The Use of Mycoendophyte-Based Bioformulations to Control Apple Diseases: Toward an Organic Apple Production System in the Aurès (Algeria)
Abstract
:1. Introduction
2. Results
2.1. Apple Scab Incidence after Leaf Treatment
2.2. Effect of Invert Emulsion Application on Wintering Forms of V. inaequalis
2.3. Effect of Biogel Application on Apple Canker
3. Discussion
4. Materials and Methods
4.1. The Studied Orchards
4.2. Fungal Endophytes
4.3. Pathogenic Fungi
4.4. Preparation of the Bioformulations
4.4.1. The Invert Emulsions
4.4.2. The Biogel
4.5. Invert Emulsion Application on Wintering Forms of V. inaequalis
4.6. Invert Emulsion Application on Wintering Forms of V. inaequalis
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Rourke, D. World Production, trade, consumption and economic outlook for apples. In Apples: Botany, Production and Uses; Ferree, D.C., Warrington, I.J., Eds.; CAB International: Wallingford, UK, 2003; pp. 15–29. [Google Scholar]
- Koch, T. Differential Resistance and Virulence in the Interaction of Malus × domestica and Venturia inaequalis. Ph.D. Thesis, Swiss Federal Institute of Technology, Zurich, Switzerland, 1998; 98p. [Google Scholar] [CrossRef]
- Hampson, C.R.; Kemp, H. Characteristics of important commercial apple cultivars. In Apples: Botany, Production and Uses; Ferree, D.C., Warrington, I.J., Eds.; CAB International: Wallingford, UK, 2003; pp. 61–89. [Google Scholar]
- FAOSTAT. Available online: https://www.fao.org/faostat/fr/#data/QCL (accessed on 2 August 2022).
- Turechek, W.W. Apple Diseases and their Management. In Diseases of Fruits and Vegetables; Naqvi, S.A.M.H., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; Volume 1, pp. 1–108. [Google Scholar]
- Bernier, J.; Carisse, O.; Paulitz, T.C. Fungal communities isolated from dead apple leaves from orchards in Québec. Phytoprotection 1996, 77, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Trapman, M. Copper free production of organic apples: Three years experience in the Netherlands. In Journées Techniques Fruits et Légumes Biologiques; ITAB: Paris, France, 2009; pp. 61–89. [Google Scholar]
- Bowen, J.K.; Mesarich, C.H.; Bus, V.G.M.; Beresford, R.M.; Plummer, K.M.; Templeton, M.D. Venturia inaequalis: The causal agent of apple scab. Mol. Plant Pathol. 2011, 12, 105–122. [Google Scholar] [CrossRef] [PubMed]
- Hebrard, M.A. La Tavelure en Vergers de Pommiers: Suivi de la Contamination Primaire et Evaluation de Nouvelles Substances Actives SDHI Contre Venturia inaequalis. Master’s Thesis, Université de Rennes I, Rennes, France, 2013; 79p. [Google Scholar]
- Smereka, K.J.; MacHardy, W.E.; Kausch, A.P. Cellular differentiation in Venturia inaequalis ascospores during germination and penetration of apple leaves. Can. J. Bot. 1987, 65, 2549–2561. [Google Scholar] [CrossRef]
- Jha, G.; Thakur, K.; Thakur, P. The Venturia Apple Pathosystem: Pathogenicity Mechanisms and Plant Defense Responses. J. Biomed. Biotechnol. 2009, 2009, 680160. [Google Scholar] [CrossRef] [Green Version]
- Szkolnik, M. Relative susceptibility to scab and production of conidia among 30 apple varieties. In Proceedings of the Apple and Pear Scab Workshop, Kansas City, Missouri, 11 July 1976; New York Agricultural Experimental Station Special Report; Jones, A.L., Gilpatrick, J.D., Eds.; New York State Agricultural Experiment Station Cornell University: Geneva, NY, USA, 1978; Volume 28, pp. 11–14. [Google Scholar]
- Cusin, R.; Revers, L.F.; Maraschin, F.S. New biotechnological tools to accelerate scab-resistance trait transfer to apple. Genet. Mol. Biol. 2017, 40, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Gessler, C.; Petrot, I. Vf scab resistance of Malus. Trees 2012, 26, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Höfer, M.; Flachowsky, H.; Schröpfer, S.; Peil, A. Evaluation of Scab and Mildew Resistance in the Gene Bank Collection of Apples in Dresden-Pillnitz. Plants 2021, 10, 1227. [Google Scholar] [CrossRef]
- Zelmene, K.; Kārkliņa, K.; Ikase, L.; Lācis, G. Inheritance of Apple (Malus X domestica (L.) Borkh) Resistance against Apple Scab (Venturia inaequalis (Cooke)Wint.) in Hybrid Breeding Material Obtained by Gene Pyramiding. Horticulturae 2022, 8, 772. [Google Scholar] [CrossRef]
- Wang, S.; Hu, T.; Wang, Y.; Luo, Y.; Michailides, T.J.; Cao, K. New understanding on infection processes of Valsa canker of apple in China. Eur. J. Plant Pathol. 2016, 146, 531–540. [Google Scholar] [CrossRef]
- Tamura, O.; Saito, I. Histopathological changes of apple bark infected by Valsa ceratosperma (Tode ex Fr.) Maire during dormant and growing periods. Ann. Phytopathol. Soc. Jpn. 1982, 48, 490–498. [Google Scholar] [CrossRef]
- Saville, R.; Olivieri, L. Fungal diseases of fruit: Apple cankers in Europe. In Integrated Management of Diseases and Insect Pests of Tree Fruit; Xu, X., Fountain, M., Eds.; Burleigh Dodds: Cambridge, HJ, USA, 2019; pp. 59–83. [Google Scholar]
- Wang, X.L.; Wei, J.L.; Huang, L.L.; Kang, Z.S. Re-evaluation of pathogens causing Valsa canker on apple in China. Mycologia 2011, 103, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Kotoda, N.; Kato, H.; Soejima, J. Resistance sources to Valsa canker (Valsa ceratosperma) in a germplasm collection of diverse Malus species. Plant Breed 2007, 126, 449–453. [Google Scholar] [CrossRef]
- Kobayashi, T. Taxonomic studies of Japanese Diaporthaceae with special reference to their life-histories. Bull. Gov. For. Exp. Stn. Tokyo 1970, 226, 1–242. [Google Scholar]
- Lu, Y.J. Studies on the pathogenic fungus of pear canker disease. Acta Phytopathol. Sin. 1992, 22, 197–203. [Google Scholar]
- Vasilyeva, L.; Kim, W.G. Valsa mali Miyabe et Yamada, the causal fungus of apple tree canker in east Asia. Mycobiology 2000, 28, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Montuschi, C.; Collina, M. First record of Valsa ceratosperma on pear in Italy. Inf. Agrar. 2003, 59, 55–57. [Google Scholar]
- Adams, G.C.; Wingfield, M.J.; Common, R.; Roux, J. Phylogenetic relationships and morphology of Cytospora species and related teleomorphs (Ascomycota, Diaporthales, Valsaceae) from Eucalyptus. Stud. Mycol. 2005, 52, 1–142. [Google Scholar]
- Wang, X.L.; Zang, R.; Yin, Z.Y.; Kang, Z.S.; Huang, L.L. Delimiting cryptic pathogen species causing apple Valsa canker with multilocus data. Ecol. Evol. 2014, 4, 1369–1380. [Google Scholar] [CrossRef]
- Rossman, A.Y.; Adams, G.C.; Cannon, P.F.; Castlebury, L.A.; Crous, P.W.; Gryzenhout, M.; Jaklitsch, W.M.; Mejia, L.C.; Stoykov, D.; Udayanga, D.; et al. Recommendations of generic names in Diaporthales competing for protection or use. IMA Fungus 2015, 6, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Spielman, L.J. A monograph of Valsa on hardwood in North America. Can. J. Bot. 1985, 63, 1355–1378. [Google Scholar] [CrossRef]
- Old, K.M.; Kobayashi, T.A.Y. Valsa teleomorph for Cytospora eucalypticola. Mycol. Res. 1991, 95, 1253–1256. [Google Scholar] [CrossRef]
- Gao, L.Q.; Berrie, A.; Yang, J.R.; Xu, X.M. Within- and between-orchard variability in the sensitivity of Venturia inaequalis to myclobutanil, a DMI fungicide, in the UK. Pest Manag. Sci. 2009, 65, 1241–1249. [Google Scholar] [CrossRef]
- Zhang, F.; Xue, H.; Lu, X.; Zhang, B.; Wang, F.; MaY, Z.Z. Autotetraploidization enhances drought stress tolerance in two apple cultivars. Trees 2015, 29, 1773–1780. [Google Scholar] [CrossRef]
- Miedtke, U.; Kennel, W. Athelia bombacina and Chaetomium globosum as antagonists of the perfect stage of the apple scab pathogen (Venturia inaequalis) under field conditions. J. Plant Dis. Prot. 1990, 97, 24–32. [Google Scholar]
- Xin, Y.F.; Shang, J.J. Bio-control trials of Chaetomium spirale ND35 against apple canker. J. For. Res. 2005, 16, 121–124. [Google Scholar]
- Carisse, O.; Meloche, C.; Boivin, G.; Jobin, T. Action thresholds for summer fungicide sprays and sequential classification of apple scab incidence. Plant Dis. 2009, 93, 490–498. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Gao, X.; Kang, K.; Huang, L.; Fan, D.; Yan, X.; Kang, Z. Saccharothrix yanglingensis Strain Hhs.015 Is a Promising Biocontrol Agent on Apple Valsa Canker. Plant Dis. 2016, 100, 510–514. [Google Scholar] [CrossRef] [Green Version]
- Shuttleworth, L.A. Alternative disease management strategies for organic apple production in the United Kingdom. CABI Agric. Biosci. 2021, 2, 34. [Google Scholar] [CrossRef]
- Valetti, L.; Lima, N.B.; Cazón, L.I.; Crociara, C.; Ortega, L.; Pastor, S. Mycoparasitic Trichoderma isolates as a biocontrol agent against Valsa ceratosperma, the causal agent of apple valsa canker. Eur. J. Plant Pathol. 2022, 163, 923–935. [Google Scholar] [CrossRef]
- Martínez-Medina, A.; Fernández, I.; Sánchez-Guzmán, M.J.; Jung, S.C.; Pascual, J.A.; Pozo, M.J. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Front. Plant Sci. 2013, 4, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marois, J.J.; Mitchell, D.J.; Sonada, R.M. Biological control of Fusarium crown rot of tomato under field conditions. Phytopathology 1981, 71, 1257–1260. [Google Scholar] [CrossRef]
- Carisse, O.; Philion, V.; Rolland, D.; Bernier, J. Effect of fall application of fungal antagonists on spring ascospore production of apple scab pathogen, Venturia inaequalis. Phytopathology 2000, 90, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayanasami, P. Mechanisms of action of fungal biological control agents. In Biological Management of Diseases of Crops; Characteristics of Biological Control Agents; Nayaranassami, P., Ed.; Springer: Dordrecht, The Netherlands, 2013; Volume 1, pp. 99–200. [Google Scholar]
- Gadoury, D.M.; Seem, R.C.; Stenvand, A. Ascospore discharge in Venturia inaequalis. Nor. J. Agric. Sci. Suppl. 1994, 17, 205–219. [Google Scholar]
- Meszka, B. Study of Venturia inaequalis pseudothecia development and apple scab severity under Polish conditions. Folia Hortic. 2015, 27, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Dennis, C.; Webster, J. Antagonistic properties of species-groups of Trichoderma. I. Production of non-volatile antibiotics. Trans. Br. Mycol. Soc. 1971, 57, 25–39. [Google Scholar] [CrossRef]
- Dennis, C.; Webster, J. Antagonistic properties of species-groups of Trichoderma. II. Production of volatile antibiotics. Trans. Br. Mycol. Soc. 1971, 57, 41–48. [Google Scholar] [CrossRef]
- Palani, P.V.; Lalithakumari, D. Inhibition of Venturia inaequal is by genetically improved Trichoderma longibrachiatum strains. J. Plant Dis. Prot. 1999, 106, 460–465. [Google Scholar]
- Zhang, S.; Gan, Y.; Xu, B. Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front. Plant Sci. 2016, 7, 1405. [Google Scholar] [CrossRef] [Green Version]
- Philion, V.; Carisse, O.; Paulitz, T. In vitro evaluation of fungal isolates for their ability to influence leaf rheology, production of pseudothecia, and ascospores of Venturia inaequalis. Eur. J. Plant Pathol. 1997, 103, 441–452. [Google Scholar] [CrossRef]
- Porsche, F.M.; Pfeiffer, B.; Kollar, A. A new phytosanitary method to reduce the ascospore potential of Venturia inaequalis. Plant Dis. 2017, 101, 414–420. [Google Scholar] [CrossRef] [Green Version]
- Carisse, O.; Rolland, D. Effect of timing of application of the biological control agent Microsphaeropsis ochracea on the production and ejection pattern of ascospores by Venturia inaequalis. Phytopathology 2004, 94, 1305–1314. [Google Scholar] [CrossRef] [Green Version]
- Seaby, D.A.; Swinburne, T.R. Protection of pruning wounds on apple trees from Nectria galligena Bres. Using modified pruning shears. Plant Pathol. 1976, 25, 50–54. [Google Scholar] [CrossRef]
- Shigo, A.L.; Wilson, C.L. Wound dressings on red maple and American elm: Effectiveness after five years. Arboric. J. 1977, 3, 81–87. [Google Scholar] [CrossRef]
- Shigo, A.L.; Shortle, W.C. Wound dressings: Results of studies over thirteen years. Arboric. J. 1984, 8, 193–210. [Google Scholar] [CrossRef]
- Fan, D.; Li, Y.; Zhao, L.; Li, Z.; Huang, L.; Yan, X. Study on interactions between the major apple Valsa canker pathogen Valsa mali and its biocontrol agent Saccharothrix yanglingensis Hhs.015 using RT-qPCR. PLoS ONE 2016, 11, e0162174. [Google Scholar] [CrossRef] [Green Version]
- Mercer, P.C.; Kirk, S.A. Biological treatments for the control of decay in tree wounds. II. Field tests. Ann. Appl. Biol. 1984, 104, 221–229. [Google Scholar] [CrossRef]
- Spiers, A.G.; Brewster, D.T. Evaluation of chemical and biological treatments for control of Chondrostereum purpureum infection of pruning wounds in willows, apples, and peaches. N. Zeal. J. Crop Hortic. Sci. 1997, 25, 19–31. [Google Scholar] [CrossRef]
- Yi, H.W.; Chi, Y.J. Biocontrol of Cytospora canker of poplar in north-east China with Trichoderma longibrachiatum. For. Pathol. 2011, 41, 299–307. [Google Scholar] [CrossRef]
- Saks, Y.; Barkai-Golan, R. Aloe vera gel activity against plant pathogenic fungi. Postharvest Biol. Technol. 1995, 6, 159–165. [Google Scholar] [CrossRef]
- Amer, G.A. Effectiveness of bio-gel based powder formulations of bacterial biocontrol agents in controlling root rot disease of bean caused by Sclerotium rolfsii. J. Plant Prot. Pathol. 2010, 1, 21–33. [Google Scholar]
- Ramjegathesh, R.; Jayaraman, J. Chitosan for plant disease management–prospects and problems. In Sustainable Crop Disease Management using Natural Products; Ganesan, S., Vadivel, K., Jayaraman, J., Eds.; CAB International: Wallingford, UK, 2015; pp. 198–218. [Google Scholar]
- Ekebafe, L.O.; Ogbeifun, D.E.; Okieimen, F.E. Polymer applications in agriculture. Biokemistri 2011, 23, 81–89. [Google Scholar]
- Huttermann, A.; Zommorodi, M.; Reise, K. Addition of hydrogels to soil for prolonging the survival of Pinus halepensis seedlings subjected to drought. Soil Tillage Res. 1999, 50, 295–304. [Google Scholar] [CrossRef]
- Tomaszewska, M.; Jarosiewicz, A. Use of polysulfone in controlled-release NPK fertilizer formulations. J. Agric. Food Chem. 2002, 50, 4634–4639. [Google Scholar] [CrossRef] [PubMed]
- Freimoser, F.M.; Rueda-Mejia, M.P.; Tilocca, B.; Migheli, Q. Biocontrol yeasts: Mechanisms and applications. World J. Microbiol. Biotechnol. 2019, 35, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steglińska, A.; Kołtuniak, A.; Berłowska, J.; Czyżowska, A.; Szulc, J.; Cieciura-Włoch, W.; Okrasa, M.; Kręgiel, D.; Gutarowska, B. Metschnikowia pulcherrima as a Biocontrol Agent against Potato (Solanum tuberosum) Pathogens. Agronomy 2022, 12, 2546. [Google Scholar] [CrossRef]
- Janisiewicz, W.J.; Tworkoski, T.J.; Kurtzman, C.P. Biocontrol potential of Metchnikowia pulcherrima strains against blue mold of apple. Phytopathology 2001, 91, 1098–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grebenisan, I.; Cornea, P.; Mateescu, R.; Cimpeanu, C.; Olteanu, V.; Campenu, G.; Stefan, L.A.; Oancea, F.; Lupu, C. Metschnikowia pulcherrima, a new yeast with potential for biocontrol of postharvest fruit rots. XXVII International Horticultural Congress-IHC2006: International Symposium on Sustainability through Integrated and Organic Horticulture. Acta Hortic. 2008, 767, 355–360. [Google Scholar] [CrossRef]
- Türkel, S.; KorukluoLlu, M.; Yavuz, M. Biocontrol activity of the local strain of Metschnikowia pulcherrima on different postharvest pathogens. Biotechnol. Res. Int. 2014, 397167. [Google Scholar] [CrossRef] [Green Version]
- Manso, T.; Nunes, C. Metschnikowia andauensis as a new biocontrol agent of fruit postharvest diseases. Postharvest Biol. Technol. 2011, 61, 64–71. [Google Scholar] [CrossRef]
- Millan, A.F.-S.; Gamir, J.; Farran, I.; Larraya, L. Identification of new antifungal metabolites produced by the yeast Metschnikowia pulcherrima involved in the biocontrol of postharvest plant pathogenic fungi. Postharvest Biol. Technol. 2022, 192, 111995. [Google Scholar] [CrossRef]
- Otari, S.V.; Patil, R.M.; Waghmare, S.R.; Ghosh, S.J.; Pawar, S.H. A novel microbial synthesis of catalytically active Ag–alginate biohydrogel and its antimicrobial activity. Dalton Trans. 2013, 42, 9966–9975. [Google Scholar] [CrossRef] [PubMed]
- Guilloux, K.; Gaillard, I.; Courtois, J.; Courtois, B.; Petit, E. Production of Arabinoxylan-oligosaccharides from Flaxseed (Linum usitatissimum). J. Agric. Food Chem. 2009, 57, 11308–11313. [Google Scholar] [CrossRef]
- Rätsep, J.; Havis, N.D.; Loake, G.J.; Walters, D.R.; McGrann, G.R.D. In-field assessment of an arabinoxylan polymer on disease control in spring barley. Crop Prot. 2018, 109, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.; Onions, A.H.S. The preservation and maintenance of living fungi, 2nd ed.; In IMI Technical Handbook, No. 2; CABI Publishing: Wallingford, UK, 1994; 122p. [Google Scholar]
- Bensaci, O.A.; Daoud, H.; Lombarkia, N.; Rouabah, K. Formulation of the endophytic fungus Cladosporium oxysporum Berk. & M. A. Curtis, isolated from Euphorbia bupleuroides subsp. luteola, as a new biocontrol tool against the black bean aphid (Aphis fabae Scop.). J. Plant Prot. Res. 2015, 55, 80–87. [Google Scholar] [CrossRef]
- Abràmoff, M.D.; Magalhães, P.J.; Ram, S.J. Image processing with Image. J. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
R’Haouat | ||||||
Unincorporated Leaves * | ||||||
AA | IA | MA | ||||
Mean number | Evolution | Mean number | Evolution | Mean number | Evolution | |
Tlong. | 8.66 b | ↓ 44.84% | 32.27 b | ↑ 56.88% | 18.98 b | ↓ 40.68% |
Cglob. | 4.60 c | ↓ 70.70% | 41.10 a | ↑ 99.81% | 7.93 c | ↓ 57.21% |
Control | 15.70 a | - | 20.57 c | - | 32.00 a | - |
Incorporated leaves ** | ||||||
Tlong. | 7,25 b | ↓ 39.94% | 38.96 b | ↑ 125.85% | 11.86 b | ↓ 43.81% |
Cglob. | 4.04 c | ↓ 66.52% | 49.42 a | ↑ 186.49% | 6.36 c | ↓ 69.87% |
Control | 12.07 a | - | 17.25 c | - | 21.11 a | - |
Bouhmama | ||||||
Unincorporated leaves * | ||||||
AA | IA | MA | ||||
Mean number | Evolution | Mean number | Evolution | Mean number | Evolution | |
Tlong. | 6.72 b | ↓ 63.19% | 36.65 a | ↑ 66.36% | 15.35 b | ↓ 44.56% |
Cglob. | 3.58 c | ↓ 80.39% | 39.57 a | ↑ 79.61% | 9.58 c | ↓ 65.40% |
Control | 18.26 a | - | 22.03 b | - | 27.69 a | - |
Incorporated leaves ** | ||||||
Tlong. | 5.67 b | ↓ 57.30% | 41.37 b | ↑ 164.17% | 16.81 a | ↓ 9.57% |
Cglob. | 1.72 c | ↓ 87.04% | 52.02 a | ↑ 232.18% | 5.62 b | ↓ 69.76% |
Control | 13.28 a | - | 15.66 c | - | 18.59 a | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bensaci, O.A.; Aliat, T.; Berdja, R.; Popkova, A.V.; Kucher, D.E.; Gurina, R.R.; Rebouh, N.Y. The Use of Mycoendophyte-Based Bioformulations to Control Apple Diseases: Toward an Organic Apple Production System in the Aurès (Algeria). Plants 2022, 11, 3405. https://doi.org/10.3390/plants11233405
Bensaci OA, Aliat T, Berdja R, Popkova AV, Kucher DE, Gurina RR, Rebouh NY. The Use of Mycoendophyte-Based Bioformulations to Control Apple Diseases: Toward an Organic Apple Production System in the Aurès (Algeria). Plants. 2022; 11(23):3405. https://doi.org/10.3390/plants11233405
Chicago/Turabian StyleBensaci, Oussama A., Toufik Aliat, Rafik Berdja, Anna V. Popkova, Dmitry E. Kucher, Regina R. Gurina, and Nazih Y. Rebouh. 2022. "The Use of Mycoendophyte-Based Bioformulations to Control Apple Diseases: Toward an Organic Apple Production System in the Aurès (Algeria)" Plants 11, no. 23: 3405. https://doi.org/10.3390/plants11233405
APA StyleBensaci, O. A., Aliat, T., Berdja, R., Popkova, A. V., Kucher, D. E., Gurina, R. R., & Rebouh, N. Y. (2022). The Use of Mycoendophyte-Based Bioformulations to Control Apple Diseases: Toward an Organic Apple Production System in the Aurès (Algeria). Plants, 11(23), 3405. https://doi.org/10.3390/plants11233405