Genetic Improvement in Plant Architecture, Maturity Duration and Agronomic Traits of Three Traditional Rice Landraces through Gamma Ray-Based Induced Mutagenesis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification and Selection of Desirable Mutants in M2 Generation
2.2. Confirmation of Mutants in M3 Generation
2.3. Performance of True to Type Rice Mutants in M4, M5 and M6 Generations under Replicated Yield Trials
2.4. Improvement in Days to 50% Flowering, Plant Height (cm) and Grain Yield per Plant (g) of the Rice Mutants over the Corresponding Parent
2.5. Analysis of Variance (ANOVA) Based on Randomised Complete Block Design (RCBD)
2.6. Genetic Variability Parameters for Agro-Morphological and Grain Quality Traits
2.7. Association Analysis Based on Agro-Morphological and Grain Quality Traits in M4, M5 and M6 Generations
2.8. SSR Marker-Based Genomic Similarity and Genetic Diversity Study in Rice Mutants and Parents
2.8.1. SSR Marker Profile and Informativeness Used for Genotyping of Rice Genotypes
2.8.2. SSR Marker-Based Genome Similarity Study in Rice Mutants and Their Corresponding Parents
2.8.3. SSR Marker-Based Genetic Diversity Study in Rice Genotypes
3. Materials and Methods
3.1. Experimental Materials
3.2. Gamma Ray Irradiation Facility
3.3. Experimental Site, Setting of the Experiment and Agronomic Practices Adopted
3.4. Handling of M1 Population
3.5. Handling of M2 Population and Selection of Desirable Mutants
3.6. Handling of M3 Population
3.7. Characterisation and Evaluation of Rice Genotypes in M4, M5 and M6 Generations and Experimental Layout
3.8. Observations Recorded for Yield-Attributing Traits and Physicochemical Grain Quality Traits in M4, M5 and M6 Generations
3.9. Molecular Profiling of the Rice Mutants, Parents and Checks with the Help of SSR (Simple Sequence Repeat) Markers
3.10. Bio-Statistical Analysis Performed with the Data Obtained in M4, M5 and M6 Generations
4. Conclusions
5. Variety
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malik, P.; Huang, M.; Neelam, K.; Bhatia, D.; Kaur, R.; Yadav, B.; Singh, J.; Sneller, C.; Singh, K. Genotyping-by-Sequencing Based Investigation of Population Structure and Genome Wide Association Studies for Seven Agronomically Important Traits in a Set of 346 Oryza rufipogon Accessions. Rice 2022, 15, 37. [Google Scholar] [CrossRef] [PubMed]
- Dogara, A.; Jumare, A. Origin, Distribution and Heading Date in Cultivated Rice. Int. J. Plant Biol. Res. 2014, 2, 1008. [Google Scholar]
- Sahu, P.K.; Sao, R.; Choudhary, D.K.; Thada, A.; Kumar, V.; Mondal, S.; Das, B.K.; Jankuloski, L.; Sharma, D. Advancement in the Breeding, Biotechnological and Genomic Tools towards Development of Durable Genetic Resistance against the Rice Blast Disease. Plants 2022, 11, 2386. [Google Scholar] [CrossRef] [PubMed]
- USDA. World Agricultural Production. United States Department of Agriculture Foreign Agricultural Service. WAP, 5–21. 2021. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/5q47rn72z/8910km75q/br86bx04x/production.pdf (accessed on 25 July 2022).
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [Green Version]
- Sahu, P.K.; Mondal, S.; Sharma, D.; Vishwakarma, G.; Kumar, V.; Das, B.K. InDel marker based genetic differentiation and genetic diversity in traditional rice (Oryza sativa L.) landraces of Chhattisgarh, India. PLoS ONE 2017, 12, e0188864. [Google Scholar] [CrossRef] [Green Version]
- Nair, S.K.; Sahu, G.R.; Rao, R.K.; Verma, R.K.; Sharma, D.; Bhandarkar, S.; Sharma, B.; Burman, M. Catalogue on Indigenous Rice Germplasm of Chhattisgarh (Part-III); IGKV Publications: Raipur, India, 2016. [Google Scholar]
- Whankaew, S.; Kaewmanee, S.; Ruttajorn, K.; Phongdara, A. Indel marker analysis of putative stress-related genes reveals genetic diversity and differentiation of rice landraces in peninsular Thailand. Physiol. Mol. Biol. Plants 2020, 26, 1237–1247. [Google Scholar] [CrossRef]
- Prasanna, S.; Jain, S.M. Mutant Resources and Mutagenomics in crop plants. Emir. J. Food Agric. 2017, 29, 651. [Google Scholar] [CrossRef] [Green Version]
- Oladosu, Y.; Rafii, M.Y.; Abdullah, N.; Hussin, G.; Ramli, A.; Rahim, H.A.; Miah, G.; Usman, M. Principle and application of plant mutagenesis in crop improvement: A review. Biotechnol. Biotechnol. Equip. 2015, 30, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, J.; Deshmukh, R.; Sonah, H. Mutagenesis Approaches and Their Role in Crop Improvement. Plants 2019, 8, 467. [Google Scholar] [CrossRef] [Green Version]
- FAO/IAEA. Mutant Variety Database (MVD). 2022. Available online: https://mvd.iaea.org/ (accessed on 19 April 2022).
- Viana, V.E.; Pegoraro, C.; Busanello, C.; De Oliveira, A.C. Mutagenesis in Rice: The Basis for Breeding a New Super Plant. Front. Plant Sci. 2019, 10, 1326. [Google Scholar] [CrossRef] [Green Version]
- Mba, C. Induced Mutations Unleash the Potentials of Plant Genetic Resources for Food and Agriculture. Agronomy 2013, 3, 200–231. [Google Scholar] [CrossRef]
- Bajracharya, J.; Rana, R.B.; Gauchan, D.; Sthapit, B.R.; Jarvis, D.I.; Witcombe, J.R. Rice landrace diversity in Nepal. Socio-economic and ecological factors determining rice landrace diversity in three agro-ecozones of Nepal based on farm surveys. Genet. Resour. Crop Evol. 2010, 57, 1013–1022. [Google Scholar] [CrossRef] [Green Version]
- Blair, M.W.; Panaud, O.; McCouch, S.R. Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.). Theor. Appl. Genet. 1999, 98, 780–792. [Google Scholar] [CrossRef]
- Yang, G.P.; Maroof, M.S.; Xu, C.G.; Zhang, Q.; Biyashev, R.M. Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice. Mol. Gen. Genet. MGG 1994, 245, 187–194. [Google Scholar] [CrossRef]
- Purwanto, E.; Nandariyah, N.; Yuwono, S.S.; Yunindanova, M.B. Induced Mutation for Genetic Improvement in Black Rice Using Gamma-Ray. AGRIVITA J. Agric. Sci. 2019, 41, 213–220. [Google Scholar] [CrossRef]
- Sharma, D.; Das, B.K.; Kumar, V.; Tiwari, A.; Sahu, P.K.; Singh, S.; Baghel, S. Identification of semi-dwarf and high yielding mutants in Dubraj rice variety of Chhattisgarh through gamma ray based induced mutagenesis. Int. J. Genet. 2017, 9, 298–303. [Google Scholar]
- Roy, B.; Kumar, V.; Tulsiram, S.D.; Das, B.K. Development of high yielding aromatic mutants of rice (Oryza sativa L.) from a local aromatic cultivar, Tulaipanji by using gamma radiation. Indian J. Genet. 2018, 78, 409–416. [Google Scholar]
- Schiocchet, M.A.; Noldin, J.A.; Raimondi, J.V.; Neto, A.J.V.; Marschalek, R.; Wickert, E.; Martins, G.N.; Hickel, E.; Knoblauch, R.; Scheuermann, K.K.; et al. SCS118 Marques—New rice cultivar obtained through induced mutation. Crop Breed. Appl. Biotechnol. 2014, 14, 68–70. [Google Scholar] [CrossRef] [Green Version]
- Kato, H.; Li, F.; Shimizu, A. The Selection of Gamma-Ray Irradiated Higher Yield Rice Mutants by Directed Evolution Method. Plants 2020, 9, 1004. [Google Scholar] [CrossRef]
- Kumari, N.; Kumar, R.; Kumar, A. Genetic Variability and Association of Traits in Mutant Lines of Rice (Oryza sativa L.) for Submergence Tolerance. Curr. J. Appl. Sci. Technol. 2019, 33, 1–7. [Google Scholar] [CrossRef]
- Sharifi, P. Genetic variation for grain yield, yield components and qualitative traits in rice (Oryza sativa L.) mutants. Genetika 2019, 51, 829–843. [Google Scholar] [CrossRef] [Green Version]
- Prashanth, C.; Mahantashivayogayya, K.; Diwan, J.R.; Kuchanur, P.H.; Vishwanath, J. Genetic Variability and Association Studies on Bpt-5204 Based Rice Mutants under Saline Stress Soil. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 2441–2450. [Google Scholar] [CrossRef]
- Adewusi, K.; Showemimo, F.; Nassir, A.; Olagunju, S.; Porbeni, J.; Amira, J.; Aderinola, A. Assessment of 60Co gamma radiation on early phenological stages of two generations of OFADA rice. Agro-Science 2021, 20, 31–37. [Google Scholar] [CrossRef]
- Abdourasmane, K.K.; Adama, Z.; Honore, K.; Ambaliou, S.; Alain, A. Genetic variability and correlation analysis of rice (Oryza sativa L.) inbred lines based on agro-morphological traits. Afr. J. Agric. Res. 2016, 11, 3340–3346. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, D.N.; Tripathi, S.R.; Tripathi, M.P.; Khatri, N.; Bastola, B.R. Genetic Variability and Correlation Coefficients of Major Traits in Early Maturing Rice under Rainfed Lowland Environments of Nepal. Adv. Agric. 2019, 2019, 5975901. [Google Scholar] [CrossRef] [Green Version]
- Sahu, P.K.; Sao, R.; Mondal, S.; Vishwakarma, G.; Gupta, S.K.; Kumar, V.; Singh, S.; Sharma, D.; Das, B.K. Next Generation Sequencing Based Forward Genetic Approaches for Identification and Mapping of Causal Mutations in Crop Plants: A Comprehensive Review. Plants 2020, 9, 1355. [Google Scholar] [CrossRef]
- Chaudhari, M.; Motiramani, N.K.; Pravin, J. Variability and genetic divergence of aromatic rice (Oryza sativa L.). Ann. Agric. Res. New Ser. 2007, 28, 268–272. [Google Scholar]
- Nayak, A.R.; Chaudhary, D.; Reddy, J.N. Genetic variability and correlation study among quality characters in scented rice. Agric. Sci. Dig. 2003, 23, 175–178. [Google Scholar]
- Chakraborty, R.; Chakraborty, S.; Dutta, B.K.; Paul, S.B. Genetic variability and genetic correlation among nutritional and cooking quality traits in bold grain rice. Oryza 2009, 46, 21–25. [Google Scholar]
- Vanaja, T.; Babu, L.C. Variability in grain quality attributes of high yielding rice varieties (Oryza sativa L.) of diverse origin. J. Trop. Agric. 2006, 44, 61–63. [Google Scholar]
- Sanjukta, D.; Subudhi, H.N.; Reddy, J.N. Genetic variability in grain quality characteristics and yield in low land rice genotypes. Oryza 2007, 44, 343–346. [Google Scholar]
- Veerabadhiran, P.; Umadevi, M.; Pushpam, R. Genetic variability, heritability and genetic advance of grain quality in hybrid rice. Madras Agric. J. 2009, 96, 95–99. [Google Scholar]
- Rathi, S.; Yadav, R.N.S.; Sarma, R.N. Variability in Grain Quality Characters of Upland Rice of Assam, India. Rice Sci. 2010, 17, 330–333. [Google Scholar] [CrossRef]
- Babu, V.R.; Shreya, K.; Dangi, K.S.; Usharani, G.; Nagesh, P. Genetic variability studies for qualitative and quantitative traits in popular rice (Oryza sativa L.) hybrids of India. Int. J. Sci. Res. 2012, 2, 1–5. [Google Scholar]
- Nirmaladevi, G.; Padmavathi, G.; Kota, S.; Babu, V.R. Genetic variability, heritability and correlation coefficients of grain quality characters in rice (Oryza sativa L.). Sabrao J. Breed. Genet. 2015, 47, 424–433. [Google Scholar]
- Aravind, K.; Banumathy, S.; Vanniarajan, C.; Arunachalam, P.; Ilamaran, M.; Kalpana, K. DUS characterization and genetic variability studies of rice mutants. Electron. J. Plant Breed. 2019, 10, 451. [Google Scholar] [CrossRef]
- Pillai, M.A.; Eapen, S.; Jeshima, K.Y.; Anandhi, K.; Selvi, B. Genetic Variability and Association Studies in Salt Tolerant Rice Mutant. Int. J. Plant Breed. Genet. 2011, 5, 339–348. [Google Scholar] [CrossRef]
- Mahantashivayogayya, K.; Mahendrakumar; Lakkundi, B.S.; Kuchunur, P.H.; Vishwanath, J. Genetic variability studies on rice (Oryza sativa L.) mutants for yield and yield components in normal and saline stress soil. Electron. J. Plant Breed. 2016, 7, 1162. [Google Scholar] [CrossRef]
- Roychowdhury, R.; Tah, J. Mutagenesis: A Potential Approach for Crop Improvement. In Crop Improvement: New Approaches and Modern Techniques; Hakeem, K.R., Ahmad, P., Ozturk, M., Eds.; Springer: New York, NY, USA, 2013; pp. 149–187. [Google Scholar]
- Nuruzzaman; Hassan, L.; Begum, S.N.; Huda, M. Correlation and Path Coefficient Analysis of Yield Components in NERICA Mutant Rice Lines under Rainfed Conditions. J. Exp. Agric. Int. 2017, 16, 1–8. [Google Scholar] [CrossRef]
- Anh, T.T.T.; Khanh, T.D.; Dat, T.D.; Xuan, T.D. Identification of Phenotypic Variation and Genetic Diversity in Rice (Oryza sativa L.) Mutants. Agriculture 2018, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; Chaudhary, B.D. Biometrical Methods in Quantitative Genetic Analysis. Biom. Methods Quant. Genet. Anal. 1977, 34, 723. [Google Scholar] [CrossRef]
- Singh, P.; Narayanam, S.S. Biometrical Techniques in Plant Breeding, 4th ed.; Kalyani Publishers: New Delhi, India, 2009; pp. 56–65. [Google Scholar]
- Nadarajan, N.; Manivannan, N.; Gunasekaran, M. Quantitative Genetics and Biometrical Techniques in Plant Breeding; Kalyani Publishers: New Delhi, India, 2016; pp. 239–246. [Google Scholar]
- Devi, K.R.; Chandra, B.S.; Lingaiah, N.; Hari, Y.; Venkanna, V. Analysis of variability, correlation and path coefficient studiesfor yield and quality traits in Rice (Oryza Sativa L.). Agric. Sci. Dig.-A Res. J. 2017, 37, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Nei, M. Analysis of Gene Diversity in Subdivided Populations. Proc. Natl. Acad. Sci. USA 1973, 70, 3321–3323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garris, A.J.; Tai, T.H.; Coburn, J.; Kresovich, S.; McCouch, S. Genetic Structure and Diversity in Oryza sativa L. Genetics 2005, 169, 1631–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, M.L.; McClung, A.M.; Jia, M.H.; Kimball, J.A.; McCouch, S.R.; Eizenga, G.C. A Rice Diversity Panel Evaluated for Genetic and Agro-Morphological Diversity between Subpopulations and its Geographic Distribution. Crop Sci. 2011, 51, 2021–2035. [Google Scholar] [CrossRef] [Green Version]
- Jamil, M.; Rana, I.A.; Ali, Z.; Awan, F.S.; Shahzad, Z.; Khan, A.S. Estimation of Genetic Diversity in Rice (Oryza sativa L.) Genotypes using Simple Sequence Repeats. Mol. Plant Breed. 2013, 4. [Google Scholar] [CrossRef]
- Potupureddi, G.; Balija, V.; Ballichatla, S.; Gokulan, C.G.; Awalellu, K.; Lekkala, S.; Jallipalli, K.; Mohammad, E.; Milton, M.; Arutla, S.; et al. Development and Characterization of an Efficient Mutant Resource of the Mega Variety, Samba Mahsuri for Rice Improvement. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Suneel, B.; Laha, G.S.; Padmakumari, A.P.; Sundaram, R.M.; Rao, L.V.S.; Sudhakar, P.; Satya, A.K.; Madhav, M.S. Morphological and Molecular Characterization of Complete Panicle Emergence Mutant Lines for Assessing Genetic Relatedness. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 549–561. [Google Scholar] [CrossRef]
- Andrew-Peter-Leon, M.T.; Ramchander, S.; Kumar, K.; Muthamilarasan, M.; Pillai, M.A. Assessment of efficacy of mutagenesis of gamma-irradiation in plant height and days to maturity through expression analysis in rice. PLoS ONE 2021, 16, e0245603. [Google Scholar] [CrossRef]
- Kumar, V.; Bhag, S.G. Microsatellite (SSR) Based Assessment of Genetic Diversity among the Semi-dwarf Mutants of Elite Rice Variety WL112. Int. J. Plant Breed. Genet. 2012, 6, 195–205. [Google Scholar] [CrossRef] [Green Version]
- Babaei, A. Genetic Diversity Analysis of Nemat Rice Mutant (Oryza Sativa L.) via RAPD Marker. Am.-Eurasian J. Agric. Environ. Sci. 2010, 8, 452–456. [Google Scholar]
- Domingo, C.; Andrés, F.; Talon, M. Rice cv. Bahia mutagenized population: A new resource for rice breeding in the Mediterranean basin. Span. J. Agric. Res. 2007, 5, 341. [Google Scholar] [CrossRef]
- Said, M.S.; Megahed, H.A.; Amr, F.A.; Basuny, A.Z.; Shehata, S.M.; Ammar, M.H.; Abdelkalik, A.F.; Zayed, B.A. Morphological, molecular and biochemical evaluation of Egyptian jasmine rice variety and its M5 derived mutants. Afr. J. Biotechnol. 2009, 8, 6110–6116. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.; Sao, R.; Sahu, P.K.; Vishwakarma, G.; Nair, J.P.; Petwal, V.C.; Das, B.K. Comparative study of radio-sensitivity and relative biological effectiveness of gamma rays, X-rays, electron beam and proton beam in short grain aromatic rice. Indian J. Genet. Plant Breed. 2020, 80, 384–394. [Google Scholar] [CrossRef]
- Sao, R.; Sahu, P.K.; Mondal, S.; Kumar, V.; Sharma, D.; Das, B.K. Spectrum and Frequency of Macro and Micro Mutations Induced through Gamma Rays in Traditional Rice Landraces of Chhattisgarh. Electron. J. Plant Breed. 2021, 12, 693–706. [Google Scholar]
- SES IRRI 2013; Standard Evaluation System for Rice. International Rice Research Institute: Manila, Philippines, 2013; pp. 1–65.
- DRR-2014; Laboratory Manual on Rice Grain Quality Analysis. Manual of ICAR-Directorate of Rice Research: Hyderabad, India, 2014; pp. 1–50.
- Hammer, Q.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electronica 2001, 4, 9. [Google Scholar]
- Liu, K.; Muse, S.V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef]
S. No. | Name of Mutants | Parental Lines | Features Based on Which They Have Been Selected and Advanced in Next Generation |
---|---|---|---|
1 | Vishnubhog Mutant V-17 | Vishnubhog | Very high tillering, semi dwarf, mid early maturity duration |
2 | Vishnubhog Mutant V-19-2 | Vishnubhog | Semi dwarf, mid early maturity duration |
3 | Vishnubhog Mutant V-74-6 | Vishnubhog | Semi dwarf, mid early maturity duration |
4 | Vishnubhog Mutant V-47 | Vishnubhog | Semi dwarf, mid early maturity duration |
5 | Vishnubhog Mutant V-45 | Vishnubhog | Semi dwarf, mid early maturity duration |
6 | Vishnubhog Mutant V-33 | Vishnubhog | Semi dwarf, mid early maturity duration |
7 | Vishnubhog Mutant V-45-2 | Vishnubhog | Semi dwarf, mid early maturity duration |
8 | Vishnubhog Mutant V-67 | Vishnubhog | Semi dwarf, mid early maturity duration, clustered grain short panicle |
9 | Vishnubhog Mutant V-71-4 | Vishnubhog | Semi dwarf, mid early maturity duration |
10 | Vishnubhog Mutant V-80 | Vishnubhog | Intermediate type plant height, mid early maturity duration, fine grain type |
11 | Samundchini Mutant S-49 | Samundchini | Very high tillering, intermediate type plant height |
12 | Samundchini Mutant S-18-1 | Samundchini | Intermediate type plant height, early maturity |
13 | Samundchini Mutant S-50 | Samundchini | Intermediate type plant height, early maturity |
14 | Jhilli Mutant J-2-13 | Jhilli | Early, semi dwarf, panicles with clustered grains |
15 | Jhilli Mutant J-12-1 | Jhilli | Early, semi dwarf |
16 | Jhilli Mutant J-13-2 | Jhilli | Early, semi dwarf |
17 | Jhilli Mutant J-13-5 | Jhilli | Early, semi dwarf |
18 | Jhilli Mutant J-15-1 | Jhilli | Early, semi dwarf |
List of Genotypes | Days to 50% Flowering (Days) | Percentage Change (%) over Parent | Plant Height (cm) | Percentage Change (%) over Parent | Grain Yield/Plant (g) | Percentage Change (%) over Parent | Percentage Change in Grain Yield (%) over Check 1 (Dubraj Selection-1) | Percentage Change in Grain Yield (%) over Check 2 Vishnubhog Selection-1 (%) |
---|---|---|---|---|---|---|---|---|
Samundchini Parent | 129.83 | 165.26 | 23.09 | |||||
Samundchini Mutant S-49 | 118.67 | −9.62 | 113.93 | −31.06 | 20.59 | −10.84 | 10.28 | −0.63 |
Samundchini Mutant S-18-1 | 117.00 | −9.88 | 119.05 | −27.96 | 28.27 | 22.45 | 51.42 | 36.44 |
Samundchini Mutant S-50 | 117.67 | −9.37 | 122.25 | −26.03 | 25.94 | 12.32 | 38.94 | 25.19 |
Vishnubhog Parent | 121.50 | 143.69 | 19.52 | |||||
Vishnubhog Mutant V-17 | 113.00 | −7.00 | 109.95 | −23.48 | 11.68 | −40.19 | −37.44 | −43.63 |
Vishnubhog Mutant V-19-2 | 107.00 | −11.93 | 91.49 | −36.33 | 17.63 | −9.70 | −5.57 | −14.91 |
Vishnubhog Mutant V-74-6 | 108.50 | −10.70 | 107.64 | −25.09 | 26.72 | 36.87 | 43.12 | 28.96 |
Vishnubhog Mutant V-47 | 111.00 | −8.64 | 99.61 | −30.68 | 18.20 | −6.76 | −2.52 | −12.16 |
Vishnubhog Mutant V-45 | 103.67 | −14.68 | 100.83 | −29.83 | 22.73 | 16.46 | 21.75 | 9.70 |
Vishnubhog Mutant V-33 | 113.67 | −6.45 | 103.86 | −27.72 | 24.16 | 23.75 | 29.41 | 16.60 |
Vishnubhog Mutant V-45-2 | 112.50 | −7.41 | 127.48 | −11.28 | 20.09 | 2.92 | 7.61 | −3.04 |
Vishnubhog Mutant V-67 | 115.50 | −4.94 | 127.48 | −11.28 | 12.42 | −36.36 | −33.48 | −40.06 |
Vishnubhog Mutant V-71-4 | 101.67 | −16.32 | 100.08 | −30.35 | 26.34 | 34.93 | 41.08 | 27.12 |
Vishnubhog Mutant V-80 | 100.67 | −17.15 | 113.02 | −21.35 | 21.26 | 8.89 | 13.87 | 2.61 |
Jhilli Dhan Parent | 119.17 | 160.56 | 20.86 | |||||
Jhilli Mutant J-2-13 | 93.67 | −21.40 | 102.14 | −36.38 | 19.54 | −6.32 | 4.66 | −5.69 |
Jhilli Mutant J-12-1 | 95.83 | −19.58 | 101.71 | −36.65 | 23.10 | 10.78 | 23.73 | 11.49 |
Jhilli Mutant J-13-2 | 98.67 | −17.20 | 103.36 | −35.62 | 19.98 | −4.22 | 7.02 | −3.57 |
Jhilli Dhan J-13-5 | 95.50 | −19.86 | 106.79 | −33.48 | 26.27 | 25.96 | 40.71 | 26.79 |
Jhilli Mutant J-15-1 | 95.50 | −19.86 | 100.10 | −37.65 | 24.09 | 15.51 | 29.03 | 16.26 |
Dubraj Selection-1 | - | - | - | - | 18.67 | - | - | - |
Vishnubhog Selection-1 | - | - | - | - | 20.72 | - | - | - |
Source of Variation | Replication | Factor A (Genotypes) | Factor B (Years) | Interaction A × B | Error | Total | CD for A | CD for B | CD for A × B | SE(m) for A × B |
---|---|---|---|---|---|---|---|---|---|---|
DF | 1 | 23 | 2 | 46 | 71 | 143 | ||||
DFF | 0.01 | 610.5 ** | 2124.3 ** | 43.6 ** | 6.53 | 2785 | 2.95 | 1.04 | 5.11 | 1.81 |
PH | 4.91 | 2647.1 ** | 2262 ** | 62.84 ** | 4.49 | 4981 | 2.45 | 0.86 | 4.23 | 1.5 |
PL | 0.5 | 50.23 ** | 22.36 ** | 5.07 ** | 0.91 | 144 | 0.55 | 0.2 | 0.95 | 0.68 |
FLL | 0.75 | 102.16 ** | 28.90 ** | 7.02 ** | 2.11 | 140.9 | 1.68 | 0.59 | 2.9 | 1.03 |
FLW | 0.01 | 0.52 ** | 0.10 ** | 0.02 ** | 0.01 | 0.66 | 0.11 | 0.04 | 0.18 | 0.07 |
TTP | 3.14 | 306.41 ** | 67.45 ** | 6.15 ** | 1.57 | 145 | 1.45 | 0.51 | 2.5 | 0.89 |
ETP | 47.32 | 93.30 ** | 123.91 ** | 11.61 ** | 5.01 | 281.5 | 2.58 | 0.91 | 4.47 | 1.58 |
FSP | 126.9 | 5978.0 ** | 117.81 * | 495.7 ** | 36.6 | 6755 | 6.98 | 2.47 | 12.09 | 4.28 |
SSP | 7.51 | 213.48 ** | 127.42 ** | 111.2 ** | 21.5 | 146 | 5.35 | 1.89 | 9.27 | 3.28 |
TSP | 196.44 | 5657.9 ** | 277.25 * | 792.2 ** | 75.2 | 6999 | 10 | 3.54 | 17.32 | 6.13 |
SF% | 0.62 | 173.41 ** | 16.93 * | 15.34 ** | 3.51 | 209.8 | 2.16 | 0.76 | 3.74 | 1.32 |
HSW | 0.01 | 1.58 ** | 0.33 ** | 0.04 ** | 0.01 | 147 | 0.13 | 0.05 | 0.23 | 0.08 |
GYP | 1.19 | 111.49 ** | 6.40 * | 3.06 * | 1.68 | 123.8 | 1.5 | 0.53 | 2.59 | 0.92 |
Hul% | 20.14 | 34.56 ** | 19.48 * | 13.11 ** | 6.2 | 93.49 | 2.87 | 1.02 | 4.98 | 1.76 |
Mil% | 6.78 | 27.02 ** | 57.23 ** | 13.95 ** | 5.46 | 148 | 2.7 | 0.95 | 4.67 | 1.65 |
HRR% | 6.3 | 52.62 ** | 88.58 ** | 11.72 | 7.69 | 166.9 | 3.2 | 1.13 | N/A | 1.96 |
PadL | 0.22 | 8.68 ** | 0.01 | 0.01 | 0.04 | 8.94 | 0.24 | N/A | N/A | 0.15 |
PadW | 0.01 | 0.57 ** | 0.01 | 0.01 | 0.01 | 149 | 0.09 | N/A | N/A | 0.06 |
BRL | 0.12 | 5.89 ** | 0.19 ** | 0.10 ** | 0.01 | 6.32 | 0.13 | 0.04 | 0.22 | 0.08 |
BRW | 0.05 | 0.23 ** | 0.04 ** | 0.03 ** | 0.01 | 0.34 | 0.1 | 0.04 | 0.17 | 0.06 |
KL | 0.02 | 5.09 ** | 1.73 ** | 0.20 ** | 0.01 | 150 | 0.12 | 0.04 | 0.21 | 0.07 |
KW | 0.02 | 0.22 ** | 0.16 ** | 0.02 ** | 0.01 | 0.44 | 0.11 | 0.04 | 0.19 | 0.07 |
KLBR | 0.01 | 1.96 ** | 0.05 | 0.07 ** | 0.02 | 2.11 | 0.16 | N/A | 0.28 | 0.1 |
CRL | 0.08 | 7.86 ** | 8.30 ** | 0.61 ** | 0.03 | 151 | 0.19 | 0.07 | 0.33 | 0.12 |
CRW | 0.06 | 0.37 ** | 0.04 | 0.06 * | 0.03 | 0.55 | 0.2 | N/A | 0.35 | 0.12 |
ER | 0.01 | 0.19 ** | 0.06 ** | 0.04 ** | 0 | 0.29 | 0.06 | 0.02 | 0.1 | 0.04 |
ASV | 0.84 | 9.13 ** | 0.34 * | 0.20 * | 0.11 | 152 | 0.38 | 0.13 | 0.66 | 0.23 |
GCV | 43.34 | 1043.83 ** | 1348.53 ** | 63.83 ** | 35.7 | 2535 | 6.9 | 2.44 | 11.94 | 4.23 |
AC | 0.88 | 35.71 ** | 5.46 * | 3.01 * | 1.62 | 46.68 | 1.47 | 0.52 | 2.55 | 0.9 |
Characters | Mean | Genotypic Coefficient of Variation (GCV) | Phenotypic Coefficient of Variation (GCV) | Heritability (%) (bs) | Genetic Advance as % Mean | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Kharif 2019 | Rabi 2019–20 | Kharif 2020 | Kharif 2019 | Rabi 2019–20 | Kharif 2020 | Kharif 2019 | Rabi 2019–20 | Kharif 2020 | Kharif 2019 | Rabi 2019–20 | Kharif 2020 | Kharif 2019 | Rabi 2019–20 | Kharif 2020 | |
Days to 50% flowering | 105.25 | 117.1 | 106.1 | 11.25 | 5.89 | 11.65 | 11.56 | 6.29 | 11.83 | 94.74 | 87.69 | 97.06 | 22.56 | 20.37 | 23.64 |
Plant height (cm) | 121.35 | 108.6 | 119.5 | 19.74 | 16.80 | 18.25 | 19.84 | 16.90 | 18.32 | 98.97 | 98.85 | 99.21 | 40.46 | 34.41 | 37.44 |
Panicle length (cm) | 25.23 | 23.87 | 24.41 | 11.32 | 13.42 | 13.08 | 12.04 | 13.99 | 13.62 | 88.36 | 92.04 | 92.27 | 21.92 | 26.52 | 25.88 |
Flag leaf length (cm) | 31.62 | 30.27 | 31.60 | 13.41 | 13.91 | 13.95 | 14.26 | 14.37 | 14.80 | 88.34 | 93.72 | 88.80 | 25.96 | 27.73 | 27.07 |
Flag leaf width (cm) | 1.46 | 1.37 | 1.42 | 21.22 | 21.04 | 21.49 | 23.45 | 21.17 | 21.98 | 81.82 | 98.71 | 95.66 | 39.53 | 43.05 | 43.31 |
Total tillers/plant | 12.08 | 13.96 | 11.75 | 53.81 | 55.19 | 65.88 | 54.59 | 56.08 | 66.77 | 97.17 | 96.84 | 97.35 | 109.2 | 111.8 | 133.91 |
Effective tillers/plant | 10.83 | 13.04 | 10.00 | 42.38 | 23.34 | 48.15 | 44.23 | 31.96 | 48.91 | 91.83 | 53.34 | 96.93 | 83.66 | 35.11 | 97.67 |
Fertile spikelets/panicle | 161.54 | 159.6 | 158.4 | 23.35 | 21.24 | 18.76 | 23.77 | 21.45 | 19.16 | 96.50 | 98.03 | 95.90 | 47.26 | 43.32 | 37.85 |
Sterile spikelets/panicle | 47.38 | 44.54 | 47.46 | 24.06 | 8.20 | 13.95 | 25.98 | 14.25 | 16.48 | 85.77 | 33.14 | 71.64 | 45.90 | 9.73 | 24.32 |
Total spikelets/panicle | 208.79 | 203.9 | 205.7 | 19.41 | 13.59 | 13.59 | 19.95 | 14.23 | 14.23 | 94.64 | 91.12 | 91.12 | 38.90 | 26.71 | 26.71 |
Spikelet Fertility (%) | 76.83 | 77.65 | 76.50 | 8.48 | 7.44 | 7.44 | 8.86 | 7.71 | 7.71 | 91.74 | 93.23 | 93.23 | 16.74 | 14.80 | 14.80 |
100-Seed weight (g) | 1.55 | 1.46 | 1.62 | 33.44 | 33.56 | 33.76 | 34.87 | 33.88 | 34.25 | 91.94 | 98.15 | 97.13 | 66.05 | 68.49 | 68.53 |
Grain yield/plant (g) | 21.48 | 21.42 | 22.08 | 19.98 | 20.20 | 19.79 | 20.82 | 21.12 | 20.71 | 92.06 | 91.44 | 91.33 | 39.49 | 39.79 | 38.96 |
Hulling % | 76.43 | 76.50 | 75.36 | 3.10 | 3.29 | 4.19 | 5.48 | 4.03 | 4.56 | 32.06 | 66.85 | 84.34 | 3.62 | 5.55 | 7.92 |
Milling % | 67.57 | 67.16 | 65.50 | 3.86 | 3.83 | 3.96 | 5.72 | 4.63 | 4.92 | 45.60 | 68.53 | 64.75 | 5.37 | 6.53 | 6.57 |
Head Rice Recovery (%) | 59.07 | 58.70 | 56.40 | 3.85 | 4.29 | 6.96 | 5.41 | 7.40 | 7.63 | 50.70 | 33.60 | 83.18 | 5.65 | 5.12 | 13.07 |
Paddy length (mm) | 6.93 | 6.91 | 6.91 | 17.52 | 17.33 | 16.92 | 17.62 | 17.75 | 17.20 | 98.86 | 95.31 | 96.74 | 35.88 | 34.85 | 34.28 |
Paddy width (mm) | 2.59 | 2.58 | 2.58 | 11.20 | 12.02 | 12.01 | 12.03 | 12.24 | 12.19 | 86.54 | 96.38 | 97.01 | 21.45 | 24.30 | 24.36 |
Dehusked rice length(mm) | 5.21 | 5.18 | 5.09 | 19.86 | 19.09 | 19.50 | 19.93 | 19.22 | 19.62 | 99.31 | 98.70 | 98.84 | 40.77 | 39.07 | 39.94 |
Dehusked rice width (mm) | 2.15 | 2.12 | 2.09 | 9.43 | 9.93 | 10.04 | 10.21 | 10.68 | 10.61 | 85.22 | 86.50 | 89.62 | 17.93 | 19.02 | 19.58 |
Milled rice length (mm) | 4.90 | 4.88 | 4.56 | 20.90 | 19.47 | 20.88 | 21.02 | 19.57 | 22.57 | 98.80 | 98.96 | 85.65 | 42.78 | 39.90 | 39.81 |
Milled rice width (mm) | 2.02 | 2.00 | 1.91 | 10.35 | 10.06 | 9.82 | 11.64 | 10.97 | 10.76 | 79.08 | 84.23 | 83.27 | 18.96 | 19.03 | 18.45 |
Kernel L/B ratio | 2.46 | 2.48 | 2.42 | 23.29 | 24.29 | 24.31 | 24.20 | 24.75 | 24.96 | 92.63 | 96.35 | 94.88 | 46.17 | 49.12 | 48.78 |
Cooked rice length (mm) | 7.46 | 7.45 | 6.74 | 20.91 | 14.96 | 15.09 | 21.10 | 15.10 | 15.22 | 98.19 | 98.21 | 98.40 | 42.68 | 30.54 | 30.84 |
Cooked rice width (mm) | 2.88 | 2.86 | 2.91 | 9.68 | 9.50 | 9.51 | 11.74 | 10.33 | 10.34 | 68.02 | 84.60 | 84.65 | 16.45 | 17.99 | 18.03 |
Elongation ratio | 1.63 | 1.55 | 1.49 | 19.50 | 19.79 | 18.70 | 20.61 | 20.11 | 19.38 | 89.60 | 96.85 | 93.14 | 38.03 | 40.13 | 37.18 |
Alkali spreading value | 3.79 | 3.88 | 3.71 | 35.82 | 32.26 | 32.26 | 36.88 | 33.52 | 33.52 | 94.31 | 92.66 | 92.66 | 71.66 | 63.98 | 63.98 |
Gel consistency value (mm) | 61.52 | 60.94 | 52.06 | 27.15 | 21.14 | 20.93 | 28.83 | 24.33 | 22.69 | 88.73 | 75.46 | 85.11 | 52.69 | 37.82 | 39.78 |
Amylose content (%) | 24.54 | 24.00 | 23.92 | 9.18 | 10.44 | 11.04 | 11.02 | 11.56 | 12.01 | 69.28 | 81.43 | 84.43 | 15.73 | 19.40 | 19.89 |
Traits | Season | DFF | PH | PL | FLL | FLW | TTP | ETP | FSP | SSP | TSP | SF% | HSW | GYP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DFF | Kh19 | 0.315 | 0.074 | 0.005 | −0.023 | −0.034 | 0.013 | 0.008 | −0.038 | 0.015 | −0.038 | −0.030 | −0.066 | −0.228 NS |
Rb20 | 0.56 | 0.40 | 0.13 | −0.03 | −0.12 | −0.03 | −0.08 | 0.05 | 0.27 | −0.15 | −0.14 | −0.28 | −0.269 NS | |
Kh20 | 0.39 | 0.12 | 0.07 | −0.01 | −0.08 | 0.05 | 0.03 | 0.01 | 0.13 | 0.04 | −0.09 | −0.12 | −0.151 NS | |
PH | Kh19 | −0.043 | −0.37 | −0.026 | −0.008 | 0.016 | 0.005 | 0.006 | 0.011 | 0.013 | 0.015 | −0.002 | 0.005 | −0.019 * |
Rb20 | −0.19 | −0.26 | −0.13 | −0.08 | 0.00 | 0.05 | 0.10 | −0.09 | 0.05 | 0.03 | −0.05 | 0.00 | −0.156 * | |
Kh20 | −0.23 | −0.36 | −0.15 | −0.12 | 0.05 | 0.05 | 0.06 | −0.06 | −0.12 | −0.09 | 0.02 | 0.01 | −0.046 * | |
PL | Kh19 | 0.012 | 0.112 | 0.294 | −0.047 | −0.001 | −0.039 | −0.039 | 0.110 | −0.138 | 0.086 | 0.148 | 0.021 | 0.696 ** |
Rb20 | 0.08 | 0.17 | 0.34 | −0.05 | −0.08 | 0.00 | −0.02 | 0.19 | −0.10 | 0.07 | 0.14 | −0.07 | 0.444 ** | |
Kh20 | 0.24 | 0.29 | 0.69 | −0.19 | −0.19 | 0.04 | −0.01 | 0.30 | 0.11 | 0.31 | 0.14 | −0.16 | 0.631 ** | |
FLL | Kh19 | 0.045 | −0.027 | 0.036 | −0.221 | −0.052 | 0.056 | 0.052 | −0.029 | −0.012 | −0.034 | −0.025 | −0.092 | 0.118 NS |
Rb20 | 0.01 | −0.05 | 0.03 | −0.16 | −0.06 | 0.03 | 0.00 | −0.02 | 0.01 | −0.02 | −0.03 | −0.05 | 0.187 NS | |
Kh20 | 0.00 | 0.02 | −0.02 | 0.07 | 0.02 | −0.01 | −0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.193 NS | |
FLW | Kh19 | −0.058 | −0.047 | −0.001 | 0.046 | 0.194 | −0.138 | −0.134 | 0.106 | −0.016 | 0.110 | 0.086 | 0.036 | 0.326 * |
Rb20 | −0.18 | −0.01 | −0.19 | 0.34 | 0.83 | −0.73 | −0.56 | 0.32 | 0.13 | 0.50 | 0.43 | 0.32 | 0.497 ** | |
Kh20 | −0.11 | −0.04 | −0.08 | 0.07 | 0.28 | −0.26 | −0.25 | 0.11 | 0.03 | 0.11 | 0.09 | 0.08 | 0.198 NS | |
TTP | Kh19 | 0.181 | −0.109 | −0.209 | −0.397 | −1.116 | 1.56 | 1.561 | −0.833 | 0.106 | −0.866 | −0.765 | −0.347 | 0.297 * |
Rb20 | −0.03 | −0.13 | −0.01 | −0.12 | −0.56 | 0.64 | 0.58 | −0.29 | −0.01 | −0.33 | −0.32 | −0.20 | 0.421 ** | |
Kh20 | −0.07 | 0.04 | −0.02 | 0.06 | 0.27 | 0.30 | −0.29 | 0.16 | 0.07 | 0.17 | 0.10 | 0.07 | 0.253 * | |
ETP | Kh19 | −0.085 | 0.101 | 0.153 | 0.273 | 0.805 | −1.163 | −1.165 | 0.552 | −0.123 | 0.562 | 0.537 | 0.232 | 0.257 NS |
Rb20 | −0.04 | −0.11 | −0.01 | 0.00 | −0.18 | 0.25 | 0.27 | −0.09 | −0.11 | −0.12 | −0.16 | −0.11 | 0.339 * | |
Kh20 | 0.10 | −0.09 | −0.01 | −0.15 | −0.50 | 0.55 | 0.55 | −0.29 | −0.18 | −0.32 | −0.14 | −0.11 | 0.272 NS | |
FSP | Kh19 | −1.350 | −0.669 | 1.510 | 0.535 | 2.208 | −2.145 | −1.909 | 4.024 | −1.597 | 3.932 | 3.635 | 0.483 | 0.788 ** |
Rb20 | 0.01 | 0.04 | 0.06 | 0.02 | 0.04 | −0.05 | −0.04 | 0.31 | −0.02 | 0.07 | 0.08 | 0.00 | 0.817 ** | |
Kh20 | −1.21 | −0.614 | 1.498 | 0.518 | 2.540 | −2.321 | −1.531 | 3.94 | −1.891 | 3.448 | 3.252 | 0.342 | 0.767 ** | |
SSP | Kh19 | 0.172 | −0.249 | −0.617 | 0.073 | −0.109 | 0.089 | 0.138 | −0.519 | 1.309 | −0.251 | −0.929 | −0.588 | −0.770 ** |
Rb20 | −0.06 | 0.02 | 0.03 | 0.01 | −0.02 | 0.001 | 0.05 | 0.02 | −0.12 | 0.00 | 0.06 | 0.07 | −0.473 ** | |
Kh20 | 0.158 | −0.215 | −0.512 | 0.061 | −0.114 | 0.067 | 0.125 | −0.473 | 1.235 | −0.218 | −0.889 | −0.654 | −0.235 * | |
TSP | Kh19 | 1.293 | 0.875 | −1.151 | −0.611 | −2.236 | 2.184 | 1.903 | −3.852 | 0.757 | 3.942 | −3.157 | −0.095 | 0.663 ** |
Rb20 | −0.08 | −0.03 | 0.05 | 0.04 | 0.17 | −0.15 | −0.13 | 0.18 | 0.00 | 0.28 | 0.22 | −0.01 | 0.791 ** | |
Kh20 | 1.124 | 0.745 | −1.17 | −0.521 | −2.324 | 2.047 | 1.835 | −3.355 | 0.698 | 3.652 | −3.864 | −0.087 | 0.644 ** | |
SF% | Kh19 | −0.357 | 0.044 | 0.685 | 0.154 | 0.604 | −0.665 | −0.627 | 1.227 | −0.964 | 1.088 | 1.359 | 0.411 | 0.934 ** |
Rb20 | −0.14 | 0.12 | 0.24 | 0.11 | 0.31 | −0.30 | −0.35 | 0.45 | −0.29 | 0.48 | 0.60 | 0.19 | 0.971 ** | |
Kh20 | −0.21 | −0.02 | 0.09 | 0.02 | 0.16 | −0.15 | −0.12 | 0.32 | −0.29 | 0.21 | 0.47 | 0.19 | 0.761 ** | |
HSW | Kh19 | −0.154 | −0.019 | 0.019 | 0.111 | 0.049 | −0.060 | −0.054 | 0.032 | −0.121 | 0.006 | 0.081 | 0.269 | 0.268 * |
Rb20 | −0.22 | −0.01 | −0.10 | 0.13 | 0.17 | −0.14 | −0.17 | −0.01 | −0.29 | −0.01 | 0.14 | 0.44 | 0.308 * | |
Kh20 | −0.18 | −0.01 | −0.07 | 0.08 | 0.08 | −0.07 | −0.06 | −0.01 | −0.17 | −0.06 | 0.12 | 0.29 | 0.166 * | |
GYP | Kh19 | −0.228 NS | −0.019 * | 0.696 ** | 0.118 NS | 0.326 * | 0.297 * | 0.257 NS | 0.788 ** | −0.77 ** | 0.663 ** | 0.934 ** | 0.268 * | - |
Rb20 | −0.26 NS | −0.156 * | 0.444 ** | 0.187 NS | 0.497 ** | 0.42 ** | 0.339 * | 0.817 ** | −0.47 ** | 0.791 ** | 0.971 ** | 0.308 * | - | |
Kh20 | −0.15 NS | −0.046 * | 0.631 ** | 0.19 NS | 0.198 NS | 0.25 * | 0.27 NS | 0.767 ** | −0.23 * | 0.644 ** | 0.761 ** | 0.166 * | - |
Traits | Seasons | Hul (%) | Mil (%) | PadL | PadB | BRL | BRB | KL | KB | KLBR | CRL | CRW | ER | GC | AC (%) | HRR (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hul (%) | Kh19 | 0.50 | 0.41 | 0.17 | −0.24 | 0.16 | −0.11 | 0.06 | −0.09 | 0.12 | 0.06 | −0.18 | 0.15 | −0.17 | 0.08 | 0.353 * |
Rb20 | 1.53 | −1.28 | −0.74 | 0.81 | −0.57 | 0.65 | −0.42 | 0.57 | −0.58 | −0.21 | 0.76 | −0.56 | 0.55 | −0.14 | 0.778 ** | |
Kh20 | 0.66 | 0.44 | −0.07 | 0.01 | −0.07 | 0.04 | −0.09 | 0.18 | −0.15 | −0.19 | 0.01 | −0.21 | −0.24 | 0.35 | 0.871 ** | |
Mil (%) | Kh19 | 0.10 | 0.12 | 0.06 | −0.04 | 0.05 | −0.02 | 0.03 | −0.02 | 0.04 | 0.02 | −0.05 | 0.05 | −0.04 | 0.04 | 0.593 ** |
Rb20 | 0.96 | 1.16 | 0.63 | −0.42 | 0.40 | −0.29 | 0.34 | −0.25 | 0.40 | 0.23 | −0.56 | 0.47 | −0.39 | 0.19 | 0.908 ** | |
Kh20 | 0.20 | 0.30 | 0.01 | 0.04 | 0.02 | 0.01 | −0.03 | 0.03 | −0.04 | −0.03 | 0.00 | −0.03 | −0.12 | 0.10 | 0.644 ** | |
PadL | Kh19 | 0.18 | 0.28 | 0.52 | −0.12 | 0.49 | −0.14 | 0.46 | −0.13 | 0.47 | 0.37 | −0.29 | 0.45 | −0.14 | 0.10 | −0.105 NS |
Rb20 | −0.79 | −0.90 | −1.65 | 0.39 | −1.55 | 0.38 | −1.53 | 0.43 | −1.44 | −1.16 | 0.90 | −1.41 | 0.47 | −0.28 | −0.168 NS | |
Kh20 | −0.11 | 0.02 | 1.05 | −0.28 | 0.98 | −0.03 | 0.82 | −0.19 | 0.81 | 0.78 | 0.13 | 0.81 | −0.12 | −0.01 | −0.261 NS | |
PadB | Kh19 | −0.05 | −0.03 | −0.02 | 0.10 | −0.03 | 0.07 | −0.03 | 0.07 | −0.04 | 0.01 | 0.06 | −0.02 | 0.04 | −0.02 | −0.220 NS |
Rb20 | −0.21 | −0.14 | −0.09 | 0.40 | −0.11 | 0.27 | −0.09 | 0.26 | −0.19 | 0.05 | 0.23 | −0.08 | 0.12 | −0.04 | −0.440 ** | |
Kh20 | −0.01 | −0.10 | 0.21 | −0.81 | 0.26 | −0.58 | 0.21 | −0.70 | 0.50 | −0.06 | −0.46 | 0.13 | −0.21 | 0.07 | −0.119 NS | |
BRL | Kh19 | −0.85 | −1.02 | −2.40 | 0.75 | −2.55 | 0.69 | −2.47 | 0.63 | −2.38 | −1.88 | 1.26 | −2.18 | 0.54 | −0.54 | −0.236 NS |
Rb20 | 2.24 | 2.04 | 5.59 | −1.72 | 5.97 | −1.43 | 5.83 | −1.79 | 5.47 | 4.29 | −2.85 | 4.83 | −1.37 | 0.98 | −0.378 ** | |
Kh20 | 0.26 | −0.20 | −2.29 | 0.78 | −2.45 | 0.02 | −2.15 | 0.35 | −2.08 | −1.96 | −0.44 | −1.96 | 0.57 | −0.16 | −0.246 NS | |
BRB | Kh19 | −0.10 | −0.06 | −0.12 | 0.29 | −0.12 | 0.45 | −0.11 | 0.45 | −0.24 | 0.03 | 0.29 | −0.12 | 0.03 | 0.11 | −0.098 NS |
Rb20 | 2.49 | 1.48 | 1.35 | −3.99 | 1.41 | −5.88 | 1.03 | −5.73 | 3.26 | −0.66 | −3.96 | 1.70 | −0.51 | −1.22 | −0.357 * | |
Kh20 | −0.06 | −0.02 | 0.03 | −0.62 | 0.01 | −0.87 | −0.08 | −0.86 | 0.28 | −0.25 | −0.35 | −0.14 | 0.15 | −0.28 | −0.078 NS | |
KL | Kh19 | 0.14 | 0.31 | 1.06 | −0.32 | 1.16 | −0.30 | 1.20 | −0.29 | 1.13 | 0.88 | −0.55 | 0.99 | −0.27 | 0.24 | −0.285 * |
Rb20 | −0.92 | −0.99 | −3.12 | 0.79 | −3.30 | 0.59 | −3.38 | 0.79 | −3.06 | −2.37 | 1.61 | −2.68 | 0.51 | −0.70 | −0.428 ** | |
Kh20 | −0.28 | −0.17 | 1.51 | −0.51 | 1.71 | 0.19 | 1.95 | −0.05 | 1.77 | 1.51 | 0.44 | 1.47 | −0.51 | 0.35 | −0.292 * | |
KB | Kh19 | 0.02 | 0.02 | 0.03 | −0.08 | 0.03 | −0.12 | 0.03 | −0.12 | 0.07 | −0.01 | −0.09 | 0.03 | −0.02 | −0.02 | −0.139 NS |
Rb20 | −2.35 | −1.38 | −1.63 | 4.11 | −1.89 | 6.13 | −1.47 | 6.29 | −3.85 | 0.48 | 4.69 | −2.20 | 0.65 | 1.14 | −0.273 NS | |
Kh20 | 0.13 | 0.05 | −0.09 | 0.42 | −0.07 | 0.48 | −0.01 | 0.49 | −0.21 | 0.08 | 0.20 | 0.00 | −0.06 | 0.14 | 0.016 NS | |
KLBR | Kh19 | 0.12 | 0.19 | 0.45 | −0.22 | 0.47 | −0.27 | 0.47 | −0.27 | 0.50 | 0.29 | −0.35 | 0.40 | −0.08 | 0.07 | −0.140 NS |
Rb20 | −0.94 | −0.85 | −2.14 | 1.15 | −2.25 | 1.36 | −2.23 | 1.50 | −2.46 | −1.28 | 1.75 | −1.95 | 0.39 | −0.20 | −0.224 NS | |
Kh20 | 0.45 | 0.24 | −1.54 | 1.24 | −1.69 | 0.63 | −1.81 | 0.85 | −1.99 | −1.20 | −0.01 | −1.31 | 0.36 | −0.08 | −0.246 NS | |
CRL | Kh19 | −0.11 | −0.15 | −0.69 | −0.12 | −0.72 | −0.07 | −0.71 | −0.11 | −0.56 | −0.98 | 0.11 | −0.83 | 0.17 | −0.17 | −0.471 ** |
Rb20 | 0.40 | 0.56 | 2.00 | 0.35 | 2.05 | 0.32 | 2.00 | 0.22 | 1.49 | 2.85 | −0.31 | 2.39 | −0.59 | 0.61 | −0.549 ** | |
Kh20 | −0.67 | −0.24 | 1.70 | 0.17 | 1.83 | 0.66 | 1.77 | 0.38 | 1.38 | 2.29 | 1.00 | 2.07 | 0.06 | −0.06 | −0.503 ** | |
CRW | Kh19 | −0.01 | −0.01 | −0.02 | 0.02 | −0.02 | 0.02 | −0.01 | 0.02 | −0.02 | 0.00 | −0.03 | −0.02 | 0.01 | 0.00 | −0.321 * |
Rb20 | 2.54 | 2.49 | 2.78 | −2.94 | 2.44 | −3.44 | 2.43 | −3.80 | 3.64 | 0.56 | −5.11 | 3.19 | −1.16 | 0.69 | −0.404 ** | |
Kh20 | −0.01 | 0.00 | −0.08 | −0.38 | −0.12 | −0.27 | −0.15 | −0.28 | 0.00 | −0.29 | −0.67 | 0.01 | −0.10 | 0.05 | −0.148 NS | |
ER | Kh19 | 0.25 | 0.34 | 0.69 | −0.16 | 0.69 | −0.22 | 0.66 | −0.22 | 0.65 | 0.68 | −0.50 | 0.81 | −0.15 | 0.15 | −0.200 NS |
Rb20 | −1.48 | −1.63 | −3.42 | 0.78 | −3.26 | 1.16 | −3.20 | 1.41 | −3.20 | −3.37 | 2.52 | −4.02 | 1.01 | −0.89 | −0.227 NS | |
Kh20 | 0.49 | 0.13 | −1.20 | 0.24 | −1.25 | −0.25 | −1.17 | −0.01 | −1.03 | −1.40 | 0.01 | −1.56 | 0.10 | −0.06 | −0.493 ** | |
GC | Kh19 | 0.01 | 0.01 | 0.01 | −0.01 | 0.01 | 0.00 | 0.01 | −0.01 | 0.01 | 0.01 | −0.01 | 0.01 | −0.04 | 0.03 | −0.163 NS |
Rb20 | −0.09 | −0.08 | −0.07 | 0.07 | −0.05 | 0.02 | −0.04 | 0.02 | −0.04 | −0.05 | 0.05 | −0.06 | 0.24 | −0.17 | −0.136 NS | |
Kh20 | 0.60 | 0.67 | 0.19 | −0.44 | 0.39 | 0.28 | 0.44 | 0.22 | 0.30 | −0.05 | −0.25 | 0.10 | −1.68 | 1.45 | −0.599 ** | |
AC (%) | Kh19 | −0.01 | −0.03 | −0.01 | 0.01 | −0.01 | −0.02 | −0.01 | −0.01 | −0.01 | −0.01 | 0.01 | −0.01 | 0.04 | −0.07 | 0.038 NS |
Rb20 | −0.03 | −0.05 | −0.05 | 0.03 | −0.05 | −0.06 | −0.06 | −0.05 | −0.02 | −0.06 | 0.04 | −0.06 | 0.20 | −0.29 | −0.273 NS | |
Kh20 | −0.78 | −0.47 | 0.01 | 0.12 | −0.10 | −0.47 | −0.26 | −0.44 | −0.06 | 0.04 | 0.12 | −0.06 | 1.26 | −1.47 | 0.453 ** | |
HRR (%) | Kh19 | 0.35 * | 0.59 ** | −0.11 NS | −0.22 NS | −0.24 NS | −0.098 NS | −0.285 * | −0.14 NS | −0.140 NS | −0.471 ** | −0.321 * | −0.200 NS | −0.163 NS | 0.038 NS | - |
Rb20 | 0.778 ** | 0.908 ** | −0.168 NS | −0.440 ** | −0.378 ** | −0.357 * | −0.428 ** | −0.273 NS | −0.224 NS | −0.549 ** | −0.404 ** | −0.227 NS | −0.136 NS | −0.273 NS | - | |
Kh20 | 0.871 ** | 0.644 ** | −0.261 NS | −0.119 NS | −0.246 NS | −0.078 NS | −0.292 * | 0.016 NS | −0.246 NS | −0.503 ** | −0.14 NS | −0.493 ** | −0.599 ** | 0.453 ** | - |
Marker | Chromosome No. | Position (cM) | Forward Primer | Reverse Primer | Major Allele Frequency | Genotype No. | Allele No. | Gene Diversity | PIC |
---|---|---|---|---|---|---|---|---|---|
RM 283 | 1 | 31.4 | gtctacatgtacccttgttggg | cggcatgagagtctgtgatg | 0.417 | 3.000 | 3.000 | 0.642 | 0.566 |
RM 259 | 1 | 54.2 | tggagtttgagaggaggg | cttgttgcatggtgccatgt | 0.750 | 3.000 | 3.000 | 0.403 | 0.363 |
RM 312 | 1 | 71.6 | gtatgcatatttgataagag | aagtcaccgagtttaccttc | 0.417 | 3.000 | 3.000 | 0.642 | 0.566 |
RM 5 | 1 | 94.9 | tgcaacttctagctgctcga | gcatccgatcttgatggg | 0.500 | 3.000 | 3.000 | 0.625 | 0.555 |
RM 237 | 1 | 115.2 | caaatcccgactgctgtcc | tgggaagagagcactacagc | 0.708 | 2.000 | 2.000 | 0.413 | 0.328 |
RM 154 | 2 | 4.8 | accctctccgcctcgcctcctc | ctcctcctcctgcgaccgctcc | 0.375 | 3.000 | 3.000 | 0.663 | 0.589 |
RM 452 | 2 | 58.4 | ctgatcgagagcgttaaggg | gggatcaaaccacgtttctg | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 |
RM 489 | 3 | 29.2 | acttgagacgatcggacacc | tcacccatggatgttgtcag | 0.375 | 3.000 | 3.000 | 0.656 | 0.582 |
OSR-13 | 3 | 53.1 | catttgtgcgtcacggagta | agccacagcgcccatctctc | 0.476 | 5.000 | 5.000 | 0.667 | 0.614 |
RM 338 | 3 | 108.4 | cacaggagcaggagaagagc | ggcaaaccgatcactcagtc | 0.500 | 2.000 | 2.000 | 0.500 | 0.375 |
RM 55 | 3 | 168.2 | ccgtcgccgtagtagagaag | tcccggttattttaaggcg | 0.381 | 5.000 | 5.000 | 0.726 | 0.679 |
RM 514 | 3 | 216.4 | agattgatctcccattcccc | cacgagcatattactagtgg | 0.500 | 3.000 | 3.000 | 0.625 | 0.555 |
RM 307 | 4 | 0 | gtactaccgacctaccgttcac | ctgctatgcatgaactgctc | 0.600 | 2.000 | 2.000 | 0.480 | 0.365 |
RM 124 | 4 | 150.1 | atcgtctgcgttgcggctgctg | catggatcaccgagctcccccc | 0.917 | 2.000 | 2.000 | 0.153 | 0.141 |
RM 507 | 5 | 0 | cttaagctccagccgaaatg | ctcaccctcatcatcgcc | 0.913 | 2.000 | 2.000 | 0.159 | 0.146 |
RM 161 | 5 | 96.9 | tgcagatgagaagcggcgcctc | tgtgtcatcagacggcgctccg | 0.739 | 2.000 | 2.000 | 0.386 | 0.311 |
RM 178 | 5 | 118.8 | tcgcgtgaaagataagcggcgc | gatcaccgttccctccgcctgc | 0.792 | 2.000 | 2.000 | 0.330 | 0.275 |
RM 133 | 6 | 0 | ttggattgttttgctggctcgc | ggaacacggggtcggaagcgac | 0.458 | 3.000 | 3.000 | 0.601 | 0.516 |
RM 510 | 6 | 20.8 | aaccggattagtttctcgcc | tgaggacgacgagcagattc | 0.833 | 2.000 | 2.000 | 0.278 | 0.239 |
RM 454 | 6 | 99.3 | ctcaagcttagctgctgctg | gtgatcagtgcaccatagcg | 0.958 | 2.000 | 2.000 | 0.080 | 0.077 |
RM 162 | 6 | 108.3 | gccagcaaaaccagggatccgg | caaggtcttgtgcggcttgcgg | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 |
RM 455 | 7 | 65.7 | aacaacccaccacctgtctc | agaaggaaaagggctcgatc | 0.750 | 2.000 | 2.000 | 0.375 | 0.305 |
RM 118 | 7 | 96.9 | ccaatcggagccaccggagagc | cacatcctccagcgacgccgag | 0.750 | 2.000 | 2.000 | 0.375 | 0.305 |
RM 408 | 8 | 0 | caacgagctaacttccgtcc | actgctacttgggtagctgacc | 0.375 | 4.000 | 4.000 | 0.729 | 0.681 |
RM 152 | 8 | 9.4 | gaaaccaccacacctcaccg | ccgtagaccttcttgaagtag | 0.750 | 2.000 | 2.000 | 0.375 | 0.305 |
RM 44 | 8 | 60.9 | acgggcaatccgaacaacc | tcgggaaaacctaccctacc | 0.550 | 2.000 | 2.000 | 0.495 | 0.372 |
RM 284 | 8 | 83.7 | atctctgatactccatccatcc | cctgtacgttgatccgaagc | 0.667 | 2.000 | 2.000 | 0.444 | 0.346 |
RM 433 | 8 | 116 | tgcgctgaactaaacacagc | agacaaacctggccattcac | 0.905 | 2.000 | 2.000 | 0.172 | 0.157 |
RM 447 | 8 | 124.6 | cccttgtgctgtctcctctc | acgggcttcttctccttctc | 0.542 | 3.000 | 3.000 | 0.531 | 0.428 |
RM 22579 | 8 | 5,972,576 | tccactttacatcgtcacaa | ctacctcttaaccgcacatt | 0.500 | 4.000 | 4.000 | 0.642 | 0.583 |
RM 3155 | 8 | 119.9 | gtaactgtttcgcttgcttt | atctcatacccaatttcgtg | 0.429 | 3.000 | 3.000 | 0.612 | 0.530 |
RM 316 | 9 | 1.8 | ctagttgggcatacgatggc | acgcttatatgttacgtcaac | 0.773 | 3.000 | 3.000 | 0.376 | 0.344 |
RM 105 | 9 | 32.1 | gtcgtcgacccatcggagccac | tggtcgaggtggggatcgggtc | 0.771 | 4.000 | 3.000 | 0.379 | 0.348 |
RM 215 | 9 | 99.4 | caaaatggagcagcaagagc | tgagcacctccttctctgtag | 0.714 | 2.000 | 2.000 | 0.408 | 0.325 |
RM 474 | 10 | 0 | aagatgtacgggtggcattc | tatgagctggtgagcaatgg | 0.458 | 3.000 | 3.000 | 0.642 | 0.570 |
RM 271 | 10 | 59.4 | tcagatctacaattccatcc | tcggtgagacctagagagcc | 0.417 | 4.000 | 4.000 | 0.670 | 0.606 |
RM 171 | 10 | 73 | aacgcgaggacacgtacttac | acgagatacgtacgcctttg | 0.900 | 2.000 | 2.000 | 0.180 | 0.164 |
RM 484 | 10 | 97.3 | tctccctcctcaccattgtc | tgctgccctctctctctctc | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 |
RM 552 | 11 | 40.6 | cgcagttgtggatttcagtg | tgctcaacgtttgactgtcc | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 |
RM 536 | 11 | 55.1 | tctctcctcttgtttggctc | acacaccaacacgaccacac | 0.833 | 2.000 | 2.000 | 0.278 | 0.239 |
RM 287 | 11 | 68.6 | ttccctgttaagagagaaatc | gtgtatttggtgaaagcaac | 0.500 | 4.000 | 4.000 | 0.656 | 0.605 |
RM 144 | 11 | 123.2 | tgccctggcgcaaatttgatcc | gctagaggagatcagatggtagtgcatg | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 |
RM 19 | 12 | 20.9 | caaaaacagagcagatgac | ctcaagatggacgccaaga | 0.375 | 3.000 | 3.000 | 0.663 | 0.589 |
RM 277 | 12 | 57.2 | cggtcaaatcatcacctgac | caaggcttgcaagggaag | 0.750 | 2.000 | 2.000 | 0.375 | 0.305 |
RM 28107 | 12 | 1,6052,560 | gaaatatttagttccggacg | taatcaaacctggaagagga | 0.500 | 3.000 | 3.000 | 0.594 | 0.511 |
RM 2734 | 12 | 2,6153,565 | tgttctggaggtaggtatgg | cagcaactcaaagtatgcaa | 0.542 | 4.000 | 4.000 | 0.604 | 0.541 |
Mean | 0.660 | 2.587 | 2.565 | 0.426 | 0.370 |
Marker | Chromosome No. | VB Parent | VBM 71-4 | VBM-74-6 | VBM 19-2 | VBM 45-2 | VBM 45 | VBM 80 | VBM 47 | VBM 33 | VBM 17 | VBM 67 | SC Parent | SCM 49 | SCM 50 | SCM 18-1 | Jhilli Parent | Jhilli M13-5 | Jhilli M2-13 | Jhilli M13-2 | Jhilli M15-1 | Jhilli M 12-1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RM 283 | 1 | A | A | B | B | B | A | A | A | B | A | A | A | A | A | A | A | B | A | A | A | A |
RM 259 | 1 | A | A | A | A | A | A | A | A | A | A | B | A | A | A | A | A | A | A | A | A | A |
RM 312 | 1 | A | A | A | A | A | A | A | A | A | A | A | A | A | A | B | A | A | A | A | A | A |
RM 5 | 1 | A | A | A | A | A | A | B | B | A | C | C | A | A | A | A | A | A | A | B | A | B |
RM 237 | 1 | A | A | B | A | A | A | A | B | B | A | A | A | A | A | A | A | A | A | A | A | A |
RM 154 | 2 | A | A | A | A | A | A | B | B | B | C | C | A | A | A | A | A | A | A | A | A | A |
RM 452 | 2 | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
RM 489 | 3 | A | A | A | A | A | A | A | A | A | B | B | A | A | A | A | A | A | A | A | A | A |
OSR-13 | 3 | A | A | A | B | A | A | A | A | C | A | A | A | A | A | A | A | A | A | A | A | A |
RM 338 | 3 | A | NA | NA | NA | NA | NA | A | B | A | A | A | A | A | A | A | A | A | A | A | A | A |
RM 55 | 3 | A | A | A | A | A | NA | A | NA | NA | B | B | A | A | A | A | A | B | C | A | A | A |
RM 514 | 3 | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | B | A | B | A | B |
RM 307 | 4 | A | A | A | A | A | NA | A | A | A | A | B | A | NA | NA | A | A | A | A | A | A | A |
RM 124 | 4 | A | A | A | A | A | A | A | A | A | A | A | A | B | B | B | A | A | A | A | A | A |
RM 507 | 5 | A | A | A | A | B | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
RM 161 | 5 | A | A | NA | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
RM 178 | 5 | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
RM 133 | 6 | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
RM 510 | 6 | A | A | A | A | A | B | A | A | B | B | B | A | A | A | A | A | A | A | A | A | A |
RM 454 | 6 | A | A | A | B | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
RM 162 | 6 | A | A | NA | NA | NA | NA | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
RM 455 | 7 | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | B | B | B |
RM 118 | 7 | A | A | A | A | A | A | A | A | A | A | B | A | A | A | A | A | A | A | A | A | A |
RM 408 | 8 | A | A | A | A | A | A | A | B | B | A | A | A | A | A | A | A | B | B | B | C | C |
RM 152 | 8 | A | A | A | B | A | B | A | A | B | A | A | A | A | A | A | A | A | A | A | A | A |
RM 44 | 8 | A | B | NA | NA | NA | A | A | B | NA | B | B | A | A | A | A | A | A | A | A | A | A |
RM 284 | 8 | A | A | A | A | A | A | A | A | A | B | B | A | A | A | A | A | A | A | B | B | B |
RM 433 | 8 | A | NA | NA | NA | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
RM 447 | 8 | A | A | A | A | B | A | A | A | B | A | A | A | A | A | A | A | A | A | A | A | A |
RM 316 | 9 | A | A | A | A | A | A | A | A | A | A | A | A | NA | B | B | A | A | A | B | A | A |
RM 105 | 9 | A | A | A | A | A | A | A | A | A | A | A | A | B | C | A | A | A | A | A | A | A |
RM 215 | 9 | A | A | A | A | A | A | B | A | A | A | A | A | NA | NA | B | A | A | A | A | A | B |
RM 474 | 10 | A | A | A | A | A | B | A | B | B | B | A | A | A | B | B | A | A | A | A | A | A |
RM 271 | 10 | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
RM 171 | 10 | A | A | A | A | NA | NA | A | A | A | A | A | A | A | A | A | A | NA | NA | A | B | B |
RM 484 | 10 | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
RM 552 | 11 | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
RM 536 | 11 | A | A | A | A | A | A | A | A | A | B | A | A | A | A | A | A | A | A | A | A | A |
RM 287 | 11 | A | B | A | A | A | A | B | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
RM 144 | 11 | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
RM 19 | 12 | A | A | A | A | A | A | A | A | A | C | C | A | A | A | A | A | A | A | A | A | C |
RM 277 | 12 | A | A | A | A | A | A | A | A | A | B | B | A | A | A | A | A | A | A | A | A | A |
Hv 8-14 | 8 | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
Hv 8-50 | 8 | A | A | A | A | A | A | A | A | A | C | C | A | NA | NA | A | A | A | A | A | B | B |
Hv 12-28 | 12 | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
Hv 12-46 | 12 | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
Number of dissimilar alleles in mutants over the parent | 2 | 2 | 3 | 3 | 3 | 4 | 7 | 9 | 12 | 13 | 2 | 4 | 5 | 4 | 2 | 6 | 5 | 9 | ||||
Number of similar alleles in mutants over the parent | 44 | 44 | 43 | 43 | 43 | 42 | 39 | 37 | 34 | 33 | 44 | 42 | 41 | 42 | 44 | 39 | 41 | 37 | ||||
Genomic similarity (%) of mutants with parents | 95.6 | 95.6 | 93.4 | 93.4 | 93.4 | 91.3 | 84.7 | 80.4 | 73.9 | 71.7 | 95.6 | 91.3 | 89.1 | 91.3 | 95.6 | 84.7 | 89.1 | 80.4 |
S. No. | Name of the Experimental Materials | Codings | Parentage | Role |
---|---|---|---|---|
1 | Vishnubhog * | VB parent | Local landrace | Parent |
2 | Samundchini * | SC Parent | Local landrace | Parent |
3 | Jhilli * | Jhilli Parent | Local landrace | Parent |
4 | Vishnubhog Mutant V-17 # | VBM 17 | Vishnubhog | Mutant |
5 | Vishnubhog Mutant V-19-2 # | VBM 19-2 | Vishnubhog | Mutant |
6 | Vishnubhog Mutant V-74-6 # | VBM-74-6 | Vishnubhog | Mutant |
7 | Vishnubhog Mutant V-47 # | VBM 47 | Vishnubhog | Mutant |
8 | Vishnubhog Mutant V-45 # | VBM 45 | Vishnubhog | Mutant |
9 | Vishnubhog Mutant V-33 # | VBM 33 | Vishnubhog | Mutant |
10 | Vishnubhog Mutant V-45-2 # | VBM 45-2 | Vishnubhog | Mutant |
11 | Vishnubhog Mutant V-67 # | VBM 67 | Vishnubhog | Mutant |
12 | Vishnubhog Mutant V-71-4 # | VBM 71-4 | Vishnubhog | Mutant |
13 | Vishnubhog Mutant V-80 # | VBM 80 | Vishnubhog | Mutant |
14 | Samundchini Mutant S-49 # | SCM 49 | Samundchini | Mutant |
15 | Samundchini Mutant S-18-1 # | SCM 18-1 | Samundchini | Mutant |
16 | Samundchini Mutant S-50 # | SCM 50 | Samundchini | Mutant |
17 | Jhilli Mutant J-2-13 # | Jhilli M2-13 | Jhilli | Mutant |
18 | Jhilli Mutant J-12-1 # | Jhilli M12-1 | Jhilli | Mutant |
19 | Jhilli Mutant J-13-2 # | Jhilli M13-2 | Jhilli | Mutant |
20 | Jhilli Dhan J-13-5 # | Jhilli M13-5 | Jhilli | Mutant |
21 | Jhilli Mutant J-15-1 # | Jhilli M15-1 | Jhilli | Mutant |
22 | Dubraj selection -1 * | Dub Sel.-1 | Dubraj | Check |
23 | Vishnubhog Selection-1 * | VB Sel.-1 | Vishnubhog | Check |
24 | Rajeshwari * | Rajes. | R320-300 x Chepti Gurmatiya | Check |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sao, R.; Sahu, P.K.; Patel, R.S.; Das, B.K.; Jankuloski, L.; Sharma, D. Genetic Improvement in Plant Architecture, Maturity Duration and Agronomic Traits of Three Traditional Rice Landraces through Gamma Ray-Based Induced Mutagenesis. Plants 2022, 11, 3448. https://doi.org/10.3390/plants11243448
Sao R, Sahu PK, Patel RS, Das BK, Jankuloski L, Sharma D. Genetic Improvement in Plant Architecture, Maturity Duration and Agronomic Traits of Three Traditional Rice Landraces through Gamma Ray-Based Induced Mutagenesis. Plants. 2022; 11(24):3448. https://doi.org/10.3390/plants11243448
Chicago/Turabian StyleSao, Richa, Parmeshwar K. Sahu, Raviraj Singh Patel, Bikram K. Das, Ljupcho Jankuloski, and Deepak Sharma. 2022. "Genetic Improvement in Plant Architecture, Maturity Duration and Agronomic Traits of Three Traditional Rice Landraces through Gamma Ray-Based Induced Mutagenesis" Plants 11, no. 24: 3448. https://doi.org/10.3390/plants11243448
APA StyleSao, R., Sahu, P. K., Patel, R. S., Das, B. K., Jankuloski, L., & Sharma, D. (2022). Genetic Improvement in Plant Architecture, Maturity Duration and Agronomic Traits of Three Traditional Rice Landraces through Gamma Ray-Based Induced Mutagenesis. Plants, 11(24), 3448. https://doi.org/10.3390/plants11243448