Integrated Biorefinery and Life Cycle Assessment of Cassava Processing Residue–From Production to Sustainable Evaluation
Abstract
:1. Introduction
2. Biorefinery: Mechanisms and Development
3. Cassava Waste Used in Biorefineries: Supply Chain
3.1. Energy and Non-Energy Bioproducts
3.1.1. Biogas
3.1.2. Bioethanol
3.1.3. Butanol
3.1.4. Lactic Acid
3.1.5. Succinic Acid
3.1.6. Biohydrogen
4. Sustainable Production and Environmental Impact
4.1. Life Cycle Environmental Performance
4.1.1. Global Warming Potential (GWP)
4.1.2. Acidification Potential (AP)
4.1.3. Human Toxicity Potential (HTP) and Photochemical Ozone Generation Potential (POGP)
5. Methodology
6. Final Considerations and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Awasthi, M.K.; Sindhu, R.; Sirohi, R.; Kumar, V.; Ahluwalia, V.; Binod, P.; Juneja, A.; Kumar, D.; Yan, B.; Sarsaiya, S.; et al. Agricultural Waste Biorefinery Development towards Circular Bioeconomy. Renew. Sustain. Energy Rev. 2022, 158, 112122. [Google Scholar] [CrossRef]
- Mottaghi, M.; Bairamzadeh, S.; Pishvaee, M.S. A Taxonomic Review and Analysis on Biomass Supply Chain Design and Planning: New Trends, Methodologies and Applications. Ind. Crops Prod. 2022, 180, 114747. [Google Scholar] [CrossRef]
- Shah, A.V.; Singh, A.; Sabyasachi Mohanty, S.; Kumar Srivastava, V.; Varjani, S. Organic Solid Waste: Biorefinery Approach as a Sustainable Strategy in Circular Bioeconomy. Bioresour. Technol. 2022, 349, 126835. [Google Scholar] [CrossRef] [PubMed]
- Igbokwe, V.C.; Ezugworie, F.N.; Onwosi, C.O.; Aliyu, G.O.; Obi, C.J. Biochemical Biorefinery: A Low-Cost and Non-Waste Concept for Promoting Sustainable Circular Bioeconomy. J. Environ. Manag. 2022, 305, 114333. [Google Scholar] [CrossRef]
- FAO. 11 Other Products. In OECD-FAO Agricultural Outlook 2021–2030; FAO: Paris, France, 2021; pp. 225–247. [Google Scholar]
- Zhang, M.; Xie, L.; Yin, Z.; Khanal, S.K.; Zhou, Q. Biorefinery Approach for Cassava-Based Industrial Wastes: Current Status and Opportunities. Bioresour. Technol. 2016, 215, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Padi, R.K.; Chimphango, A. Commercial Viability of Integrated Waste Treatment in Cassava Starch Industries for Targeted Resource Recoveries. J. Clean. Prod. 2020, 265, 121619. [Google Scholar] [CrossRef]
- Sánchez, A.S.; Silva, Y.L.; Kalid, R.A.; Cohim, E.; Torres, E.A. Waste Bio-Refineries for the Cassava Starch Industry: New Trends and Review of Alternatives. Renew. Sustain. Energy Rev. 2017, 73, 1265–1275. [Google Scholar] [CrossRef]
- Clauser, N.M.; Felissia, F.E.; Area, M.C.; Vallejos, M.E. A Framework for the Design and Analysis of Integrated Multi-Product Biorefineries from Agricultural and Forestry Wastes. Renew. Sustain. Energy Rev. 2021, 139, 110687. [Google Scholar] [CrossRef]
- Liu, Y.; Lyu, Y.; Tian, J.; Zhao, J.; Ye, N.; Zhang, Y.; Chen, L. Review of Waste Biorefinery Development towards a Circular Economy: From the Perspective of a Life Cycle Assessment. Renew. Sustain. Energy Rev. 2021, 139, 110716. [Google Scholar] [CrossRef]
- Kumar, B.; Verma, P. Biomass-Based Biorefineries: An Important Architype towards a Circular Economy. Fuel 2021, 288, 119622. [Google Scholar] [CrossRef]
- Shahid, M.K.; Batool, A.; Kashif, A.; Nawaz, M.H.; Aslam, M.; Iqbal, N.; Choi, Y. Biofuels and Biorefineries: Development, Application and Future Perspectives Emphasizing the Environmental and Economic Aspects. J. Environ. Manag. 2021, 297, 113268. [Google Scholar] [CrossRef] [PubMed]
- Lyu, H.; Zhang, J.; Zhai, Z.; Feng, Y.; Geng, Z. Life Cycle Assessment for Bioethanol Production from Whole Plant Cassava by Integrated Process. J. Clean. Prod. 2020, 269, 121902. [Google Scholar] [CrossRef]
- Veiga, J.P.S.; Valle, T.L.; Feltran, J.C.; Bizzo, W.A. Characterization and Productivity of Cassava Waste and Its Use as an Energy Source. Renew Energy 2016, 93, 691–699. [Google Scholar] [CrossRef]
- Zhu, W.; Lestander, T.A.; Örberg, H.; Wei, M.; Hedman, B.; Ren, J.; Xie, G.; Xiong, S. Cassava Stems: A New Resource to Increase Food and Fuel Production. GCB Bioenergy 2015, 7, 72–83. [Google Scholar] [CrossRef]
- Adekunle, A.; Orsat, V.; Raghavan, V. Lignocellulosic Bioethanol: A Review and Design Conceptualization Study of Production from Cassava Peels. Renew. Sustain. Energy Rev. 2016, 64, 518–530. [Google Scholar] [CrossRef]
- Chouhan, V.K.; Khan, S.H.; Hajiaghaei-Keshteli, M. Sustainable Planning and Decision-Making Model for Sugarcane Mills Considering Environmental Issues. J. Environ. Manag. 2022, 303, 114252. [Google Scholar] [CrossRef]
- Hanif, M.; Mahlia, T.M.I.; Aditiya, H.B.; Abu Bakar, M.S. Energy and Environmental Assessments of Bioethanol Production from Sri Kanji 1 Cassava in Malaysia. Biofuel Res. J. 2017, 4, 537–544. [Google Scholar] [CrossRef] [Green Version]
- Rewlay-ngoen, C.; Papong, S.; Onbhuddha, R.; Thanomnim, B. Evaluation of the Environmental Performance of Bioethanol from Cassava Pulp Using Life Cycle Assessment. J. Clean. Prod. 2021, 284, 124741. [Google Scholar] [CrossRef]
- Martín, C.; Wei, M.; Xiong, S.; Jönsson, L.J. Enhancing Saccharification of Cassava Stems by Starch Hydrolysis Prior to Pretreatment. Ind. Crops Prod. 2017, 97, 21–31. [Google Scholar] [CrossRef]
- Tanaka, K.; Koyama, M.; Pham, P.T.; Rollon, A.P.; Habaki, H.; Egashira, R.; Nakasaki, K. Production of High-Concentration Bioethanol from Cassava Stem by Repeated Hydrolysis and Intermittent Yeast Inoculation. Int. Biodeterior. Biodegrad. 2019, 138, 1–7. [Google Scholar] [CrossRef]
- Murata, Y.; Nwuche, C.O.; Nweze, J.E.; Ndubuisi, I.A.; Ogbonna, J.C. Potentials of Multi-Stress Tolerant Yeasts, Saccharomyces Cerevisiae and Pichia Kudriavzevii for Fuel Ethanol Production from Industrial Cassava Wastes. Process Biochem. 2021, 111, 305–314. [Google Scholar] [CrossRef]
- Lu, C.; Zhao, J.; Yang, S.-T.; Wei, D. Fed-Batch Fermentation for n-Butanol Production from Cassava Bagasse Hydrolysate in a Fibrous Bed Bioreactor with Continuous Gas Stripping. Bioresour. Technol. 2012, 104, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Du, Y.; Bao, T.; Lin, M.; Wang, J.; Yang, S.-T. Production of N-Butanol from Cassava Bagasse Hydrolysate by Engineered Clostridium Tyrobutyricum Overexpressing AdhE2: Kinetics and Cost Analysis. Bioresour. Technol. 2019, 292, 121969. [Google Scholar] [CrossRef] [PubMed]
- Saekhow, B.; Chookamlang, S.; Na-u-dom, A.; Leksawasdi, N.; Sanguanchaipaiwong, V. Enzymatic Hydrolysis of Cassava Stems for Butanol Production of Isolated Clostridium Sp. Energy Rep. 2020, 6, 196–201. [Google Scholar] [CrossRef]
- Sawisit, A.; Jantama, S.S.; Kanchanatawee, S.; Jantama, K. Efficient Utilization of Cassava Pulp for Succinate Production by Metabolically Engineered Escherichia Coli KJ122. Bioprocess Biosyst. Eng. 2015, 38, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Thuy, N.T.H.; Kongkaew, A.; Flood, A.; Boontawan, A. Fermentation and Crystallization of Succinic Acid from Actinobacillus Succinogenes ATCC55618 Using Fresh Cassava Root as the Main Substrate. Bioresour. Technol. 2017, 233, 342–352. [Google Scholar] [CrossRef]
- Tosungnoen, S.; Chookietwattana, K.; Dararat, S. Lactic Acid Production from Repeated-Batch and Simultaneous Saccharification and Fermentation of Cassava Starch Wastewater by Amylolytic Lactobacillus Plantarum MSUL 702. APCBEE Procedia 2014, 8, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Chen, B.; Su, Z.; Wang, K.; Wang, B.; Wang, Y.; Si, Z.; Wu, Y.; Cai, D.; Qin, P. Efficient Lactic Acid Production from Cassava Bagasse by Mixed Culture of Bacillus Coagulans and Lactobacillus Rhamnosus Using Stepwise PH Controlled Simultaneous Saccharification and Co-Fermentation. Ind. Crops Prod. 2020, 146, 112175. [Google Scholar] [CrossRef]
- Jiraprasertwong, A.; Maitriwong, K.; Chavadej, S. Production of Biogas from Cassava Wastewater Using a Three-Stage Upflow Anaerobic Sludge Blanket (UASB) Reactor. Renew Energy 2019, 130, 191–205. [Google Scholar] [CrossRef]
- Andrade, L.R.S.; Cruz, I.A.; de Melo, L.; Vilar, D.D.S.; Fuess, L.T.; Reis e Silva, G.; Silva Manhães, V.M.; Torres, N.H.; Soriano, R.N.; Bharagava, R.N.; et al. Oyster Shell-Based Alkalinization and Photocatalytic Removal of Cyanide as Low-Cost Stabilization Approaches for Enhanced Biogas Production from Cassava Starch Wastewater. Process Saf. Environ. Prot. 2020, 139, 47–59. [Google Scholar] [CrossRef]
- Achi, C.G.; Hassanein, A.; Lansing, S. Enhanced Biogas Production of Cassava Wastewater Using Zeolite and Biochar Additives and Manure Co-Digestion. Energies 2020, 13, 491. [Google Scholar] [CrossRef] [Green Version]
- Cruz, I.; Andrade, L.; Alles, A.; Rego, B.; Naresh, R.; Bilal, M.; Tavares, R.; Lucena, R.; Ferreira, L.F. Potential of Eggshell Waste Derived Calcium for Sustainable Production of Biogas from Cassava Wastewater. J. Environ. Manag. 2022, 321, 116000. [Google Scholar] [CrossRef] [PubMed]
- Meier, T.R.W.; Cremonez, P.A.; Maniglia, T.C.; Sampaio, S.C.; Teleken, J.G.; da Silva, E.A. Production of Biohydrogen by an Anaerobic Digestion Process Using the Residual Glycerol from Biodiesel Production as Additive to Cassava Wastewater. J. Clean. Prod. 2020, 258, 120833. [Google Scholar] [CrossRef]
- Martinez-Burgos, W.J.; Sydney, E.B.; de Paula, D.R.; Medeiros, A.B.P.; de Carvalho, J.C.; Soccol, V.T.; de Souza Vandenberghe, L.P.; Woiciechowski, A.L.; Soccol, C.R. Biohydrogen Production in Cassava Processing Wastewater Using Microbial Consortia: Process Optimization and Kinetic Analysis of the Microbial Community. Bioresour. Technol. 2020, 309, 123331. [Google Scholar] [CrossRef]
- Mari, A.G.; Andreani, C.L.; Tonello, T.U.; Leite, L.C.C.; Fernandes, J.R.; Lopes, D.D.; Rodrigues, J.A.D.; Gomes, S.D. Biohydrogen and Biomethane Production from Cassava Wastewater in a Two-Stage Anaerobic Sequencing Batch Biofilm Reactor. Int. J. Hydrog. Energy 2020, 45, 5165–5174. [Google Scholar] [CrossRef]
- Corbari, S.D.M.L.; Andreani, C.L.; Torres, D.G.B.; Eng, F.; Gomes, S.D. Strategies to Improve the Biohydrogen Production from Cassava Wastewater in Fixed-Bed Reactors. Int. J. Hydrog. Energy 2019, 44, 17214–17223. [Google Scholar] [CrossRef]
- Lin, R.; Cheng, J.; Murphy, J.D. Unexpectedly Low Biohydrogen Yields in Co-Fermentation of Acid Pretreated Cassava Residue and Swine Manure. Energy Convers Manag. 2017, 151, 553–561. [Google Scholar] [CrossRef]
- Pason, P.; Tachaapaikoon, C.; Panichnumsin, P.; Ketbot, P.; Waeonukul, R.; Kosugi, A.; Ratanakhanokchai, K. One-Step Biohydrogen Production from Cassava Pulp Using Novel Enrichment of Anaerobic Thermophilic Bacteria Community. Biocatal. Agric. Biotechnol. 2020, 27, 101658. [Google Scholar] [CrossRef]
- Lin, H.; Borrion, A.; da Fonseca-Zang, W.A.; Zang, J.W.; Leandro, W.M.; Campos, L.C. Life Cycle Assessment of a Biogas System for Cassava Processing in Brazil to Close the Loop in the Water-Waste-Energy-Food Nexus. J. Clean. Prod. 2021, 299, 126861. [Google Scholar] [CrossRef]
- Ye, J.; Li, D.; Sun, Y.; Wang, G.; Yuan, Z.; Zhen, F.; Wang, Y. Improved Biogas Production from Rice Straw by Co-Digestion with Kitchen Waste and Pig Manure. Waste Manag. 2013, 33, 2653–2658. [Google Scholar] [CrossRef]
- Sawyerr, N.; Trois, C.; Workneh, T.S.; Oyebode, O.; Babatunde, O.M. Design of a Household Biogas Digester Using Co-Digested Cassava, Vegetable and Fruit Waste. Energy Rep. 2020, 6, 1476–1482. [Google Scholar] [CrossRef]
- Cremonez, P.A.; Sampaio, S.C.; Teleken, J.G.; Meier, T.W.; Frigo, E.P.; de Rossi, E.; da Silva, E.; Rosa, D.M. Effect of Substrate Concentrations on Methane and Hydrogen Biogas Production by Anaerobic Digestion of a Cassava Starch-Based Polymer. Ind. Crops Prod. 2020, 151, 112471. [Google Scholar] [CrossRef]
- Lyu, H.; Yang, S.; Zhang, J.; Feng, Y.; Geng, Z. Impacts of Utilization Patterns of Cellulosic C5 Sugar from Cassava Straw on Bioethanol Production through Life Cycle Assessment. Bioresour. Technol. 2021, 323, 124586. [Google Scholar] [CrossRef] [PubMed]
- Amalia, A.V.; Fibriana, F.; Widiatningrum, T.; Hardianti, R.D. Bioconversion and Valorization of Cassava-Based Industrial Wastes to Bioethanol Gel and Its Potential Application as a Clean Cooking Fuel. Biocatal. Agric. Biotechnol. 2021, 35, 102093. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.; Huang, M.; Xu, X.; Jiang, M.; Hu, H.; Huang, Z.; Liang, J.; Qin, Y. Non-Digesting Strategy for Efficient Bioconversion of Cassava to Bioethanol via Mechanical Activation and Metal Salts Pretreatment. Renew Energy 2021, 169, 95–103. [Google Scholar] [CrossRef]
- Kumar, M.; Goyal, Y.; Sarkar, A.; Gayen, K. Comparative Economic Assessment of ABE Fermentation Based on Cellulosic and Non-Cellulosic Feedstocks. Appl. Energy 2012, 93, 193–204. [Google Scholar] [CrossRef]
- Xue, C.; Zhao, J.; Chen, L.; Yang, S.-T.; Bai, F. Recent Advances and State-of-the-Art Strategies in Strain and Process Engineering for Biobutanol Production by Clostridium Acetobutylicum. Biotechnol. Adv. 2017, 35, 310–322. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Yu, X.; Wei, L.; Wang, Q. Enhancement of Butanol Production in Clostridium Acetobutylicum SE25 through Accelerating Phase Shift by Different Phases PH Regulation from Cassava Flour. Bioresour. Technol. 2016, 201, 148–155. [Google Scholar] [CrossRef]
- Li, H.; Ofosu, F.K.; Li, K.; Gu, Q.; Wang, Q.; Yu, X. Acetone, Butanol, and Ethanol Production from Gelatinized Cassava Flour by a New Isolates with High Butanol Tolerance. Bioresour. Technol. 2014, 172, 276–282. [Google Scholar] [CrossRef]
- Djukić-Vuković, A.; Mladenović, D.; Ivanović, J.; Pejin, J.; Mojović, L. Towards Sustainability of Lactic Acid and Poly-Lactic Acid Polymers Production. Renew. Sustain. Energy Rev. 2019, 108, 238–252. [Google Scholar] [CrossRef]
- Gali, K.K.; Reddy Tadi, S.R.; Arun, E.V.R.; Mohan, N.; Swaminathan, N.; Katiyar, V.; Sivaprakasam, S. Cost-Effective Valorization of Cassava Fibrous Waste into Enantiomerically Pure D-Lactic Acid: Process Engineering and Kinetic Modelling Approach. Environ. Technol. Innov. 2021, 22, 101519. [Google Scholar] [CrossRef]
- Tyler, B.; Gullotti, D.; Mangraviti, A.; Utsuki, T.; Brem, H. Polylactic Acid (PLA) Controlled Delivery Carriers for Biomedical Applications. Adv. Drug Deliv. Rev. 2016, 107, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Geever, L.M.; Killion, J.A.; Lyons, J.G.; Higginbotham, C.L.; Devine, D.M. Review of Multifarious Applications of Poly (Lactic Acid). Polym. Plast. Technol. Eng. 2016, 55, 1057–1075. [Google Scholar] [CrossRef]
- Chookietwattana, K. Lactic Acid Production from Simultaneous Saccharification and Fermentation of Cassava Starch by Lactobacillus Plantarum MSUL 903. APCBEE Procedia 2014, 8, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Chen, Y.; Ren, H.; Liu, D.; Zhao, T.; Zhao, N.; Ying, H. Economically Enhanced Succinic Acid Fermentation from Cassava Bagasse Hydrolysate Using Corynebacterium Glutamicum Immobilized in Porous Polyurethane Filler. Bioresour. Technol. 2014, 174, 190–197. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, J.; Zhang, Y.; Guo, Y.; Xu, H.; Xu, J. Long Chain Alcohol and Succinic Acid Co-Production Process Based on Full Utilization of Lignocellulosic Materials. Curr. Opin. Green Sustain Chem. 2018, 14, 1–9. [Google Scholar] [CrossRef]
- Akhtar, J.; Idris, A.; Aziz, R.A. Recent Advances in Production of Succinic Acid from Lignocellulosic Biomass. Appl. Microbiol. Biotechnol. 2014, 98, 987–1000. [Google Scholar] [CrossRef]
- Cheng, D.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Deng, L.; Chen, Z.; Ye, Y.; Bui, X.T.; Hoang, N.B. Advanced Strategies for Enhancing Dark Fermentative Biohydrogen Production from Biowaste towards Sustainable Environment. Bioresour. Technol. 2022, 351, 127045. [Google Scholar] [CrossRef]
- Padi, R.K.; Chimphango, A. Feasibility of Commercial Waste Biorefineries for Cassava Starch Industries: Techno-Economic Assessment. Bioresour. Technol. 2020, 297, 122461. [Google Scholar] [CrossRef]
- Kosamia, N.M.; Samavi, M.; Piok, K.; Kumar Rakshit, S. Perspectives for Scale up of Biorefineries Using Biochemical Conversion Pathways: Technology Status, Techno-Economic, and Sustainable Approaches. Fuel 2022, 324, 124532. [Google Scholar] [CrossRef]
- Zhan, L.; Zhang, X.; Zeng, Y.; Li, R.; Song, X.; Chen, B. Life Cycle Assessment of Optimized Cassava Ethanol Production Process Based on Operating Data from Guangxi Factory in China. Biomass Convers Biorefinery 2022, 1–18. [Google Scholar] [CrossRef]
- Numjuncharoen, T.; Papong, S.; Malakul, P.; Mungcharoen, T. Life-Cycle GHG Emissions of Cassava-Based Bioethanol Production. Energy Procedia 2015, 79, 265–271. [Google Scholar] [CrossRef] [Green Version]
- Moriizumi, Y.; Suksri, P.; Hondo, H.; Wake, Y. Effect of Biogas Utilization and Plant Co-Location on Life-Cycle Greenhouse Gas Emissions of Cassava Ethanol Production. J. Clean. Prod. 2012, 37, 326–334. [Google Scholar] [CrossRef]
- Padi, R.K.; Chimphango, A.; Roskilly, A.P. Economic and Environmental Analysis of Waste-Based Bioenergy Integration into Industrial Cassava Starch Processes in Africa. Sustain. Prod. Consum. 2022, 31, 67–81. [Google Scholar] [CrossRef]
- Lansche, J.; Awiszus, S.; Latif, S.; Müller, J. Potential of Biogas Production from Processing Residues to Reduce Environmental Impacts from Cassava Starch and Crisp Production-a Case Study from Malaysia. Appl. Sci. 2020, 10, 2975. [Google Scholar] [CrossRef]
- Hansupalak, N.; Piromkraipak, P.; Tamthirat, P.; Manitsorasak, A.; Sriroth, K.; Tran, T. Biogas Reduces the Carbon Footprint of Cassava Starch: A Comparative Assessment with Fuel Oil. J. Clean. Prod. 2016, 134, 539–546. [Google Scholar] [CrossRef]
- Papong, S.; Rotwiroon, P.; Chatchupong, T.; Malakul, P. Life Cycle Energy and Environmental Assessment of Bio-CNG Utilization from Cassava Starch Wastewater Treatment Plants in Thailand. Renew. Energy 2014, 65, 64–69. [Google Scholar] [CrossRef]
Cassava Waste | Products | References |
---|---|---|
Pulp | Bioethanol | [19] |
Peel | Bioethanol | [16] |
Stems | Bioethanol | [20,21] |
Pulp and Peel | Bioethanol | [22] |
Bagasse | Butanol | [23,24] |
Stems | Butanol | [25] |
Wastewater, bagasse and Stems | Succinic acid, glucose syrup, bioethanol | [7] |
Pulp | Succinic acid | [26] |
Root | Succinic acid | [27] |
Wastewater | Lactic acid | [28] |
Bagasse | Lactic acid | [29] |
Wastewater | Biogas | [30,31,32,33] |
Wastewater | Biohydrogen | [34,35,36,37] |
Mixed waste | Biohydrogen | [38] |
Pulp | Biohydrogen | [39] |
Cassava Waste | Products | Functional Unit (FU) | Country | Environmental Analysis (Categories) | References |
---|---|---|---|---|---|
Whole-plant cassava | Bioethanol | 1 t (99.7%, 26,840 MJ) of bioethanol | China | GWP, OLDP, HTP, POGP, AP, EP | [62] |
Pulp | Bioethanol | 1 km driven by a vehicle | Thailand | CG, AP, FEP, HTP, FD, FOF | [19] |
Straw | Bioethanol | 1000 L 99.7 vol% bioethanol with 21,200 MJ | China | GWP, AP, EP, HTP, POGP | [44] |
Whole-plant cassava, root, straw | Bioethanol | 1000 L 99.7 vol% bioethanol with 21,200 MJ | China | GWP, AP, EP, HTP, POGP | [13] |
Chip | Bioethanol | 1 L of 99.8% bioethanol | Thailand | GGE | [63] |
Chip and wastewater | Bioethanol and Biogas | 1 L of anhydrous ethanol derived from cassava | Thailand | GGE | [64] |
Stems and wastewater | Biogas | 1 kWh electricity and 0.09 MJ thermal energy for starch drying | Africa | GWP, AP, FEP, MEP, ECTP, MEP, HCTP, WCP | [65] |
Waste closed-loop system | Biogas | 1 kg cassava products (starch/flour) | Brasil | GWP, CED, FEP, AP, WDP | [42] |
Roots, stems, and peel | Biogas | 1 kg of cassava starch | Malaysia | CED, DF, WSI, GWP, POGP, AP, HTP, ECP | [66] |
Wastewater | Biogas | 1 ton of starch with 13% water content | Thailand | GGE | [67] |
Wastewater | Biogas | 1 MJ of bio-CNG and 1 km of vehicle driven | Thailand | GWP, HTP, AP, EP | [68] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, L.R.S.; Felisardo, R.J.A.; Cruz, I.A.; Bilal, M.; Iqbal, H.M.N.; Mulla, S.I.; Bharagava, R.N.; Souza, R.L.d.; Azevedo, L.C.B.; Ferreira, L.F.R. Integrated Biorefinery and Life Cycle Assessment of Cassava Processing Residue–From Production to Sustainable Evaluation. Plants 2022, 11, 3577. https://doi.org/10.3390/plants11243577
Andrade LRS, Felisardo RJA, Cruz IA, Bilal M, Iqbal HMN, Mulla SI, Bharagava RN, Souza RLd, Azevedo LCB, Ferreira LFR. Integrated Biorefinery and Life Cycle Assessment of Cassava Processing Residue–From Production to Sustainable Evaluation. Plants. 2022; 11(24):3577. https://doi.org/10.3390/plants11243577
Chicago/Turabian StyleAndrade, Larissa Renata Santos, Raul José Alves Felisardo, Ianny Andrade Cruz, Muhammad Bilal, Hafiz M. N. Iqbal, Sikandar I. Mulla, Ram Naresh Bharagava, Ranyere Lucena de Souza, Lucas Carvalho Basilio Azevedo, and Luiz Fernando Romanholo Ferreira. 2022. "Integrated Biorefinery and Life Cycle Assessment of Cassava Processing Residue–From Production to Sustainable Evaluation" Plants 11, no. 24: 3577. https://doi.org/10.3390/plants11243577
APA StyleAndrade, L. R. S., Felisardo, R. J. A., Cruz, I. A., Bilal, M., Iqbal, H. M. N., Mulla, S. I., Bharagava, R. N., Souza, R. L. d., Azevedo, L. C. B., & Ferreira, L. F. R. (2022). Integrated Biorefinery and Life Cycle Assessment of Cassava Processing Residue–From Production to Sustainable Evaluation. Plants, 11(24), 3577. https://doi.org/10.3390/plants11243577