Planting Systems Affect Soil Microbial Communities and Enzymes Activities Differentially under Drought and Phosphorus Addition
Abstract
:1. Introduction
2. Results
2.1. Soil Chemical Parameters
2.2. Soil Microbial Biomass
2.3. Soil Microbial Community
2.4. Soil Enzyme Activities
2.5. Nonadditive and Additive Effects
2.6. Links among Soil Enzyme Activities, Soil Chemical Variables, and Microbial PLFAs
3. Discussion
3.1. Drought Effects on the Soil Microbial Community Structures among Planting System
3.2. Differential Response of Soil Microbial Community Structure to the Combined Drought with P Treatment
3.3. Nonadditive Effects of Species Mixture: Antagonistic and Synergistic
3.4. Linking Soil Enzyme Activities, Soil Chemical Variables, and PLFA Profiles
4. Materials and Methods
4.1. Experimental Setup
4.2. Analyses of Soil Chemical Characteristics
4.3. Microbial Biomass
4.4. Analyses of Phospholipid Fatty Acids (PLFAs)
4.5. Determination of Enzyme Activities
4.6. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delavaux, C.S.; Camenzind, T.; Homeier, J.; Jiménez-Paz, R.; Ashton, M.; Queenborough, S.A. Nutrient enrichment effects on mycorrhizal fungi in an Andean tropical montane Forest. Mycorrhiza 2017, 27, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Koyama, A.; Steinweg, J.M.; Haddix, M.L.; Dukes, J.S.; Wallenstein, M.D. Soil bacterial community responses to altered precipitation and temperature regimes in an old field grassland are mediated by plants. FEMS Microbiol. Ecol. 2018, 94, 156. [Google Scholar] [CrossRef] [PubMed]
- Olatunji, O.A.; Luo, H.; Pan, K.; Tariq, A.; Sun, X.; Chen, W.; Wu, X.; Zhang, L.; Xiong, Q.; Li, Z.; et al. Influence of phosphorus application and water deficit on the soil microbiota of N2-fixing and non-N-fixing tree. Ecosphere 2018, 9, e02276. [Google Scholar] [CrossRef]
- Dong, W.Y.; Zhang, X.Y.; Liu, X.Y.; Fu, X.L.; Chen, F.S.; Wang, H.M.; Sun, X.M.; Wen, X.F. Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations f subtropical China. Biogeosciences 2015, 12, 5537–5546. [Google Scholar] [CrossRef] [Green Version]
- Lei, L.; Per, G.; Wei, Z.; Tao, Z.; Hao, M.O. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests. Sci. Rep. 2015, 5, 14378. [Google Scholar]
- Ryan, P.R.; Delhaize, E.; Jones, D.L. Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 527–560. [Google Scholar] [CrossRef]
- Rivest, D.; Paquette, A.; Shipley, B.; Reich, B.P.; Messier, C. Tree communities rapidly alter soil microbial resistance and resilience to drought. Funct. Ecol. 2015, 29, 570–578. [Google Scholar] [CrossRef]
- Wu, S.; Huang, B.; Huang, C.; Li, G.; Liao, P. The Aboveground Vegetation Type and Underground Soil Property Mediate the Divergence of Soil Microbiomes and the Biological Interactions. Microb. Ecol. 2018, 75, 434–446. [Google Scholar] [CrossRef]
- Hooper, D.U.; Chapin, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Sun, F.; Pan, K.W.; Li, Z.; Wang, S.; Tariq, A.; Olatunji, O.A.; Sun, X.; Zhang, L.; Shi, W.; Wu, X. Soybean supplementation increases the resilience of microbial and nematode communities in soil to extreme rainfall in an agroforestry system. Sci. Total Environ. 2018, 626, 776–784. [Google Scholar] [CrossRef]
- Wolińska, A.; Górniak, D.; Zielenkiewicz, U.; Goryluk-Salmonowicz, A.; Kuźniar, A.; Stępniewska, Z.; Błaszczyk, M. Microbial biodiversity in arable soils is affected by agricultural practices. Int. Agrophys. 2017, 31, 259–271. [Google Scholar] [CrossRef] [Green Version]
- Brunel, C.; Gros, R.; Ziarelli, F.; Da Silva, A.M.F. Additive or non-additive effect of mixing oak in pine stands on soil properties depends on the tree species in Mediterranean forests. Sci. Total Environ. 2017, 590, 676–685. [Google Scholar] [CrossRef]
- De Deyn, G.B.; Quirk, H.; Bardgett, R.D. Plant species richness, identity and productivity differentially influence key groups of microbes in grassland soils of contrasting fertility. Biol. Lett. 2010, 7, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Orwin, K.H.; Wardle, D.A. Plant species composition effects on belowground properties and the resistance and resilience of the soil microflora to a drying disturbance. Plant Soil 2005, 278, 205–221. [Google Scholar] [CrossRef]
- Bastida, F.; Torres, M.; Andres-Abell, P.; Baldrian, R.; Lopez-Mondejar, T.; Vetrovsky, H.H.; Richnow, R.; Starke, I.F.; Ondono, S.; Garcıa, C.; et al. Differential sensitivity of total and active soil microbial communities to drought and forest management. Glob. Change Biol. 2017, 23, 4185–4203. [Google Scholar] [CrossRef]
- Munafò, M.R.; Smith, G.D. Repeating experiments is not enough. Nature 2018, 553, 399–401. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Wang, B.; Hu, T.; Chen, H.; Li, H.; Zhang, W.; Zhong, Y.; Hu, H. Combined action of an antioxidant defence system and osmolytes on drought tolerance and post-drought recovery of Phoebe zhennan S. Lee saplings. Acta Physiol. Plant. 2015, 37, 84. [Google Scholar] [CrossRef]
- Sanaullah, M.; Blagodatskaya, E.; Chabbi, A.; Rumpel, C.; Kuzyakov, Y. Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition. Appl. Soil Ecol. 2011, 48, 38–44. [Google Scholar] [CrossRef]
- Becker, J.N.; Gutlein, A.; Cornejo, N.S.; Kiese, R.; Hertel, D.; Kuzyakov, Y. Legume and Non-legume Trees Increase Soil Carbon Sequestration in Savanna. Ecosystems 2017, 20, 989–999. [Google Scholar] [CrossRef]
- Gunina, A.; Smith, A.R.; Godbold, D.L.; Jones, D.L.; Kuzyakov, Y. Response of soil microbial community to afforestation with pure and mixed species. Plant Soil 2017, 412, 357–368. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Gundersen, P.; Zhang, T.; Mo, J. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biol. Biochem. 2012, 44, 31–38. [Google Scholar] [CrossRef]
- Allison, S.D.; Vitousek, P.M. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol. Biochem. 2005, 37, 937–944. [Google Scholar] [CrossRef]
- Fang, X.; Zhou, G.Y.; Li, Y.L.; Liu, S.Z.; Chu, G.W.; Xu, Z.H.; Liu, J. Warming effects on biomass and composition of microbial communities and enzyme activities within soil aggregates in subtropical forest. Biol. Fertil. Soils 2016, 52, 353–365. [Google Scholar] [CrossRef]
- Giagnoni, L.; Pastorelli, R.; Mocali, S.; Arenella, M.; Nannipieri, P.; Renella, G. Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. Appl. Soil Ecol. 2016, 98, 30–38. [Google Scholar] [CrossRef]
- Nguyen, L.T.T.; Osanai, Y.; Lai, K.; Anderson, I.C.; Bange, M.P.; Tissue, D.T.; Singh, B.K. Responses of the soil microbial community to nitrogen fertilizer regimes and historical exposure to extreme weather events: Flooding or prolonged drought. Soil Biol. Biochem. 2018, 118, 227–236. [Google Scholar] [CrossRef]
- Smith, A.P.; Marín-Spiotta, E.; Balser, T. Successional and seasonal variations in soil and litter microbial community structure and function during tropical post agricultural forest regeneration: A multiyear study. Glob. Change Biol. 2015, 21, 3532–3547. [Google Scholar] [CrossRef]
- Olatunji, O.A.; Pan, K.; Tariq, A.; Zhang, L.; Wu, X.; Sun, X.; Luo, H.; Song, D.; Li, N. The responses of soil microbial community and enzyme activities of Phoebe zhennan cultivated under different soil moisture conditions to phosphorus addition. iForest 2018, 11, 751–756. [Google Scholar] [CrossRef]
- Huang, J.; Hu, B.; Qi, K.; Chen, W.; Pang, X.; Bao, W.; Tian, G. Effects of phosphorus addition on soil microbial biomass and community composition in a subalpine spruce plantation. Eur. J. Soil Biol. 2016, 72, 35–41. [Google Scholar] [CrossRef]
- Yang, K.; Zhu, J. The effects of N and P additions on soil microbial properties in paired stands of temperate secondary forests and adjacent larch plantations in Northeast China. Soil Biol. Biochem. 2015, 90, 80–86. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, S.; Sun, J.; Wang, X.; Cheng, G.; Lu, X. Chemical diversity and incubation time affect non-additive responses of soil carbon and nitrogen cycling to litter mixtures from an alpine steppe soil. Soil Biol. Biochem. 2017, 109, 124–134. [Google Scholar] [CrossRef]
- Zhou, W.P.; Shen, W.J.; Li, Y.E.; Hui, D.F. Interactive effects of temperature and moisture on composition of the soil microbial community. Eur. J. Soil Sci. 2017, 68, 909–918. [Google Scholar] [CrossRef]
- Xue, S.; Yang, X.; Liu, G.; Gai, L.; Zhang, C.; Ritsema, C.J.; Geissen, V. Effects of elevated CO2 and drought on the microbial biomass and enzymatic activities in the rhizospheres of two grass species in Chinese loess soil. Geoderma 2017, 286, 25–34. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis: Part 2; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Society of America: Madison, WI, USA; Soil Science Society of America: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Brookes, P.C.; Landman, A.; Pruden, G.; Jenkinson, D.S. Chloroform fumigation and release of soil N: A rapid direct extraction method to measure microbial biomass N in soil. Soil Biol. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Brookes, P.C.; Powlson, D.S. Measuring soil microbial biomass. Soil Biol. Biochem. 2004, 36, 5–7. [Google Scholar] [CrossRef]
- Bossio, D.A.; Scow, K.M. Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol. 1998, 35, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphate activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Nannipieri, P.; Ceccanti, B.; Cervelli, S.; Sequi, P. Use of 0.1 M pyrophosphate to extract urease from podzol. Soil Biol. Biochem. 1974, 6, 359–362. [Google Scholar] [CrossRef]
- Meier, C.L.; Bowman, W.D. Chemical composition and diversity influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling: Implications for plant species loss. Soil Biol. Biochem. 2010, 42, 1147–1454. [Google Scholar] [CrossRef]
Plant Types | Trt | NO3−–N (mg/g) | DON (mg/kg) | DOC (mg/kg) | SM (%) | aP (mg/kg) |
---|---|---|---|---|---|---|
Monoculture of Phoebe (PZ) | ||||||
DT | 2.8 ± 0.3 a | 96.4 ± 0.4 a | 253.2 ± 12.9 a | 6.4 ± 1.0 b | 89.9 ± 0.8 a | |
WT | 2.6 ± 0.1 b | 93.8 ± 0.8 b | 239.4 ± 3.7 a | 9.4 ± 0.2 a | 80.6 ± 0.7 b | |
DPT | 2.4 ± 0.0 b | 107.4 ± 5.3 a | 240.2 ± 3.5 a | 6.9 ± 0.6 b | 109.9 ± 4.3 a | |
WPT | 3.7 ± 0.2 a | 98.7 ± 0.5 b | 203.9 ± 6.5 b | 8.3 ± 0.1 a | 100.4 ± 1.7 b | |
Monoculture of Alnus (AC) | ||||||
DT | 2.8 ± 0.1 a | 98.5 ± 2.1 a | 156.3 ± 5.8 b | 6.1 ± 0.3 b | 77.9 ± 3.0 a | |
WT | 2.5 ± 0.1 b | 92.3 ± 1.3 b | 243.6 ± 1.5 a | 9.4 ± 1.2 a | 71.6 ± 2.2 b | |
DPT | 2.7 ± 0.1 a | 96.8 ± 1.4 a | 210.1 ± 8.3 b | 7.2 ± 0.3 b | 99.3 ± 2.3 a | |
WPT | 2.5 ± 0.0 b | 95.7 ± 1.4 a | 248.9 ± 2.9 a | 9.4 ± 0.6 a | 90.6 ± 3.3 b | |
Mixed culture (MPA) | ||||||
DT | 2.9 ± 0.1 a | 100.3 ± 2.6 a | 222.06 ± 5.9 a | 5.6 ± 0.6 b | 82.8 ± 3.0 b | |
WT | 3.3 ± 0.3 a | 90.9 ± 0.9 b | 191.7 ± 12.5 b | 8.2 ± 0.4 a | 93.0 ± 2.1 a | |
DPT | 2.7 ± 0.3 a | 103.4 ± 1.9 a | 249.0 ± 5.1 b | 6.3 ± 0.6 b | 111.9 ± 3.8 a | |
WPT | 3.2 ± 0.2 a | 99.7 ± 2.3 a | 342.3 ± 26.0 a | 9.1 ± 1.4 a | 106.1 ± 2.1 b |
Plant Types | Trt | Alkaline Phosphatase (AP) (mg p-NP kg−1h1) | β-Glucosidase (BG) (mg p-NP kg−1h−1) | Urease (mg NH4+–N kg−1 h−1) |
---|---|---|---|---|
Monoculture of Phoebe (PZ) | ||||
DT | 50.8 ± 5.4 b | 157.4 ± 14.7 b | 40.4 ± 0.3 a | |
WT | 67.6 ± 7.9 a | 184.1 ± 6.0 a | 34.02 ± 1.3 b | |
DPT | 60.9 ± 6.9 a | 174.3 ± 17.6 a | 47.3 ± 0.9 a | |
WPT | 52.9 ± 1.0 b | 149.9 ± 4.3 b | 33.3 ± 2.1 b | |
Monoculture of Alnus (AC) | ||||
DT | 88.2 ± 0.3 b | 144.4 ± 14.5 b | 36.79 ± 1.5 a | |
WT | 104.8 ± 12 a | 198.7 ± 5.9 a | 31.8 ± 0.2 b | |
DPT | 124.1 ± 3.1 a | 145.9 ± 2.7 b | 42.8 ± 0.3 a | |
WPT | 131.0 ± 5.9 a | 243.9 ± 37.0 a | 42.6 ± 0.4 a | |
Mixed culture (MPA) | ||||
DT | 102.3 ± 4.3 a | 171.1 ± 9.4 a | 35.8 ± 1.3 b | |
WT | 30.4 ± 4.2 b | 196.4 ± 14.7 a | 49.8 ± 2.9 a | |
DPT | 104.3 ± 3.4 b | 216.1 ± 3.5 a | 42.7 ± 2.2 a | |
WPT | 152.5 ± 16.9 a | 169.2 ± 12.9 b | 36.1 ± 0.3 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olatunji, O.A.; Pan, K.; Tariq, A.; Okunlola, G.O.; Wang, D.; Raimi, I.O.; Zhang, L. Planting Systems Affect Soil Microbial Communities and Enzymes Activities Differentially under Drought and Phosphorus Addition. Plants 2022, 11, 319. https://doi.org/10.3390/plants11030319
Olatunji OA, Pan K, Tariq A, Okunlola GO, Wang D, Raimi IO, Zhang L. Planting Systems Affect Soil Microbial Communities and Enzymes Activities Differentially under Drought and Phosphorus Addition. Plants. 2022; 11(3):319. https://doi.org/10.3390/plants11030319
Chicago/Turabian StyleOlatunji, Olusanya Abiodun, Kaiwen Pan, Akash Tariq, Gideon Olarewaju Okunlola, Dong Wang, Idris Olawale Raimi, and Lin Zhang. 2022. "Planting Systems Affect Soil Microbial Communities and Enzymes Activities Differentially under Drought and Phosphorus Addition" Plants 11, no. 3: 319. https://doi.org/10.3390/plants11030319
APA StyleOlatunji, O. A., Pan, K., Tariq, A., Okunlola, G. O., Wang, D., Raimi, I. O., & Zhang, L. (2022). Planting Systems Affect Soil Microbial Communities and Enzymes Activities Differentially under Drought and Phosphorus Addition. Plants, 11(3), 319. https://doi.org/10.3390/plants11030319