Differentiated Weed-Suppressive Ability of Modern and Old Durum Wheat Cultivars after Long-Term Cultivation under Semi-Arid Climate
Abstract
:1. Introduction
2. Results
2.1. Potential Weed Flora (Soil Seedbank)
2.1.1. Weed Abundance
2.1.2. Weed Diversity
2.2. Real Weed Flora
2.2.1. Weed Abundance
2.2.2. Weed Diversity
2.3. Species Composition of Potential and Real Weed Flora
3. Discussion
4. Materials and Methods
4.1. Description of Survey Area
4.2. Agronomic Management
4.3. Weed Flora Analysis
4.3.1. Soil Seedbank (Potential Weed Flora)
4.3.2. Aboveground Species (Real Weed Flora)
4.3.3. Weed Abundance
4.3.4. Floristic Composition and Species Diversity of Weed Communities
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sall, A.T.; Chiari, T.; Legesse, W.; Seid-Ahmed, K.; Ortiz, R.; van Ginkel, M.; Bassi, F.M. Durum Wheat (Triticum durum Desf.): Origin, Cultivation and Potential Expansion in Sub-Saharan Africa. Agronomy 2019, 9, 263. [Google Scholar] [CrossRef] [Green Version]
- Eurostat. European Commission. 2021. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 10 June 2022).
- Kabbaj, H.; Sall, A.T.; Al-Abdallat, A.; Geleta, M.; Amri, A.; Filali-Maltouf, A.; Belkadi, B.; Ortiz, R.; Bassi, F.M. Genetic Diversity within a Global Panel of Durum Wheat (Triticum durum) Landraces and Modern Germplasm Reveals the History of Alleles Exchange. Front. Plant Sci. 2017, 8, 1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visioli, G.; Giannelli, G.; Agrimonti, G.; Spina, A.; Pasini, G. Traceability of Sicilian Durum Wheat Landraces and Historical Varieties by High Molecular Weight Glutenins Footprint. Agronomy 2021, 11, 143. [Google Scholar] [CrossRef]
- Lo Bianco, M.; Siracusa, L.; Dattilo, S.; Venora, G.; Ruberto, G. Phenolic fingerprint of Sicilian modern varieties and old durum wheat landraces: A tool to assess with diversity. Cereal Chem. 2017, 94, 1045–1051. [Google Scholar] [CrossRef]
- Beres, B.L.; Rahmani, E.; Clarke, J.M.; Grassini, P.; Pozniak, C.J.; Geddes, C.M.; Porker, K.D.; May, W.E.; Ransom, J.K. A Systematic Review of Durum Wheat: Enhancing Production Systems by Exploring Genotype, Environment, and Management (G × E × M) Synergies. Front. Plant Sci. 2020, 11, 568657. [Google Scholar] [CrossRef]
- Jabran, K.; Mahmood, K.; Melander, B.; Bajwa, A.A.; Kudsk, P. Weed Dynamics and Management in Wheat. Adv. Agron. 2017, 145, 97–166. [Google Scholar] [CrossRef]
- Scavo, A.; Mauromicale, G. Integrated Weed Management in Herbaceous Field Crops. Agronomy 2020, 10, 466. [Google Scholar] [CrossRef] [Green Version]
- Carrubba, A.; Labruzzo, A.; Comparato, A.; Muccilli, S.; Spina, A. Use of Plant Water Extracts for Weed Control in Durum Wheat (Triticum turgidum L. Subsp. durum Desf.). Agronomy 2020, 10, 364. [Google Scholar] [CrossRef] [Green Version]
- Campiglia, E.; Mancinelli, R.; Radicetti, E. Evaluating spatial arrangement for durum wheat (Triticum durum Desf.) and subclover (Trifolium subterraneum L.) intercropping systems. Field Crop. Res. 2014, 169, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Stagnari, F.; Galieni, A.; Speca, S.; Cafiero, G.; Pisante, M. Effects of straw mulch on growth and yield of durum wheat during transition to conservation agriculture in Mediterranean environment. Field Crops Res. 2014, 167, 51–63. [Google Scholar] [CrossRef]
- Scavo, A.; Mauromicale, G. Crop Allelopathy for Sustainable Weed Management in Agroecosystems: Knowing the Present with a View to the Future. Agronomy 2021, 11, 2104. [Google Scholar] [CrossRef]
- Scavo, A.; Restuccia, A.; Abbate, C.; Mauromicale, G. Seeming field allelopathic activity of Cynara cardunculus L. reduces the soil weed seed bank. Agron. Sustain. Dev. 2019, 39, 41. [Google Scholar] [CrossRef]
- Bàrberi, P. Weed management in organic agriculture: Are we addressing the right issues? Weed Res. 2002, 42, 177–193. [Google Scholar] [CrossRef]
- Lemerle, D.; Verbeek, B.; Cousens, R.D.; Coombes, N.E. The potential for selecting wheat varieties strongly competitive against weeds. Weed Res. 1996, 36, 505–513. [Google Scholar] [CrossRef]
- Scavo, A.; Pandino, G.; Restuccia, A.; Caruso, P.; Lombardo, S.; Mauromicale, G. Allelopathy in Durum Wheat Landraces as Affected by Genotype and Plant Part. Agronomy 2022, 11, 1021. [Google Scholar] [CrossRef]
- Travlos, I.S.; Cheimona, N.; Roussis, I.; Bilalis, D.J. Weed-species abundance and diversity indices in relation to tillage systems and fertilization. Front. Environ. Sci. 2018, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Nkoa, R.; Owen, M.D.K.; Swanton, C.J. Weed Abundance, Distribution, Diversity, and Community Analyses. Weed Sci. 2015, 63, 64–90. [Google Scholar] [CrossRef] [Green Version]
- Mwendwa, J.M.; Brown, W.B.; Weidenhamer, J.D.; Weston, P.A.; Quinn, J.C.; Wu, H.; Weston, L.A. Evaluation of commercial wheat cultivars for canopy architecture, early vigour, weed suppression, and yield. Agronomy 2020, 10, 983. [Google Scholar] [CrossRef]
- Giambalvo, D.; Ruisi, P.; Di Miceli, G.; Frenda, A.S.; Amato, G. Nitrogen use efficiency and nitrogen fertilizer recovery of durum wheat genotypes as affected by interspecific competition. Agron. J. 2010, 102, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Aslam, F.; Khaliq, A.; Matloob, A.; Tanveer, A.; Hussain, S.; Zahir, Z.A. Allelopathy in agro-ecosystems: A critical review of wheat allelopathy-concepts and implications. Chemoecology 2017, 27, 1–24. [Google Scholar] [CrossRef]
- Ma, Y. Allelopathic studies of common wheat (Triticum aestivum L.). Weed Biol. Manag. 2005, 5, 93–104. [Google Scholar] [CrossRef]
- Scavo, A.; Pandino, G.; Restuccia, A.; Mauromicale, G. Leaf extracts of cultivated cardoon as potential bioherbicide. Sci. Hortic. 2020, 261, 109024. [Google Scholar] [CrossRef]
- Di Loreto, A.; Bosi, S.; Montero, L.; Bregola, V.; Marotti, I.; Sferrazza, R.E.; Dinelli, G.; Herrero, M.; Cifuentes, A. Determination of phenolic compounds in ancient and modern durum wheat genotypes. Electrophoresis 2018, 39, 2001–2010. [Google Scholar] [CrossRef]
- Belz, R.G.; Hurle, K. Differential exudation of two benzoxazinoids one of the determining factors for seedling allelopathy of Triticeae species. J. Agric. Food Chem. 2005, 53, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Scavo, A.; Abbate, C.; Mauromicale, G. Plant allelochemicals: Agronomic, nutritional and ecological relevance in the soil system. Plant Soil 2019, 442, 23–48. [Google Scholar] [CrossRef]
- Restuccia, A.; Scavo, A.; Lombardo, S.; Pandino, G.; Fontanazza, S.; Anastasi, U.; Abbate, C.; Mauromicale, G. Long-term effect of cover crops on species abundance and diversity of weed flora. Plants 2020, 9, 1506. [Google Scholar] [CrossRef]
- Hyvonen, T.; Ketoja, E.; Salonen, J.; Jalli, H.; Tiainen, J. Weed species diversity and community composition in organic and conventional cropping of spring cereals. Agric. Ecosyst. Environ. 2003, 97, 131–149. [Google Scholar] [CrossRef]
- Cardina, J.; Sparrow, D.H. A comparison of methods to predict weed seedling populations from the soil seedbank. Weed Sci. 1996, 44, 46–51. [Google Scholar] [CrossRef]
- Davis, A.S.; Renner, K.A.; Gross, K.L. Weed seedbank and community shifts in a long-term cropping systems experiment. Weed Sci. 2005, 53, 296–306. [Google Scholar] [CrossRef]
- Ghersa, C.M.; Ghersa-Martinez, M.A. Ecological correlates of weed seed size and persistence in the soil under different tilling systems: Implications for weed management. Field Crops Res. 2000, 67, 141–148. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; U.S. Government Publishing Office: Washington, DC, USA, 1999.
- Pandino, G.; Mattiolo, E.; Lombardo, S.; Lombardo, G.M.; Mauromicale, G. Organic Cropping System Affects Grain Chemical Composition, Rheological and Agronomic Performance of Durum Wheat. Agriculture 2020, 10, 46. [Google Scholar] [CrossRef] [Green Version]
- Scavo, A.; Restuccia, A.; Abbate, C.; Lombardo, S.; Fontanazza, S.; Pandino, G.; Anastasi, U.; Mauromicale, G. Trifolium subterraneum cover cropping enhances soil fertility and weed seedbank dynamics in a Mediterranean apricot orchard. Agron. Sustain. Dev. 2021, 41, 70. [Google Scholar] [CrossRef]
- Derksen, D.A.; Lafond, G.P.; Thomas, A.G.; Loeppky, H.A.; Swanton, C.J. Impact of agronomic practices on weed communities: Tillage systems. Weed Sci. 1993, 41, 409–417. [Google Scholar] [CrossRef]
- Conti, F.; Abbate, G.; Alessandrini, A.; Blasi, C. An Annotated Checklist of the Italian Vascular Flora; Palombi Editore: Rome, Italy, 2005. [Google Scholar]
- Ramírez, J.S.; Hoyos, C.V.; Plaza, T.G. Phytosociology of weeds associated with rice crops in the department of Tolima, Colombia. Agron. Colomb. 2015, 33, 64–73. [Google Scholar] [CrossRef]
- Legendre, P.; Legendre, L. Numerical Ecology; Elsevier: Amsterdam, The Netherlands, 2012; pp. 429–463. [Google Scholar]
Binomial Name | Botanical Family | Life Cycle | BG † | MOD Farm Group | OLD Farm Group | RD (%) ‡ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MRG | Bannò | Spitaleri | Mocciaro | Agrimor | Di Nolfo | Delizia | Minio | Antichi Granai | Cottonaro | |||||
Amaranthus retroflexus L. | Amaranthaceae | annual | T | - | 0.12 | - | - | - | 0.07 | - | - | - | - | 1.3 |
Anagallis arvensis L. | Primulaceae | annual | T | 0.27 | 0.09 | 0.45 | 0.29 | 0.32 | - | - | - | 0.72 | 0.27 | 28.1 |
Euphorbia falcata L. | Euphorbiaceae | annual | T | - | - | - | - | 0.04 | - | 0.06 | - | 0.12 | - | 0.8 |
Euphorbia helioscopia L. | Euphorbiaceae | annual | T | 0.17 | 0.45 | 0.05 | 0.47 | 0.21 | - | 0.54 | 0.38 | 0.04 | 0.30 | 31.7 |
Fallopia convolvulus (L.) Á. Löve | Polygonaceae | annual | T | - | 0.09 | - | - | - | - | - | 0.28 | - | 0.21 | 5.1 |
Fumaria sp. | Fumariacee | annual | T | 0.06 | - | 0.06 | - | 0.08 | 0.24 | 0.06 | 0.10 | - | 0.07 | 4.4 |
Galium aparine L. | Rubiaceae | annual | T | - | - | - | - | - | 0.24 | 0.06 | - | - | - | 2.0 |
Glebionis coronaria (L.) Cass. ex Spach | Asteraceae | annual | T | - | 0.04 | 0.13 | - | - | - | - | - | - | - | 1.0 |
Helminthotheca echioides (L.) Holub | Asteraceae | annual | T | 0.38 | - | 0.12 | - | 0.08 | - | - | 0.24 | 0.12 | - | 8.6 |
Portulaca oleracea L. | Portulacaceae | annual | T | - | 0.22 | - | 0.24 | - | - | - | - | - | - | 4.0 |
Sinapis arvensis L. | Brassicaceae | annual | T | 0.12 | - | 0.20 | - | 0.18 | - | 0.22 | - | - | 0.07 | 5.9 |
Stellaria media (L.) Vill. | Caryophyllaceae | biennial | H | - | - | - | - | - | 0.45 | 0.06 | - | - | 0.07 | 6.7 |
Veronica sp. | Plantaginaceae | annual | T | - | - | - | - | 0,09 | - | - | - | - | - | 0.6 |
α-Diversity | β-Diversity | |||||
---|---|---|---|---|---|---|
Margalef | Shannon-Weiner | Pielou | Whittaker | Sørensen ‡ | Steinhaus ‡ | |
MOD farm group † | 1.72 ± 0.23 A | 1.13 ± 0.20 A | 0.70 ± 0.15 A | 2.6 ± 0.71 A | 76.2% | 54.7% |
MRG | 1.71 b | 0.99 b | 0.61 b | 2.6 b | ||
Bannò | 1.45 b | 1.02 b | 0.57 b | 2.2 c | ||
Spitaleri | 1.68 b | 1.15 b | 0.64 b | 2.2 c | ||
Mocciaro | 1.66 b | 1.03 b | 0.94 a | 4.3 a | ||
Agrimor | 2.08 a | 1.48 a | 0.76 b | 1.9 d | ||
OLD farm group † | 1.91 ± 0.60 A | 1.05 ± 0.38 A | 0.68 ± 0.23 A | 2.9 ± 0.65 A | ||
Di Nolfo | 1.51 cd | 1.07 b | 0.77 a | 3.3 a | ||
Delizia | 1.73 c | 0.77 c | 0.43 b | 2.2 b | ||
Minio | 2.05 b | 1.27 ab | 0.91 a | 3.3 a | ||
Antichi granai | 1.39 d | 0.59 c | 0.43 b | 3.5 a | ||
Cottonaro | 2.88 a | 1.53 a | 0.86 a | 2.2 b |
Binomial Name | Botanical Family | Life Cycle | BG † | MOD Farm Group | OLD Farm Group | RD (%) ‡ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MRG | Bannò | Spitaleri | Mocciaro | Agrimor | Di Nolfo | Delizia | Minio | Antichi Granai | Cottonaro | |||||
Anagallis arvensis L. | Primulaceae | annual | T | - | 0.17 | - | - | - | - | - | 0.09 | - | - | 2.2 |
Artemisia vulgaris L. | Asteraceae | perennial | H | 0.24 | - | - | - | - | - | - | - | - | - | 2.4 |
Avena fatua L. | Poaceae | annual | T | 0.09 | 0.26 | 0.31 | 0.54 | 0.26 | - | 0.37 | - | - | - | 21.7 |
Centaurea sp. | Asteraceae | annual | T | 0.18 | - | 0.12 | - | 0.15 | - | 0.05 | 0.14 | 0.10 | - | 5.9 |
Convolvulus arvensis L. | Convolvulaceae | perennial | G | - | - | - | - | - | - | - | 0.13 | 0.26 | - | 4.4 |
Daucus carota L. | Apiaceae | biennal | H | 0.07 | - | - | - | - | 0.11 | 0.05 | 0.13 | 0.07 | - | 3.2 |
Diplotaxis erucoides (L.) DC. | Brassicaceae | annual | T | - | - | - | - | - | - | - | 0.03 | - | - | 0.1 |
Euphorbia helioscopia L. | Euphorbiaceae | annual | T | - | - | - | - | - | - | - | - | 0.25 | - | 2.9 |
Erodium cicutarium (L.) L’Hér. | Geraniaceae | annual | T | - | - | - | - | - | 0.09 | 0.06 | - | 0.11 | - | 1.8 |
Galium aparine L. | Rubiaceae | annual | T | - | - | - | - | - | 0.54 | 0.19 | - | - | - | 8.0 |
Glebionis coronaria (L.) Cass. ex Spach | Asteraceae | annual | T | 0.09 | 0.14 | 0.27 | - | - | - | 0.06 | 0.12 | - | - | 6.5 |
Inula helenium L. | Asteraceae | perennial | H | - | - | - | - | 0.05 | - | - | - | - | - | 0.3 |
Lolium sp. | Poaceae | annual | T | 0.07 | - | - | 0.31 | 0.05 | - | 0.22 | - | - | - | 5.8 |
Papaver rhoeas L. | Papaveraceae | annual | T | 0.11 | - | - | - | - | - | - | - | - | - | 1.4 |
Phalaris paradoxa L. | Poaceae | annual | T | - | - | 0.06 | 0.15 | 0.23 | - | - | - | 0.10 | - | 5.0 |
Polygonum aviculare L. | Polygonaceae | annual | T | - | 0.24 | - | - | - | - | - | - | - | - | 2.6 |
Sinapis arvensis L. | Brassicaceae | annual | T | - | 0.06 | - | - | 0.20 | - | - | - | - | - | 3.2 |
Sonchus sp. | Asteraceae | annual | T | 0.15 | 0.14 | - | - | - | - | - | 0.12 | 0.07 | - | 4.4 |
Stellaria media (L.) Vill. | Caryophyllaceae | biennal | H | - | - | 0.23 | - | 0.07 | 0.27 | - | 0.24 | 0.05 | - | 8.4 |
α-Diversity | β-Diversity | |||||
---|---|---|---|---|---|---|
Margalef | Shannon-Weiner | Pielou | Whittaker | Sørensen ‡ | Steinhaus ‡ | |
MOD farm group † | 2.45 ± 0.68 A | 1.49 ± 0.36 A | 0.88 ± 0.04 A | 3.8 ± 1.5 A | 64.3% | 42.3% |
MRG | 3.60 a | 1.95 a | 0.94 a | 2.4 d | ||
Bannò | 2.45 b | 1.65 b | 0.92 a | 3.2 c | ||
Spitaleri | 1.92 c | 1.39 b | 0.87 a | 3.8 b | ||
Mocciaro | 2.36 b | 0.96 c | 0.87 a | 6.3 a | ||
Agrimor | 1.93 c | 1.48 b | 0.83 a | 3.2 c | ||
OLD farm group † | 1.55 ± 0.93 B | 1.19 ± 0.76 B | 0.65 ± 0.39 B | 2.7 ± 1.6 A | ||
Di Nolfo | 1.34 b | 0.94 c | 0.68 c | 4.8 a | ||
Delizia | 2.20 a | 1.40 b | 0.72 bc | 2.7 c | ||
Minio | 2.06 a | 1.85 a | 0.89 ab | 2.4 d | ||
Antichi granai | 2.14 a | 1.77 a | 0.99 a | 3.2 b | ||
Cottonaro | - | - | - | - |
Variable | Weed Communities | |||||
---|---|---|---|---|---|---|
Soil Seedbank | Real Flora | |||||
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | |
ANGAR | 0.514 | 0.070 | 0.081 | - | - | - |
AVEFA | - | - | - | −0.504 | −0.171 | −0.474 |
CENXX | - | - | - | 0.216 | −0.545 | 0.274 |
EUPHE | 0.288 | −0.577 | −0.500 | - | - | - |
FALCO | −0.144 | −0.687 | 0.026 | - | - | - |
GALAP | - | - | - | 0.188 | 0.618 | −0.202 |
GLECO | - | - | - | 0.206 | −0.502 | −0.594 |
HELMEC | 0.488 | 0.181 | 0.313 | - | - | - |
LOXX | - | - | - | −0.507 | 0.118 | −0.278 |
PHALPHA | - | - | - | −0.383 | −0.157 | 0.389 |
SINAR | 0.311 | 0.308 | −0.731 | - | - | - |
STELME | −0.544 | 0.292 | −0.333 | 0.467 | 0.039 | −0.279 |
Eigenvalue | 2.346 | 1.491 | 1.038 | 2.505 | 1.693 | 1.178 |
% Variance | 39.2 | 24.8 | 17.3 | 35.8 | 24.2 | 16.8 |
% Cumulative variance | 39.1 | 64.0 | 81.3 | 35.8 | 60.0 | 76.8 |
Farm | Geographical Coordinates | Wheat Genotype | Seeding Density (kg ha−1) | Tillage | Fertiliser Type and Fertilisation Time | Fertiliser Amount (kg ha−1) | Active Principle for Weed Chemical Control |
---|---|---|---|---|---|---|---|
MRG | 37°35′45″ N 14°28′11″ E | Antalis | 200 | Hoeing (late August-early September) | Ammonium nitrate (34%) in post-emergence between February and March | 120 | Thifensulfuron-methyl, Tribenuron-methyl (Amedeus Top); Clodinafop-propargyl, Cloquintocet-mexyl, Pinoxaden (Traxos Pronto 60) |
Deep ploughing (−25 cm) | |||||||
Light ploughing (−15 cm) | |||||||
Bannò | 37°35′20″ N 14°27′45″ E | Anco Marzio | 260 | Disc ploughing | Urea (46%) in post-emergence between February and March | 150 | Mefenpir-diethyl, Mesosulfuron-methyl (half-dosed Atlantis); 2,4-D. |
Deep ploughing (−25 cm) | |||||||
Light ploughing (−15 cm) | |||||||
Spitaleri | 37°35′28″ N 14°28′00″ E | Iride, Simeto and Core | 300 | Hoeing (late August-early September) | Urea (46%) in post-emergence between February and March | 250 | Clodinafop-propargyl, Cloquintocet-mexyl, Pinoxaden (Traxos Pronto 60) |
Disc ploughing | |||||||
Ploughing cultivator | |||||||
Rolling after seeding | |||||||
Mocciaro | 37°41′09″ N 14°23′53″ E | Core | 240 | Subsoiling (September) | Urea (46%) in post-emergence between February and March | 150 | Mefenpir-diethyl, Mesosulfuron-methyl (Atlantis) |
Deep ploughing (−25 cm) | |||||||
Light ploughing (−15 cm) | |||||||
Agrimor | 37°35′26″ N 14°27′01″ E | Core | 230–280 | Hoeing (April–May) Deep ploughing (−25 cm) on August-September Light ploughing (−15 cm) on October | Diammonium phosphate (18% N, 46% P2O5) at seeding | 115–140 | Clodinafop-propargyl, Cloquintocet-mexyl, Pinoxaden (Traxos Pronto 60) |
Urea (46%) in post-emergence between February and March | 120 |
Farm | Geographical Coordinates | Wheat Genotype | Seeding Density (kg ha−1) | Tillage | Fertiliser Type and Fertilisation Time | Fertiliser Amount (kg ha−1) | Active Principle for Weed Chemical Control |
---|---|---|---|---|---|---|---|
Di Nolfo | 37°35′22″ N 14°32′52″ E | Perciasacchi | 220–230 | Subsoiling | - | - | - |
Deep ploughing (−25 cm) | |||||||
Light ploughing (−10–15 cm) | |||||||
Delizia | 37°31′55.2″ N 14°12′52.7″ E | Perciasacchi | 200 | Disc ploughing (after wheat harvest) | - | - | - |
Subsoiling (September) | |||||||
Deep ploughing (October) | |||||||
Light ploughing (−10–15 cm) | |||||||
Stale seedbed with precision seeder | |||||||
Minio | 37°35′29″ N 14°30′48″ E | Perciasacchi | 200–220 | Hoeing (late August–early September) | - | - | - |
Deep ploughing (−25 cm) | |||||||
Light ploughing (−10–15 cm) | |||||||
Antichi granai | 37°36′08.5″ N 14°34′53.7″ E | Timilia | 200 | Subsoiling | Organic N (8.5%); organic C (28%)-(AMMINO-BIO) in post-emergence in April | 20 | - |
Deep ploughing (−25 cm) | |||||||
Light ploughing (−10–15 cm) | |||||||
Pre-seeding ploughing | |||||||
Cottonaro | 37°35′48″ N 14°19′03″ E | Senatore Cappelli | 160 | Subsoiling (September) | - | - | Fluroxipir meptyl-eptyl ester, Clopiralid pure ethylammonium salt, MCPA pure potassium salt (Ariane II); Pyroxsulam, Florasulam, Cloquintocet mexyl (Floramix) |
Deep ploughing (−25 cm) | |||||||
Light ploughing (−10 cm) |
Farm | Crop Sequence Alternating with Wheat |
---|---|
MOD farm group | |
MRG | vetch-clover and vetch-fava bean mix |
Bannò | vetch and leguminous mix |
Spitaleri | fava bean and vetch |
Mocciaro | vetch-clover-sulla-ryegrass-oat mix |
Agrimor | vetch |
OLD farm group | |
Di Nolfo | vecth-sulla-clover mix |
Delizia | vetch-clover-sulla-ryegrass-oat mix |
Minio | sulla, fava bean and vecth |
Antichi granai | fallow, chickpea and lentil |
Cottonaro | vetch-clover-sulla mix |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scavo, A.; Restuccia, A.; Bannò, M.; Mauromicale, G. Differentiated Weed-Suppressive Ability of Modern and Old Durum Wheat Cultivars after Long-Term Cultivation under Semi-Arid Climate. Plants 2022, 11, 3368. https://doi.org/10.3390/plants11233368
Scavo A, Restuccia A, Bannò M, Mauromicale G. Differentiated Weed-Suppressive Ability of Modern and Old Durum Wheat Cultivars after Long-Term Cultivation under Semi-Arid Climate. Plants. 2022; 11(23):3368. https://doi.org/10.3390/plants11233368
Chicago/Turabian StyleScavo, Aurelio, Alessia Restuccia, Mario Bannò, and Giovanni Mauromicale. 2022. "Differentiated Weed-Suppressive Ability of Modern and Old Durum Wheat Cultivars after Long-Term Cultivation under Semi-Arid Climate" Plants 11, no. 23: 3368. https://doi.org/10.3390/plants11233368
APA StyleScavo, A., Restuccia, A., Bannò, M., & Mauromicale, G. (2022). Differentiated Weed-Suppressive Ability of Modern and Old Durum Wheat Cultivars after Long-Term Cultivation under Semi-Arid Climate. Plants, 11(23), 3368. https://doi.org/10.3390/plants11233368