Genetic Dissection of Alkalinity Tolerance at the Seedling Stage in Rice (Oryza sativa) Using a High-Resolution Linkage Map
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Characterization under Alkaline Stress
2.2. Correlations among Traits in the RIL Population
2.3. Linkage Map and QTL Mapping
2.3.1. QTLs under Alkalinity Stress
2.3.2. QTLs under Control Environment
2.4. Co-Localization of QTLs with Previous Salinity and Alkalinity Tolerance QTLs
2.5. Candidate Genes Identification by Integrating Data from QTL Mapping and Whole Genome Sequencing
2.6. Validation of Expression of Alkalinity Tolerance Related Genes
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Choice of Parents
5.2. Seedling Stage Screening for Alkalinity Tolerance
5.3. Statistical Analysis
5.4. Genotyping-by-Sequencing of the Mapping Population and SNP Identification
5.5. Linkage Map Construction and QTL Mapping
5.6. Whole Genome Resequencing of Parents and Detection of SNPs and InDels
5.7. Expression Analysis of Selected Genes by Real-Time Quantitative Reverse Transcription PCR (qRT-PCR)
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, L.X.; Lv, B.S.; Wang, M.M.; Ma, H.Y.; Yang, H.Y.; Liu, X.L.; Jiang, C.J.; Liang, Z.W. Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings. Plant Physiol. Biochem. 2015, 90, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yang, A.; Zhang, W.H. Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice (Oryza sativa L.). J. Exp. Bot. 2016, 67, 6431–6444. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Min, W.; Shi, Y.; Tian, L.; Li, P.; Ma, T.; Zhang, Y.; Luo, C. Exogenous melatonin alleviates alkaline stress by removing reactive oxygen species and promoting antioxidant defense in rice seedlings. Front. Plant Sci. 2022, 13, 849553. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, Q.; Cai, H.; Xu, F. Ethylene mediates alkaline-induced rice growth inhibition by negatively regulating plasma membrane H+-ATPase activity in roots. Front. Plant Sci. 2017, 8, 1839. [Google Scholar] [CrossRef] [Green Version]
- Chuamnakthong, S.; Nampei, M.; Ueda, A. Characterization of Na+ exclusion mechanism in rice under saline-alkaline stress conditions. Plant Sci. 2019, 287, 110171. [Google Scholar] [CrossRef]
- Li, N.; Zheng, H.; Cui, J.; Wang, J.; Liu, H.; Sun, J.; Liu, T.; Zhao, H.; Lai, Y.; Zou, D. Genome-wide association study and candidate gene analysis of alkalinity tolerance in japonica rice germplasm at the seedling stage. Rice 2019, 12, 24. [Google Scholar] [CrossRef] [PubMed]
- Neina, D. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Li, J.; Jia, X.; Yang, F.; Wang, Z. Assimilation and translocation of dry matter and phosphorus in rice genotypes affected by salt-alkaline stress. Sustainability 2016, 8, 568. [Google Scholar] [CrossRef] [Green Version]
- Lv, B.S.; Li, X.W.; Ma, H.Y.; Sun, Y.; Wei, L.X.; Jiang, C.J.; Liang, Z.W. Differences in growth and physiology of rice in response to different saline-alkaline stress factors. Agron. J. 2013, 105, 1119–1128. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.L.; Zhang, R.X.; Yuan, H.Y.; Wang, M.M.; Yang, H.Y.; Ma, H.Y.; Liu, D.; Jiang, C.J.; Liang, Z.W. Root damage under alkaline stress is associated with reactive oxygen species accumulation in rice (Oryza sativa L.). Front. Plant Sci. 2017, 8, 1580. [Google Scholar] [CrossRef]
- Rao, P.S.; Mishra, B.; Gupta, S.R.; Rathore, A. Reproductive stage tolerance to salinity and alkalinity stresses in rice genotypes. Plant Breed. 2008, 127, 256–261. [Google Scholar] [CrossRef]
- Sangwongchai, W.; Krusong, K.; Thitisaksakul, M. Salt tolerance at vegetative stage is partially associated with changes in grain quality and starch physicochemical properties of rice exposed to salinity stress at reproductive stage. J. Sci. Food Agric. 2021, 102, 370–382. [Google Scholar] [CrossRef] [PubMed]
- Moradi, F.; Ismail, A.M. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Anna. Bot. 2007, 99, 1161–1173. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; Flowers, T.J. The physiology and molecular biology of the effects of salinity on rice. In Handbook of Plant and Crop Stress, 3rd ed.; Pessarakli, M., Ed.; Taylor and Francis: Boca Raton, FL, USA, 2010; pp. 899–939. [Google Scholar]
- Li, Z.K.; Xu, J.L. Breeding for drought and salt tolerant rice (Oryza sativa L.): Progress and perspectives. In Advances in Molecular Breeding toward Drought and Salt Tolerance Crops; Jenks, M.A., Hasegawa, P.M., Jain, S.M., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 531–564. [Google Scholar]
- Guo, R.; Zhou, J.; Hao, W.; Gu, F.; Liu, Q.; Hao, R.L.; Xia, X.; Mao, L. Germination, growth, chlorophyll fluorescence and ionic balance in linseed seedlings subjected to saline and alkaline stresses. Plant Prod. Sci. 2014, 17, 20–31. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Chong, J.; Li, C.; Kim, C.; Shi, D.; Wang, D. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant Soil 2007, 294, 263–276. [Google Scholar] [CrossRef]
- Ishimaru, Y.; Kim, S.; Tsukamoto, T.; Oki, H.; Kobayashi, T.; Watanabe, S.; Matsuhashi, S.; Takahashi, M.; Nakanishi, H.; Mori, S.; et al. Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proc. Natl. Acad. Sci. USA 2007, 104, 7373–7378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Liu, X.; Zhang, H.; Jin, Y.; Wang, M.; Yang, H.; Ma, H.; Jiang, C.; Liang, Z. Abscisic acid primes rice seedlings for enhanced tolerance to alkaline stress by upregulating antioxidant defense and stress tolerance-related genes. Plant Soil 2019, 438, 39–55. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Xue, S.; Quan, T.; Cui, D.; Han, L.; Cong, W.; Li, M.; Yun, D.; Liu, B.; et al. Set domain group 721 protein functions in saline-alkaline stress tolerance in the model rice variety Kitaake. Plant Biotechnol. J. 2021, 19, 2576–2588. [Google Scholar] [CrossRef]
- Subudhi, P.K.; Shankar, R.; Jain, M. Whole genome sequence analysis of rice genotypes with contrasting response to salinity stress. Sci. Rep. 2020, 10, 21259. [Google Scholar] [CrossRef]
- Kong, W.; Sun, T.; Zhang, C.; Deng, X.; Li, Y. Comparative transcriptome analysis reveals the mechanisms underlying differences in salt tolerance between indica and japonica rice at seedling stage. Front. Plant Sci. 2021, 12, 725436. [Google Scholar] [CrossRef]
- Chapagain, S.; Concepcion, J.; Pruthi, R.; Singh, L.; Famoso, A.; Subudhi, P.K. Genetic variation among the salinity tolerant breeding lines identified from two multi-parent advanced generation introgression line populations in rice (Oryza sativa). J. Agron. Crop Sci. 2022, 208, 295–313. [Google Scholar] [CrossRef]
- Ren, Z.; Gao, J.; Li, L.; Cai, X.; Huang, W.; Chao, D.; Zhu, M.; Wang, Z.; Luan, S.; Lin, H. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet. 2005, 37, 1141–1146. [Google Scholar] [PubMed]
- Huang, X.Y.; Chao, D.Y.; Gao, J.P.; Zhu, M.Z.; Shi, M.; Lin, H.X. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev. 2009, 23, 1805–1817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Wu, Z.; Chen, Y.; Yang, C.; Shi, D. Effects of salt and alkali stresses on growth and ion balance in rice (Oryza sativa L.). Plant Soil Environ. 2011, 57, 286–294. [Google Scholar]
- Lin, Y.; Ma, J.; Wu, N.; Qi, F.; Peng, Z.; Nie, D.; Yao, R.; Qi, X.; Slaski, J.; Yang, F.; et al. Transcriptome study of rice roots status under high alkaline stress at seedling stage. Agronomy 2022, 12, 925. [Google Scholar]
- Chen, W.; Cui, P.; Sun, H.; Guo, W.; Yang, C.; Jin, H.; Fang, B.; Shi, D. Comparative effects of salt and alkali stresses on organic acid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L.). Ind. Crops Prod. 2009, 30, 351–358. [Google Scholar]
- Li, N.; Sun, J.; Wang, J.; Liu, H.; Zheng, H.; Yang, L.; Liang, Y.; Li, X.; Zou, D. QTL analysis for alkaline tolerance of rice and verification of a major QTL. Plant Breed. 2017, 136, 881–891. [Google Scholar]
- Liu, J.; Shabala, S.; Shabala, L.; Zhou, M.; Meinke, H.; Venkataraman, G.; Chen, Z.; Zeng, F.; Zhao, Q. Tissue-specific regulation of Na+ and K+ transporters explains genotypic differences in salinity stress tolerance in rice. Front. Plant Sci. 2019, 10, 1361. [Google Scholar]
- Masuda, H.; Aung, M.S.; Kobayashi, T.; Hamada, T.; Nishizawa, N.K. Enhancement of iron acquisition in rice by the mugineic acid synthase gene with ferric iron reductase gene and OsIRO2 confers tolerance in submerged and nonsubmerged calcareous soils. Front. Plant Sci. 2019, 10, 1179. [Google Scholar]
- Li, X.; Zheng, H.; Wu, W.; Liu, H.; Wang, J.; Jia, Y.; Li, J.; Yang, L.; Lei, L.; Zou, D.; et al. QTL mapping and candidate gene analysis for alkali tolerance in japonica rice at the bud stage based on linkage mapping and genome-wide association study. Rice 2020, 13, 48. [Google Scholar]
- Qi, D.; Guo, G.; Lee, M.; Zhang, J.; Cao, G.; Zhang, S.; Suh, S.; Zhou, Q.; Han, L. Identification of quantitative trait loci for the dead leaf rate and the seedling dead rate under alkaline stress in rice. J. Genet. Genom. 2008, 35, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Qu, Y.; Yang, C.; Ma, X.; Cao, G.; Zhao, Z.; Zhang, S.; Zhang, T.; Han, L. Identification of QTLs associated with salt or alkaline tolerance at the seedling stage in rice under salt or alkaline stress. Euphytica 2015, 201, 441–452. [Google Scholar] [CrossRef]
- Singh, L.; Coronejo, S.; Pruthi, R.; Chapagain, S.; Subudhi, P.K. Integration of QTL mapping and whole genome sequencing identifies candidate genes for alkalinity tolerance in rice (Oryza sativa). Int. J. Mol. Sci. 2022, 23, 11791. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.; Ma, H.; Wang, Z.J.; Wang, Z.Y.; Liu, S.K. A rice LSD1-like-type ZFP gene OsLOL5 enhances saline-alkaline tolerance in transgenic Arabidopsis thaliana, yeast and rice. BMC Genom. 2016, 17, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, H.; Kim, Y.A.; Shin, R.; Park, C.J. Nucleus-encoded thylakoid protein, OsY3IP1, confers enhanced tolerance to saline and alkaline stresses in rice. Rice Sci. 2022, 29, 225–236. [Google Scholar] [CrossRef]
- Wang, B.; Xie, G.; Liu, Z.; He, R.; Han, J.; Huang, S.; Liu, L.; Cheng, X. Mutagenesis reveals that the OsPPa6 gene is required for enhancing the alkaline tolerance in rice. Front. Plant Sci. 2019, 10, 759. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Ma, C.; Tai, H.; Qiu, H.; Yang, A. Comparative transcriptome analysis of two rice genotypes differing in their tolerance to saline-alkaline stress. PLoS ONE 2020, 15, e0243112. [Google Scholar] [CrossRef]
- Cheng, H.T.; Jiang, H.; Xue, D.W.; Guo, L.B.; Zeng, D.L.; Zhang, G.H.; Qian, Q. Mapping of QTL underlying tolerance to alkali at germination and early seedling stages in rice. Acta Agron. Sin. 2008, 34, 1719–1727. [Google Scholar] [CrossRef]
- Mei, S.; Zhang, G.; Jiang, J.; Lu, J.; Zhang, F. Combining genome-wide association study and gene-based haplotype analysis to identify candidate genes for alkali tolerance at the germination stage in rice. Front. Plant Sci. 2022, 13, 887239. [Google Scholar] [CrossRef]
- Rieseberg, L.H.; Archer, M.A.; Wayne, R.K. Transgressive segregation, adaptation and speciation. Heredity 1999, 83, 363–372. [Google Scholar] [CrossRef]
- Bhadru, D.; Rao, V.T.; Mohan, Y.C.; Bharathi, D. Genetic variability and diversity studies in yield and its component traits in rice (Oryza sativa L.). SABRAO J. Breed. Genet. 2012, 44, 129–137. [Google Scholar]
- Amoah, N.K.A.; Akromah, R.; Kena, A.W.; Manneh, B.; Dieng, I.; Bimpong, I.K. Mapping QTLs for tolerance to salt stress at the early seedling stage in rice (Oryza sativa L.) using a newly identified donor ‘Madina Koyo’. Euphytica 2020, 216, 156. [Google Scholar] [CrossRef]
- De Leon, T.B.; Linscombe, S.; Subudhi, P.K. Identification and validation of QTLs for seedling salinity tolerance in introgression lines of a salt tolerant rice landrace ‘Pokkali’. PLoS ONE 2017, 12, e0175361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puram, V.R.R.; Ontoy, J.; Linscombe, S.; Subudhi, P.K. Genetic dissection of seedling stage salinity tolerance in rice using introgression lines of a salt tolerant landrace Nona Bokra. J. Hered. 2017, 108, 658–670. [Google Scholar] [CrossRef] [Green Version]
- Shabala, S.; Cuin, T.A. Potassium transport and plant salt tolerance. Physiol. Plantar. 2008, 133, 651–669. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.R.; Islam, M.T.; Robin, A.H.K. Salinity stress alters root morphology and root hair traits in Brassica napus. Plants 2019, 8, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, N.; Chu, Y.; Chen, H.; Li, X.; Wu, Q.; Jin, L.; Wang, G.; Huang, J. Rice transcription factor OsMADS25 modulates root growth and confers salinity tolerance via the ABA-mediated regulatory pathway and ROS scavenging. PLoS Genet. 2018, 14, e1007662. [Google Scholar] [CrossRef] [Green Version]
- De Leon, T.B.; Linscombe, S.; Subudhi, P.K. Molecular dissection of seedling salinity tolerance in rice (Oryza sativa L.) using a high-density GBS-based SNP linkage map. Rice 2016, 9, 52. [Google Scholar] [CrossRef]
- De Leon, T.B.; Linscombe, S.; Gregorio, G.; Subudhi, P.K. Genetic variation in Southern USA rice genotypes for seedling salinity tolerance. Front. Plant Sci. 2015, 6, 374. [Google Scholar] [CrossRef] [Green Version]
- Puram, V.R.R.; Ontoy, J.; Subudhi, P.K. Identification of QTLs for salt tolerance traits and prebreeding lines with enhanced salt tolerance in an introgression line population of rice. Plant Mol. Biol. Rep. 2018, 36, 695–709. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Z.; Cheng, J.; Lai, Y.; Wang, J.; Bao, Y.; Huang, J.; Zhang, H. QTL analysis of Na+ and K+ concentrations in roots and shoots under different levels of NaCl stress in rice (Oryza sativa L.). PLoS ONE 2012, 7, e51202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Cheng, J.; Chen, Z.; Huang, J.; Bao, Y.; Wang, J.; Zhang, H. Identification of QTLs with main, epistatic and QTL × environment interaction effects for salt tolerance in rice seedlings under different salinity conditions. Theor. Appl. Genet. 2012, 125, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Wang, Y.; Liu, X.; Shang, J.; Zhao, L. OsWAK112, a wall-associated kinase, negatively regulates salt stress responses by inhibiting ethylene production. Front. Plant Sci. 2021, 12, 751965. [Google Scholar] [CrossRef] [PubMed]
- Eryong, C.; Bo, S. OsABT, a rice WD40 domain-containing protein, is involved in abiotic stress tolerance. Rice Sci. 2022, 29, 247–256. [Google Scholar] [CrossRef]
- Tran, L.S.P.; Mochida, K. Identification and prediction of abiotic stress responsive transcription factors involved in abiotic stress signaling in soybean. Plant Signal. Behav. 2010, 5, 255–257. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Liu, H.; Sun, J.; Zheng, H.; Wang, J.; Yang, L.; Zhao, H.; Zou, D. Transcriptome analysis of two contrasting rice cultivars during alkaline stress. Sci. Rep. 2018, 8, 9586. [Google Scholar] [CrossRef] [Green Version]
- Solomon, M.; Belenghi, B.; Delledonne, M.; Menachem, E.; Levine, A. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 1999, 11, 431–443. [Google Scholar] [CrossRef]
- Park, J.J.; Yi, J.; Yoon, J.; Cho, L.H.; Ping, J.; Jeong, H.J.; Cho, S.K.; Kim, W.T.; An, G. OsPUB15, an E3 ubiquitin ligase, functions to reduce cellular oxidative stress during seedling establishment. Plant J. 2011, 65, 194–205. [Google Scholar] [CrossRef]
- Liu, C.W.; Hsu, Y.K.; Cheng, Y.H.; Yen, H.C.; Wu, Y.P.; Wang, C.S.; Lai, C.C. Proteomic analysis of salt-responsive ubiquitin-related proteins in rice roots. Rapid Commun. Mass Spectrom. 2012, 26, 1649–1660. [Google Scholar] [CrossRef]
- Berrin, J.G.; Pierrugues, O.; Brutesco, C.; Alonso, B.; Montillet, J.L.; Roby, D.; Kazmaier, M. Stress induces the expression of AtNADK-1, a gene encoding a NAD(H) kinase in Arabidopsis thaliana. Mol. Genet. Genom. 2005, 273, 10–19. [Google Scholar] [CrossRef]
- Cha-Um, S.; Supaibulwattana, K.; Kirdmanee, C. Comparative effects of salt stress and extreme pH stress combined on glycine betaine accumulation, photosynthetic abilities and growth characters of two rice genotypes. Rice Sci. 2009, 16, 274–282. [Google Scholar] [CrossRef]
- Karan, R.; De Leon, T.; Biradar, H.; Subudhi, P.K. Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS ONE 2012, 7, e40203. [Google Scholar] [CrossRef] [PubMed]
- Finatto, T.; de Oliveira, A.C.; Chaparro, C.; da Maia, L.C.; Farias, D.R.; Woyann, L.G.; Mistura, C.C.; Soares-Bresolin, A.P.; Llauro, C.; Panaud, O.; et al. Abiotic stress and genome dynamics: Specific genes and transposable elements response to iron excess in rice. Rice 2015, 8, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Li, B.B.; Ma, T.T.; Sun, L.Y.; Tai, L.; Hu, C.H.; Liu, W.T.; Li, W.Q.; Chen, K.M. The NAD kinase OsNADK1 affects the intracellular redox balance and enhances the tolerance of rice to drought. BMC Plant Biol. 2020, 20, 11. [Google Scholar] [CrossRef] [Green Version]
- Sabouri, H.; Sabouri, A. New evidence of QTLs attributed to salinity tolerance in rice. Afr. J. Biotechnol. 2008, 7, 4376–4383. [Google Scholar]
- Negi, P.; Rai, A.N.; Suprasanna, P. Moving through the stressed genome: Emerging regulatory roles for transposons in plant stress response. Front. Plant Sci. 2016, 7, 1448. [Google Scholar] [CrossRef] [Green Version]
- Joly-Lopez, Z.; Forczek, E.; Vello, E.; Hoen, D.R.; Tomita, A.; Bureau, T.E. Abiotic stress phenotypes are associated with conserved genes derived from transposable elements. Front. Plant Sci. 2017, 8, 2027. [Google Scholar] [CrossRef] [Green Version]
- Grandbastien, M.A.; Lucas, H.; Morel, J.B.; Mhiri, C.; Vernhettes, S.; Casacuberta, J.M. The expression of the tobacco Tnt1 retrotransposon is linked to plant defense responses. Genetica 1997, 100, 241–252. [Google Scholar] [CrossRef]
- Bui, Q.T.; Grandbastien, M.A. LTR retrotransposons as controlling elements of genome response to stress? In Plant Transposable Elements: Impact on Genome Structure and Function Topics in Current Genetics; Grandbastien, M.A., Casacuberta, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 273–296. [Google Scholar]
- Linscombe, S.; Jodari, F.; Bollich, P.; Groth, D.; White, L.; Chu, Q.; Dunand, R.; Sanders, D. Registration of “Cocodrie” rice. Crop Sci. 2000, 40, 294. [Google Scholar] [CrossRef]
- Casartelli, A.; Riewe, D.; Hubberten, H.M.; Altmann, T.; Hoefgen, R.; Heuer, S. Exploring traditional aus-type rice for metabolites conferring drought tolerance. Rice 2018, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.B.; Case, V.W. Sampling, handling, and analyzing plant tissue samples. In Soil Testing and Plant Analysis, 3rd ed.; Westerman, R.L., Ed.; Book Series No. 3; Soil Science Society of America: Madison, WI, USA, 1990; pp. 389–427. [Google Scholar]
- R Foundation. R: A Language and Environment for Statistical Computing, Reference Index Version 2.2.1; R Foundation: Vienna, Austria, 2005. [Google Scholar]
- SAS Institute Inc. SAS®9.4 System Options: Reference, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2012. [Google Scholar]
- Holland, J.B.; Nyquist, W.E.; Cervantes-Martínez, C.T. Estimating and interpreting heritability for plant breeding: An update. Plant Breed. Rev. 2003, 22, 9–111. [Google Scholar]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elshire, R.J.; Glaubitz, J.C.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glaubitz, J.C.; Casstevens, T.M.; Lu, F.; Harriman, J.; Elshire, R.J.; Sun, Q.; Buckler, E.S. TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline. PLoS ONE 2014, 9, e90346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langmead, B.; Salzberg, S. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Li, H.; Zhang, L.; Wang, J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 2015, 3, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Kosambi, D.D. The estimation of map distances from recombination values. Ann. Eugen. 1944, 12, 172–175. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Patel, R.K.; Jain, M. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE 2012, 7, e30619. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Van der Auwera, G.A.; O’Connor, B.D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra, 1st ed.; O’Reilly Media: Newton, MA, USA, 2020. [Google Scholar]
- Poplin, R.; Ruano-Rubio, V.; DePristo, M.A.; Fennel, T.J.; Carneiro, M.O.; Van der Auwera, G.A.; Kling, D.E.; Gauthier, L.D.; Levy-Moonshine, A.; Roazen, D.; et al. Scaling accurate genetic variant discovery of tens of thousands of samples. BioRxiv 2018. [Google Scholar] [CrossRef] [Green Version]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subudhi, P.K.; Garcia, R.S.; Coronejo, S.; Tapia, R. Comparative transcriptional profiling of root tissues in two rice genotypes reveals differential expressed genes associated with root architecture under nitrogen stress. Int. J. Mol. Sci. 2020, 21, 5759. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.; Schmittgen, T. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Trait Name † | Cocodrie Mean | Dular Mean § | RIL Mean | Std. Dev. | RIL Range | RIL Pr > F $ | Heritability |
---|---|---|---|---|---|---|---|
AKT | 3.7 | 7.7 * | 5.2 | 1.8 | 1.0–9.0 | <0.001 *** | 0.81 |
LCHL | 1.36 | 1.04 * | 1.25 | 0.10 | 0.84–1.43 | <0.001 *** | 0.47 |
RTL (cm) | 10.51 | 7.66 ** | 9.16 | 1.17 | 7.18–13.43 | <0.001 *** | 0.70 |
LSHL | 1.30 | 1.20 *** | 1.33 | 0.03 | 1.15–1.40 | 0.02 * | 0.43 |
RSR (ratio) | 0.48 | 0.45 ns | 0.47 | 0.07 | 0.31–0.71 | <0.001 *** | 0.61 |
DW (g) | 36.0 | 17.1 ** | 26.9 | 7.52 | 11.3–50.9 | <0.001 *** | 0.77 |
SNC (mmol kg−1) | 1418.3 | 2860.2 *** | 2301.8 | 13.23 | 1095.5–4129.1 | <0.001 *** | 0.64 |
SKC (mmol kg−1) | 925.4 | 274.1 *** | 692.5 | 21.23 | 97.0–1884.7 | 0.01 ** | 0.65 |
SNK (ratio) | 1.54 | 10.64 *** | 3.64 | 16.84 | 1.10–21.16 | 0.52 ns | 0.46 |
Trait $ | AKT | LCHL | LSHL | RTL | DW | RSR | SNC | SKC | SNK |
---|---|---|---|---|---|---|---|---|---|
AKT | 1.000 | ||||||||
LCHL | −0.037 *** | 1.000 | |||||||
LSHL | −0.038 ** | 0.052 | 1.000 | ||||||
RTL | −0.026 ** | 0.027 | 0.100 * | 1.000 | |||||
DW | −0.555 *** | 0.298 *** | 0.086 * | −0.072 | 1.000 | ||||
RSR | −0.009 ** | −0.065 | −0.658 *** | 0.670 *** | 0.006 | 1.000 | |||
SNC | 0.109 ** | 0.055 | −0.05 | −0.070 ** | 0.004 | −0.015 * | 1.000 | ||
SKC | −0.101 ** | 0.131 *** | −0.004 | 0.134 ** | 0.109 ** | −0.102 | −0.017 | 1.000 | |
SNK | −0.006 ** | 0.602 *** | −0.051 | −0.041 | 0.05 | 0.002 *** | 0.075 ** | 0.127 ** | 1.000 |
Chr | No. of Markers | Chromosome Coverage (bp) $ | Genetic Length (cM) § | No. of SNPs Per cM | Average Interval (cM) | No. of Gaps > 5 cM |
---|---|---|---|---|---|---|
1 | 646 | 43,172,608 | 215.8 | 2.99 | 0.83 | 5 |
2 | 511 | 35,280,580 | 150.8 | 3.39 | 0.91 | 3 |
3 | 600 | 36,110,022 | 194.7 | 3.08 | 0.87 | 3 |
4 | 360 | 33,875,971 | 132.9 | 2.71 | 1.11 | 5 |
5 | 214 | 29,764,180 | 130.5 | 1.64 | 1.32 | 2 |
6 | 309 | 31,099,571 | 130.6 | 2.36 | 1.05 | 4 |
7 | 453 | 29,302,669 | 124.4 | 3.64 | 0.82 | 4 |
8 | 292 | 28,135,784 | 133.3 | 2.19 | 1.09 | 3 |
9 | 355 | 22,692,796 | 87.8 | 4.04 | 0.78 | 1 |
10 | 298 | 21,675,087 | 83.1 | 3.58 | 0.87 | 1 |
11 | 308 | 28,904,361 | 116.9 | 2.63 | 1.27 | 5 |
12 | 333 | 27,448,210 | 83.6 | 3.98 | 0.89 | 2 |
Total | 4679 | 367,461,839 | 1584.4 | 36.23 | 11.81 | 38 |
Mean | 389.9 | 30,621,820 | 132.0 | 3.02 | 0.98 | 3.2 |
Trait $ | QTL § | Chr | Position (cM) | Left_Marker | Right_Marker | Interval (bp) | LOD β | PVE (%) ψ | Additive Effect | Parental Allele with Increasing Effect |
---|---|---|---|---|---|---|---|---|---|---|
AKT | qAKT8.02 | 8 | 113 | S8_2389044 | S8_3753000 | 1,363,956 | 4.41 | 5.93 | 0.024 | Dular |
qAKT8.27 | 8 | 131.5 | S8_27687657 | S8_28135748 | 448,091 | 7.17 | 10.71 | 0.300 | Dular | |
qAKT12.27 | 12 | 83.5 | S12_27205921 | S12_27488377 | 282,456 | 4.94 | 4.42 | 0.400 | Dular | |
LCHL | qLCHL8.17 | 8 | 1 | S8_1707207 | S1_1929247 | 222,040 | 5.80 | 6.93 | −0.026 | Cocodrie |
qLCHL1.38 | 1 | 177 | S1_38286772 | S1_39460409 | 1,173,637 | 19.74 | 27.25 | −0.008 | Cocodrie | |
LSHL | qLSHL2.31 | 2 | 137 | S2_31461037 | S2_31512244 | 51,207 | 9.25 | 12.05 | 0.006 | Dular |
qLSHL6.006 | 6 | 2.5 | S6_690909 | S6_1909168 | 1,218,259 | 4.85 | 6.13 | −0.008 | Cocodrie | |
qLSHL7.19 | 7 | 69 | S7_19188413 | S7_19412780 | 224,367 | 8.39 | 9.26 | −0.007 | Cocodrie | |
qLSHL9.17 | 9 | 59 | S9_17841553 | S9_18034390 | 192,837 | 2.11 | 3.44 | −0.009 | Cocodrie | |
RTL | qRTL2.08 | 2 | 54 | S2_8268535 | S2_8898321 | 629,786 | 2.53 | 5.96 | −0.262 | Cocodrie |
qRTL5.01 | 5 | 9.5 | S5_1109689 | S5_1278582 | 168,893 | 9.91 | 10.72 | 0.277 | Dular | |
qRTL5.06 | 5 | 40 | S5_6448396 | S5_6763151 | 314,755 | 8.33 | 8.91 | −0.183 | Cocodrie | |
qRTL6.07 | 6 | 48 | S6_7182868 | S6_7971133 | 788,265 | 4.59 | 6.02 | −0.262 | Cocodrie | |
RSR | qRSR4.28 | 4 | 106.5 | S4_28487153 | S4_29482850 | 995,697 | 5.36 | 6.56 | −0.013 | Cocodrie |
qRSR5.01 | 5 | 8.5 | S5_1065077 | S5_1109689 | 44,612 | 10.50 | 14.82 | −0.018 | Cocodrie | |
qRSR6.07 | 6 | 47.5 | S6_7182868 | S6_7971133 | 788,265 | 7.30 | 7.51 | 0.013 | Dular | |
qRSR6.28 | 6 | 117 | S6_28968690 | S6_30052494 | 1,083,804 | 11.66 | 13.08 | 0.014 | Dular | |
qRSR9.10 | 9 | 27 | S9_10802084 | S9_10898315 | 96,231 | 4.35 | 5.49 | −0.013 | Cocodrie | |
qRSR9.14 | 9 | 41 | S9_14050136 | S9_14359383 | 309,247 | 2.62 | 4.98 | −0.014 | Cocodrie | |
qRSR9.18 | 9 | 62.5 | S9_18402360 | S9_18643076 | 240,716 | 5.79 | 6.32 | −0.016 | Cocodrie | |
DW | qDW1.38 | 1 | 183 | S1_38286772 | S1_39460409 | 1,173,637 | 3.99 | 4.14 | 1.769 | Dular |
qDW8.007 | 8 | 4 | S8_799660 | S8_1710677 | 911,017 | 6.61 | 7.74 | 1.444 | Dular | |
qDW8.27 | 8 | 131.5 | S8_27687657 | S8_28135748 | 448,091 | 8.07 | 9.77 | −1.158 | Cocodrie | |
qDW9.13 | 9 | 39.5 | S9_13908137 | S9_13983427 | 75,290 | 6.99 | 8.31 | 1.588 | Dular | |
qDW12.27 | 12 | 82.5 | S12_27205921 | S12_27488377 | 282,456 | 7.58 | 10.61 | −1.460 | Cocodrie | |
SNC | qSNC1.21 | 1 | 94.5 | S1_21692903 | S1_21760129 | 67,226 | 5.94 | 8.25 | 5.933 | Dular |
qSNC2.22 | 2 | 98.5 | S2_22178643 | S2_22249726 | 71,083 | 4.37 | 6.31 | 64.095 | Dular | |
qSNC2.32 | 2 | 144.5 | S2_32743829 | S2_32915982 | 172,153 | 6.38 | 9.42 | 65.049 | Dular | |
qSNC3.15 | 3 | 111 | S3_15404332 | S3_15513823 | 109,491 | 11.67 | 12.83 | 9.905 | Dular | |
qSNC3.32 | 3 | 155 | S3_32028657 | S3_35497210 | 3,468,553 | 9.96 | 13.28 | 5.252 | Dular | |
qSNC3.30 | 3 | 167 | S3_30361166 | S3_30382168 | 21,002 | 7.53 | 8.56 | 66.536 | Dular | |
qSNC5.06 | 5 | 44.5 | S5_6833240 | S5_7409167 | 575,927 | 3.16 | 5.08 | 60.171 | Dular | |
qSNC9.09 | 9 | 20 | S9_9070610 | S9_9106119 | 35,509 | 3.53 | 6.36 | 05.448 | Dular | |
qSNC9.21 | 9 | 76.5 | S9_21162491 | S9_21197575 | 35,084 | 5.81 | 7.07 | 76.133 | Dular | |
qSNC10.16 | 10 | 52.5 | S10_16668990 | S10_16691548 | 22,558 | 8.23 | 10.08 | 59.920 | Dular | |
SKC | qSKC1.13 | 1 | 80 | S1_13776034 | S1_13961648 | 185,614 | 14.02 | 8.94 | −220.509 | Cocodrie |
qSKC2.05 | 2 | 38.5 | S2_5560927 | S2_5587375 | 26,448 | 9.08 | 6.50 | −35.930 | Cocodrie | |
qSKC2.19 | 2 | 85 | S2_19229724 | S2_19269684 | 39,960 | 7.20 | 8.28 | −27.125 | Cocodrie | |
qSKC4.31 | 4 | 117.5 | S4_31786637 | S4_32369172 | 582,535 | 6.52 | 7.34 | −29.889 | Cocodrie | |
qSKC4.16 | 4 | 131.5 | S4_16479675 | S4_17381790 | 902,115 | 4.31 | 6.31 | −28.608 | Cocodrie | |
qSKC9.22 | 9 | 86.5 | S9_22415213 | S9_22452432 | 37,219 | 8.65 | 10.37 | −32.689 | Cocodrie | |
qSKC10.18 | 10 | 99 | S10_18317578 | S10_19335407 | 1,017,829 | 12.92 | 15.63 | −11.789 | Cocodrie | |
SNK | qSNK2.03 | 2 | 19.5 | S2_3263428 | S2_4041906 | 778,478 | 11.92 | 4.71 | 0.249 | Dular |
qSNK7.05 | 7 | 34 | S7_5858227 | S7_6031361 | 173,134 | 6.23 | 7.91 | 0.195 | Dular | |
qSNK8.01 | 8 | 88.5 | S8_261276 | S8_799660 | 538,384 | 6.72 | 10.63 | 0.297 | Dular | |
qSNK11.27 | 11 | 116.5 | S11_27210387 | S11_28904361 | 1,693,974 | 8.37 | 9.21 | 0.205 | Dular |
This Study | Previous Studies | |||
---|---|---|---|---|
QTLs † | Position | QTL | Flanking Markers and/or Position | References |
qDW8.12 | 12,384,756–12,458,250 | qDSRs8-1 | RM22741 (9,957,711)-RM404 (15,438,081) | [35] |
qDW8.27 | 27,687,657–28,135,748 | qSHL8.27 | 27,384,352–27,875,737 | [36] |
qDW11.02 | 2,360,859–3,182,929 | qRGE11 | RM1812 (2,405,106)-RM5599 (3,824,353) | [41] |
qLCHL1.38 qDW1.38 | 38,286,772–39,460,409 | qSHL1.38 | 38,286,772–38,611,845 | [36] |
qLSHL6.006 | 690,909–1,909,168 | qDLR6-1 | RM584 (441,616)-RM225 (3,416,533) | [34] |
qRSR6.28 | 28,968,690–30,052,494 | qSNC6 | RM20517 (27,113,843)-RM412 (30,328,051) | [30] |
qLSHL2.31 qSNC2.32 | 31,461,037–31,512,244 32,743,829–32,915,982 | qDLR2-1 | RM5425 (28,267,534)-RM406 (35,236,078) | [34] |
qSNC3.15 | 15,404,332–15,513,823 | qDLR3 | RM338 (13,221,482)-RM2453 (20,243,819) | [34] |
qSNC3.32 | 32,028,657–35,497,210 | qRKC3.32 qSNC3 | 32,785,101–36,366,411 RM1221 (33,386,334)-RM130 (35,669,797) | [36] [30] |
qSNC2.22 qSKC2.19 | 22,178,643–22,249,726 19,229,724–19,269,684 | qDLR2-2 | RM29 (17,484,665)-RM221 (27,610,063) | [34] |
qRTL5.06 qSNC5.06 | 6,448,396–6,763,151 6,833,240–7,409,167 | qDLRa5-1 | RM243 (2,212,736)-RM413 (7,970,722) | [35] |
qSNC10.16 | 16,668,990–16,691,548 | qRGE10 | RM467 (13,488,471)-RM271 (22,243,349) | [41] |
qSKC1.13 | 13,776,034–13,961,648 | qRRN1 | RM1 (4,635,793)-RM195 (21,475,599) | [41] |
qSKC4.16 | 16,479,675–17,381,790 | qSNC4.16 | 16,612,171–16,880,788 | [36] |
qSKC4.31 | 31,786,637–32,369,172 | qARL4 | 32,090,432–32,195,798 | [33] |
qSNK8.01 | 261,276–498,009 | qMT8.002§ | 261,276–799,660 | [36] |
qSKC10.18 | 18,317,578–19,335,407 | qSKC10.18 | 18,053,155–19,335,416 | [36] |
QTL $ and MSU Locus ID | Position ψ | Cocodrie Allele | Dular Allele | SNPs/InDels Annotation § | Molecular Function |
---|---|---|---|---|---|
qSNC3.32 (LOC_Os03g56560) | 32,220,387 | G | A | SL | retrotransposon protein, putative, unclassified, expressed |
32,242,771 | G | T | SG | ||
32,243,087 | T | TC | FS | ||
qSNC3.32 (LOC_Os03g56830) | 32,380,753 | ACCAAGGTCTC | A | FS | ad-003, putative, expressed |
qSNC3.32 (LOC_Os03g57380) | 32,727,633 | G | A | SG | retrotransposon protein, putative, unclassified, expressed |
32,727,672 | CA | C | FS | ||
32,728,593 | GA | G | FS | ||
qSNC3.32 (LOC_Os03g59264) | 33,744,655 | GTT | G | FS | calreticulin family protein, expressed |
33,744,664 | C | CA | FS | ||
33,744,981 | C | T | SD | ||
qSNC3.32 (LOC_Os03g59730) | 34,005,054 | CT | C | FS | No apical meristem protein, putative, expressed |
34,005,056 | GCT | G | FS | ||
qSNC3.32 (LOC_Os03g61430) | 34,857,333 | G | GGT | FS | uncharacterized Cys-rich domain containing protein, putative, expressed |
34,857,738 | GGT | G | FS | ||
qSNC3.32 (LOC_Os03g61940) | 35,113,812 | C | CA | FS | small heat shock protein, chloroplast precursor, putative, expressed |
35,113,814 | C | CCTA | SG | ||
35,114,105 | GC | G | FS | ||
qSNC3.32 (LOC_Os03g62070) | 35,167,884 | T | TG | FS | hydrolase, putative, expressed |
qSNC3.32 (LOC_Os03g62370) | 35,332,325 | GC | G | FS | WD40-like Beta Propeller Repeat family protein, expressed |
35,332,328 | GCC | G | FS | ||
qSNC3.32 (LOC_Os03g62379) | 35,337,103 | A | G | SL | MYB family transcription factor, putative, expressed |
qSNC3.32 (LOC_Os03g62400) | 35,348,023 | A | T | SG | pentatricopeptide, putative, expressed |
qSNC3.32 (LOC_Os03g62430) | 35,364,182 | A | AT | FS | OsWAK28-OsWAK receptor-like protein kinase, expressed |
35,364,457 | T | TA | SD | ||
qSNK8.01 (LOC_Os08g01470) | 293,465 | G | T | SG | cytochrome P450, putative, expressed |
294,544 | C | A | SA | ||
qSNK8.01 (LOC_Os08g01580) | 344,770 | G | A | SG | NBS-LRR disease resistance protein, putative, expressed |
qSNK8.01 (LOC_Os08g01640) | 374,325 | A | T | FS | Rf1, mitochondrial precursor, putative, expressed |
qSNK8.01 (LOC_Os08g01760) | 458,977 | G | CCG | SD | dehydrogenase, putative, expressed |
qSNK8.01 (LOC_Os08g01810) | 490,163 | CCTAG | C | FS | matrix attachment region binding protein, putative, expressed |
490,545 | TC | T | FS | ||
qSNK8.01 (LOC_Os08g01830) | 498,550 | G | T | SG | TKL_IRAK_CR4L.6-The CR4L subfamily has homology with Crinkly4 |
qSNK8.01 (LOC_Os08g02050) | 665,685 | C | A | SA | protein kinase family protein |
qAKT8.27 (LOC_Os08g44690) | 28,085,435 | T | C | SG | transposon protein, putative, Pong sub-class, expressed |
28,086,068 | AAGAAGGAACAAACT | A | FS | ||
qSKC9.22 (LOC_Os09g39090) | 22,438,234 | TCTTAACGATCC | TCTTAACGATCC | FS | vignain precursor, putative, expressed |
22,438,659 | α32-bp | G | FS | ||
22,438,815 | ATCGCGTTGATCCCC | A | FS | ||
22,439,053 | GCCATTCAGTCT | G | FS | ||
22,439,318 | GACGGCGCGTAC | G | FS | ||
qSKC9.22 (LOC_Os09g39100) | 22,448,199 | ACACGCTGCACCAC | A | FS | cysteine protease EP-B 1 precursor |
qSKC10.18 (LOC_Os10g34490) | 18,402,218 | A | G | FS | phosphate translocator-related, putative, expressed |
18,403,126 | G | GCGCTCAC | SG | ||
qSKC10.18 (LOC_Os10g34650) | 18,463,513 | G | T | SG | retrotransposon protein |
qSKC10.18 (LOC_Os10g34896) | 18,628,571 | C | G | SA | RIPER8-Ripening-related family protein precursor |
18,629,118 | CGCCGAGGCGCA | C | FS | ||
qSKC10.18 (LOC_Os10g34960) | 18,658,668 | α23-bp | C | FS | ubiquitin family protein, putative, expressed |
qSKC10.18 (LOC_Os10g34990) | 18,666,630 | TCTTC | T | FS | ubiquitin-carboxyl extension, putative, expressed |
18,666,647 | A | ATGCT | FS | ||
qSKC10.18 (LOC_Os10g35170) | 18,772,532 | C | SG | semialdehyde dehydrogenase, NAD binding domain containing protein, putative, expressed | |
qSKC10.18 (LOC_Os10g35640) | 19,057,187 | T | TCC | FS | Rf1, mitochondrial precursor, putative, expressed |
qSKC10.18 (LOC_Os10g35630) | 19,105,088 | G | GAT | FS | pentatricopeptide repeat domain containing protein |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, L.; Coronejo, S.; Pruthi, R.; Chapagain, S.; Bhattarai, U.; Subudhi, P.K. Genetic Dissection of Alkalinity Tolerance at the Seedling Stage in Rice (Oryza sativa) Using a High-Resolution Linkage Map. Plants 2022, 11, 3347. https://doi.org/10.3390/plants11233347
Singh L, Coronejo S, Pruthi R, Chapagain S, Bhattarai U, Subudhi PK. Genetic Dissection of Alkalinity Tolerance at the Seedling Stage in Rice (Oryza sativa) Using a High-Resolution Linkage Map. Plants. 2022; 11(23):3347. https://doi.org/10.3390/plants11233347
Chicago/Turabian StyleSingh, Lovepreet, Sapphire Coronejo, Rajat Pruthi, Sandeep Chapagain, Uttam Bhattarai, and Prasanta K. Subudhi. 2022. "Genetic Dissection of Alkalinity Tolerance at the Seedling Stage in Rice (Oryza sativa) Using a High-Resolution Linkage Map" Plants 11, no. 23: 3347. https://doi.org/10.3390/plants11233347
APA StyleSingh, L., Coronejo, S., Pruthi, R., Chapagain, S., Bhattarai, U., & Subudhi, P. K. (2022). Genetic Dissection of Alkalinity Tolerance at the Seedling Stage in Rice (Oryza sativa) Using a High-Resolution Linkage Map. Plants, 11(23), 3347. https://doi.org/10.3390/plants11233347