analysis in arabidopsis reveals shoot- and root-specific targets of cytokinin action and differential regulation of hormonal homeostasis. Plant Physiol. 2013, 161, 918–930. [Google Scholar] [CrossRef] [Green Version]
- Kher, M.M.; Joshi, D.; Nekkala, S.; Nataraj, M.; Raykundaliya, D.P. Micropropagation of Pluchea lanceolata (Oliver & Hiern.) using nodal explant. J. Hort. Res. 2014, 22, 35–39. [Google Scholar] [CrossRef] [Green Version]
- El-Mahrouk, M.E.; Dewir, Y.H.; Omar, A.M.K. In vitro propagation of adult strawberry tree (Arbutus unedo L.) through adventitious shoots and somatic embryogenesis. Propag. Ornam. Plants 2010, 10, 93–98. [Google Scholar]
- Oliveira, L.M.; Paiva, R.; Santanaa, J.R.F.; Alves, E.; Nogueira, R.C.; Pereira, F.D. Effect of cytokinins on in vitro development of auto- trophism and acclimatization of Annona glabra L. In Vitro Cell. Dev. Biol.–Plant 2008, 44, 128–135. [Google Scholar] [CrossRef]
- Genkov, T.; Tsoneva, P.; Ivanova, I. Effect of cytokinins on photosynthetic pigments and chlorophyllase activity in in vitro cultures of axillary buds of Dianthus caryophyllus L. J. Plant Growth Regul. 1997, 16, 169–172. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Nurmansyah; Naidoo, Y.; Teixeira da Silva, J.A. Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep. 2018, 37, 1451–1470. [Google Scholar] [CrossRef]
- Dobránszki, J.; Magyar-Tábori, K.; Jámbor-Benczúr, E.; Kiss, E.; Lazányi, J.; Bubán, T. Effect of conditioning apple shoots with meta-topolin on the morphogenic activity of in vitro leaves. Acta Agron. Hung. 2002, 50, 117–126. [Google Scholar] [CrossRef]
- Van der Westhuizen, A. The use of meta-topolin as an alternative cytokinin in the tissue culture of Eucalyptus species. Acta Hortic. 2014, 1055, 25–28. [Google Scholar] [CrossRef]
- Gentile, A.; Frattarelli, A.; Nota, P.; Condello, E.; Caboni, A. The aromatic cytokinin meta-topolin promotes in vitro propagation, shoot quality and micrografting in Corylus colurna L. Plant Cell Tissue Organ Cult. 2017, 128, 693–703. [Google Scholar] [CrossRef]
- Naaz, A.; Hussain, S.A.; Anis, M.; Alatar, A.A. Meta-topolin improved micropropagation in Syzygium cumini and acclimatization to ex vitro conditions. Biol. Plant. 2019, 63, 174–182. [Google Scholar] [CrossRef]
- Bayraktar, M.; Hayta-Smedley, S.; Unal, S.; Varol, N.; Gurel, A. Micropropagation and prevention of hyperhydricity in olive (Olea europaea L.) cultivar ‘Gemlik’. S. Afr. J. Bot. 2020, 128, 264–273. [Google Scholar] [CrossRef]
- Franck, T.; Kevers, C.; Gaspar, T.; Dommes, J.; Deby, C.; Greimers, R.; Serteyn, D.; Deby-Dupont, G. Hyperhydricity of Prunus avium shoots cultured on gelrite: A controlled stress response. Plant Physiol. Biochem. 2004, 42, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Toaima, N. In vitro growth regulators, gelling agents and sucrose levels affect micropropagation of Gypsophila paniculata L. Middle East J. Agric. Res. 2016, 5, 313–323. [Google Scholar]
- Fal, M.; Majada, J.; Gonzalez, A.; Tamés, R.S. Differences between Dianthus caryophyllus L. cultivar in in vitro growth and morphogenesis are related to their ethylene production. Plant Growth Regul. 1999, 27, 131–136. [Google Scholar] [CrossRef]
- Zárate-Salazar, J.R.; de Souza, L.M.; de Morais, M.B.; Neto, L.P.; Willadino, L.; Gouveia-Neto, A.; Ulisses, C. Light-emitting diodes and gas exchange facilitation minimize hyperhydricity in Lippia grata: Physiological, biochemical and morpho anatomical aspects. S. Afr. J. Bot. 2020, 135, 164–171. [Google Scholar] [CrossRef]
- Lotfi, M.; Bayoudh, C.; Werbrouck, S.; Mars, M. Effects of meta–topolin derivatives and temporary immersion on hyperhydricity and in vitro shoot proliferation in Pyrus communis. Plant Cell Tissue Organ Cult. 2020, 143, 499–505. [Google Scholar] [CrossRef]
- Aghdaei, M.; Salehi, H.; Sarmast, M.K. Effects of silver nanoparticles on Tecomella undulata (Roxb.) Seem, micropropagation. Adv. Hort. Sci. 2012, 26, 21–24. [Google Scholar] [CrossRef]
- Sreelekshmi, R.; Siril, E.A.; Muthukrishnan, S. Role of biogenic silver nanoparticles on hyperhydricity reversion in Dianthus chinensis L. an in vitro model culture. J. Plant Growth Regul. 2022, 41, 23–39. [Google Scholar] [CrossRef]
- Sarmast, M.K.; Niazi, A.; Salehi, H.; Abolimoghadam, A. Silver nanoparticles affect ACS expression in Tecomella undulata in vitro culture. Plant Cell Tissue Organ Cult. 2015, 1212, 227–236. [Google Scholar] [CrossRef]
- Muneer, S.; Wei, H.; Park, Y.G.; Jeong, H.K.; Jeong, B.R. Proteomic analysis reveals the dynamic role of silicon in alleviation of hyperhydricity in carnation grown in vitro. Int. J. Mol. Sci. 2017, 19, 50. [Google Scholar] [CrossRef] [Green Version]
- Sivanesan, I.; Park, S.W. The role of silicon in plant tissue culture. Front. Plant Sci. 2014, 5, 571. [Google Scholar] [CrossRef] [Green Version]
- Braga, F.T.; Nunes, C.F.; Favero, A.C.; Pasqual, M.; Carvalho, J.G.; Castro, E.M. Anatomical characteristics of the strawberry seedlings micropropagated using different sources of silicon. Pesqui. Agropecu. Bras. 2009, 44, 128–132. [Google Scholar] [CrossRef]
- Asmar, S.A.; Castro, E.M.; Pasqual, M.; Pereira, F.J.; Soares, J.D.R. Changes in leaf anatomy and photosynthesis of micropropagated banana plantlets under different silicon sources. Sci. Hortic. 2013, 161, 328–332. [Google Scholar] [CrossRef]
- Manivannan, A.; Soundararajan, P.; Muneer, S.; Ko, C.H.; Jeong, B.R. Silicon mitigates salinity stress by regulating the physiology, antioxidant enzyme activities, and protein expression in Capsicum annuum ‘Bugwang’. Biomed. Res. Int. 2016, 2016, 3076357. [Google Scholar] [CrossRef]
Plant Species | Measures to Control Hyperhydricity | Reference |
---|---|---|
Agastache foeniculum | Ventilation of culture vessels (using paper to cover the cultural vessels), increasing the concentration of agar in the medium | [16] |
Agave sisalana | Adding polypropylene glycol (0.1%) in combination with NaCl (0.2%) as osmotic stress inducing agents | [17] |
Allium sativum | Adding 50 μM salicylic acid, 250 μM ascorbic acid, 10 μM spermidine, and 50 μM hydrogen peroxide to the medium | [15] |
Aloe polyphylla | Using agar as a gelling agent, reducing the concentration of cytokinins, ventilation of vessels for cultivation (using modified lids with a hole covered with polyester or cotton mesh) | [18,19,20] |
Beta vulgaris | Using culture medium prepared with deuterium- depleted water (25 ppm deuterium) | [21] |
Caladium bicolor | Addition of silver nitrate at 7.5 µM | [22] |
Castanea sativa | Using agar as a gelling agent, increasing light intensity, ventilating culture vessels | [23] |
Citrullus lanatus | Adding AgNO3 and Ag2S2O3 to the medium | [24] |
Dianthus caryophyllus | Adding silicon to the medium | [25] |
Dianthus chinensis L. | Adding AgNO3 to the culture medium; adding 10 µM AgNO3 in combination with 5 µM CoCl2 to the culture medium; supplementation of 5 µM spermine in MS (Murashige and Skoog) medium | [26,27,28] |
Eryngium foetidum L. | Reducing the concentration of kinetin, adding adjuvants to the medium, such as coconut milk, phloroglucinol and casein hydrolysate | [29] |
Helianthus annuus L. | Adding AgNO3 to the medium | [30] |
Lippia grata | Ventilation of culture vessels (partial sealing treatments) | [31] |
Lycium ruthenicum | Treatment of starvation and drying combined with 30 μM AgNO3 | [32] |
Malus domestica | Using gellan gum as a gelling agent, adding 10–5 M spermidine, arginine or ornithine to the culture medium | [33] |
Phoenix dactylifera | Using modification at a ratio of NH4+/NO3- at 10:15 (825:1425 mg/L) of MS medium | [34] |
Pistacia vera | Using methoxy topoline-riboside (MemTR) and meta-topoline-riboside (mTR) as an alternative to benzyladenine (BA) | [35] |
Pyrus communis | Using MemTR and mTR as an alternative to BA | [36] |
Salvia santolinifolia | MS medium modification with NH4NO3 (412 mg/L), KNO3 (475 mg/L) and CaCl22H2O (880 mg/L) | [37] |
Scrophularia yoshimurae | Using gellan gum as a gelling agent, ventilation of vessels for cultivation (using dispense paper) | [38] |
Thymus daenensis | Adding salicylic acid and colloidal silver nanoparticles to the medium | [14,39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polivanova, O.B.; Bedarev, V.A. Hyperhydricity in Plant Tissue Culture. Plants 2022, 11, 3313. https://doi.org/10.3390/plants11233313
Polivanova OB, Bedarev VA. Hyperhydricity in Plant Tissue Culture. Plants. 2022; 11(23):3313. https://doi.org/10.3390/plants11233313
Chicago/Turabian StylePolivanova, Oksana B., and Vladislav A. Bedarev. 2022. "Hyperhydricity in Plant Tissue Culture" Plants 11, no. 23: 3313. https://doi.org/10.3390/plants11233313
APA StylePolivanova, O. B., & Bedarev, V. A. (2022). Hyperhydricity in Plant Tissue Culture. Plants, 11(23), 3313. https://doi.org/10.3390/plants11233313