Hydrosols from Rosmarinus officinalis, Salvia officinalis, and Cupressus sempervirens: Phytochemical Analysis and Bioactivity Evaluation
Abstract
:1. Introduction
2. Results
2.1. HS-SPME-GC-MS of the Hydrosols
2.2. 1H-NMR and UHPLC-HR-MS Analyses of the Hydrosols
2.3. Biological Studies of the Hydrosols
2.3.1. Allelopathy Test
2.3.2. Brine Shrimp Lethality Test
2.3.3. Antifungal Activity
2.3.4. Cell Viability and Neuroprotective Effect
2.3.5. Antioxidant Effect
2.3.6. In Silico Analysis
3. Discussion
3.1. Phytochemical Analysis
3.2. Biological Activity
4. Materials and methods
4.1. Chemicals
4.2. Plant Cultivation and Samples Preparation
4.3. HS-SPME-GC/MS Analysis
4.4. NMR Analysis
4.5. UHPLC-HR-ESI-MS/MS Analysis
4.6. Biological Analysis
4.6.1. Allelopathy Test
4.6.2. Brine Shrimp Lethality Test
4.6.3. Antifungal Activity
4.6.4. Cell Cultures, Viability Test, and Neuro-Protective Effects
4.6.5. Inhibition of Horseradish Peroxidase
4.6.6. In Silico Analysis
4.6.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- ANSM. Eaux distillées végétales et eaux aromatisées végétales, 11th ed.; ANSM Pharmacopeé Française: Saint-Denis, France, 2012. [Google Scholar]
- D’Amato, S.; Serio, A.; López, C.C.; Paparella, A. Hydrosols: Biological activity and potential as antimicrobials for food applications. Food Control 2018, 86, 126–137. [Google Scholar] [CrossRef]
- Inouye, S.; Takahashi, M.; Abe, S. A comparative study on the composition of forty four hydrosols and their essential oils. Int. J. Essent. Oil Ther. 2008, 2, 89–104. [Google Scholar]
- Nanashima, N.; Kitajima, M.; Takamagi, S.; Fujioka, M.; Tomisawa, T. Comparison of chemical composition between kuromoji (Lindera umbellata) essential oil and hydrosol and determination of the deodorizing effect. Molecules 2020, 25, 4195. [Google Scholar] [CrossRef] [PubMed]
- Francezon, N.; Stevanovic, T. Chemical composition of essential oil and hydrosol from Picea mariana bark residue. BioResources 2017, 12, 2635–2645. [Google Scholar] [CrossRef] [Green Version]
- Śmigielski, K.B.; Prusinowska, R.; Krosowiak, K.; Sikora, M. Comparison of qualitative and quantitative chemical composition of hydrolate and essential oils of lavender (Lavandula angustifolia). J. Essent. Oil Res. 2013, 25, 291–299. [Google Scholar] [CrossRef]
- Di Vito, M.; Smolka, A.; Proto, M.R.; Barbanti, L.; Gelmini, F.; Napoli, E.; Bellardi, M.G.; Mattarelli, P.; Beretta, G.; Sanguinetti, M.; et al. Is the antimicrobial activity of hydrolates lower than that of essential oils? Antibiotics 2021, 10, 88. [Google Scholar] [CrossRef]
- Politi, M.; Menghini, L.; Conti, B.; Bedini, S.; Farina, P.; Cioni, P.L.; Braca, A.; De Leo, M. Reconsidering hydrosols as main products of aromatic plants manufactory: The lavandin (Lavandula × intermedia) case study in Tuscany. Molecules 2020, 25, 2225. [Google Scholar] [CrossRef]
- Paolini, J.; Leandri, C.; Desjobert, J.M.; Barboni, T.; Costa, J. Comparison of liquid-liquid extraction with headspace methods for the characterization of volatile fractions of commercial hydrolats from typically Mediterranean species. J. Chromatogr. A 2008, 1193, 37–49. [Google Scholar] [CrossRef]
- Tomi, K.; Kitao, M.; Konishi, N.; Murakami, H.; Matsumura, Y.; Hayashi, T. Enantioselective GC–MS analysis of volatile components from rosemary (Rosmarinus officinalis L.) essential oils and hydrosols. Biosci. Biotechnol. Biochem. 2016, 80, 840–847. [Google Scholar] [CrossRef] [Green Version]
- Elamrani, A.; Zrira, S.; Benjilali, B.; Berrada, M. A study of moroccan rosemary oils. J. Essent. Oil Res. 2000, 12, 487–495. [Google Scholar] [CrossRef]
- Tornuk, F.; Cankurt, H.; Ozturk, I.; Sagdic, O.; Bayram, O.; Yetim, H. Efficacy of various plant hydrosols as natural food sanitizers in reducing Escherichia coli O157:H7 and Salmonella typhimurium on fresh cut carrots and apples. Int. J. Food Microbiol. 2011, 148, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, I.; Tornuk, F.; Caliskan-Aydogan, O.; Durak, M.Z.; Sagdic, O. Decontamination of iceberg lettuce by some plant hydrosols. LWT-Food Sci. Technol. 2016, 74, 48–54. [Google Scholar] [CrossRef]
- Moss, M.; Smith, E.; Milner, M.; McCready, J. Acute ingestion of rosemary water: Evidence of cognitive and cerebrovascular effects in healthy adults. J. Psychopharmacol. 2018, 32, 1319–1329. [Google Scholar] [CrossRef] [PubMed]
- Baydar, H.; Sangun, M.K.; Erbas, S.; Kara, N. Comparison of aroma compounds in distilled and extracted products of sage (Salvia officinalis L.). J. Essent. Oil-Bear. Plants 2013, 16, 39–44. [Google Scholar] [CrossRef]
- Aazza, S.; Lyoussi, B.; Miguel, M.G. Antioxidant activity of some Morrocan hydrosols. J. Med. Plants Res. 2011, 5, 6688–6696. [Google Scholar]
- Rawat, P.; Khan, M.F.; Kumar, M.; Tamarkar, A.K.; Srivastava, A.K.; Arya, K.R.; Maurya, R. Constituents from fruits of Cupressus sempervirens. Fitoterapia 2010, 81, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Nafila, Z.; Cherifa, B.; Carlos, C.; Boubekeur, N.; Mohamed, Y. Identification of volatile compounds, antimicrobial properties and antioxidant activity from leaves, cones and stems of Cupressus sempervirens from Algeria. Afr. J. Microbiol. Res. 2015, 9, 83–90. [Google Scholar] [CrossRef]
- Tavares, C.S.; Martins, A.; Faleiro, M.L.; Miguel, M.G.; Duarte, L.C.; Gameiro, J.A.; Roseiro, L.B.; Figueiredo, A.C. Bioproducts from forest biomass: Essential oils and hydrolates from wastes of Cupressus lusitanica Mill. and Cistus ladanifer L. Ind. Crops Prod. 2020, 144, 112034. [Google Scholar] [CrossRef]
- Aazza, S.; Lyoussi, B.; Miguel, M.G. Antioxidant activity of eight hydrosols from Morocco. Asian J. Plant Sci. 2012, 11, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Rašković, A.; Milanović, I.; Pavlović, N.; Ćebović, T.; Vukmirović, S.; Mikov, M. Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. BMC Complement. Altern. Med. 2014, 14, 225. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Wu, N.; Fu, Y.; Wang, W.; Luo, M.; Zhao, C.; Zu, Y.; Liu, X. Chemical composition and antimicrobial activity of the essential oil of rosemary. Environ. Toxicol. Pharmacol. 2011, 32, 63–68. [Google Scholar] [CrossRef]
- Lo Presti, M.; Ragusa, S.; Trozzi, A.; Dugo, P.; Visinoni, F.; Fazio, A.; Dugo, G.; Mondello, L. A comparison between different techniques for the isolation of rosemary essential oil. J. Sep. Sci. 2005, 28, 273–280. [Google Scholar] [CrossRef] [PubMed]
- El Euch Kammoun, S.; Hassine, D.; Cazaux, S.; Bouzouita, N.; Bouajila, J. Salvia officinalis essential oil: Chemical analysis and evaluation of antienzymatic and antioxidant bioactivities. S. Afr. J. Bot. 2019, 120, 253–260. [Google Scholar] [CrossRef]
- Craft, J.; Satyal, P.; Setzer, W. The chemotaxonomy of common sage (Salvia officinalis) based on the volatile constituents. Medicines 2017, 4, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-Darwish, M.; Cabral, C.; Ferreira, I.; Gonçalves, M.; Cavaleiro, C.; Cruz, M.; Al-bdour, T.; Salgueiro, L. Essential oil of common sage (Salvia officinalis L.) from Jordan: Assessment of safety in mammalian cells and its antifungal and anti-inflammatory potential. BioMed Res. Int. 2013, 2013, 538940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selim, S.; Adam, M.; Hassan, S.; Albalawi, A. Chemical composition, antimicrobial and antibiofilm activity of the essential oil and methanol extract of the Mediterranean cypress (Cupressus sempervirens L.). BMC Complement. Altern. Med. 2014, 14, 179. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Lamia, H.; Mohsen, H.; Samia, G.; Bassem, J. Chemical composition, bio-herbicidal and antifungal activities of essential oils isolated from Tunisian common cypress (Cupressus sempervirens L.). J. Med. Plants Res. 2013, 7, 1070–1080. [Google Scholar]
- Lee, S.; Do, H.; Min, K. Effects of essential oil from Hinoki cypress, Chamaecyparis obtusa, on physiology and behavior of flies. PLoS ONE 2015, 10, e0143450. [Google Scholar] [CrossRef]
- Sirisoma, N.S.; Hoeld, K.M.; Casida, J.E. α- and β-Thujones (herbal medicines and food additives): Synthesis and analysis of hydroxy and dehydro metabolites. J. Agric. Food Chem. 2001, 49, 1915–1921. [Google Scholar] [CrossRef]
- Gurudutt, K.; Pasha, M.; Ravindranath, B.; Srinivas, P. Reactions of oxiranes with alkali metals: Intermediacy of radical anions. Tetrahedron 1984, 40, 1629–1632. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, V.; Sain, B. Highly efficient and selective oxidation of secondary alcohols to ketones under organic solvent and transition metal free conditions. Tetrahedron 2006, 62, 6841–6847. [Google Scholar] [CrossRef]
- Ashnagar, A.; Gharib Naseri, N.; Bayemani, A. Isolation and determination of the major chemical compounds present in essential oil of the leaves of Myrtus plant grown in Khuzestan province of Iran. Asian J. Chem. 2009, 21, 4969–4975. [Google Scholar]
- Allal, B.A.; El Firdoussi, L.; Allaoud, S.; Karim, A.; Castanet, Y.; Mortreux, A. Catalytic oxidation of α-pinene by transition metal using t-butyl hydroperoxide and hydrogen peroxide. J. Mol. Catal. A Chem. 2003, 200, 177–184. [Google Scholar] [CrossRef]
- Koitabashi, R.; Suzuki, T.; Kawazu, T.; Sakai, A.; Kuroiwa, H.; Kuroiwa, T. 1,8-Cineole inhibits root growth and DNA synthesis in the root apical meristem of Brassica campestris L. J. Plant Res. 1997, 110, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Tirillini, B.; Velasquez, E.; Pellegrino, R. Chemical composition and antimicrobial activity of essential oil of Piper angustifolium. Planta Med. 1996, 62, 372–373. [Google Scholar] [CrossRef] [Green Version]
- Bouzabata, A.; Cabral, C.; Gonçalves, M.; Cruz, M.; Bighelli, A.; Cavaleiro, C.; Casanova, J.; Tomi, F.; Salgueiro, L. Myrtus communis L. as source of a bioactive and safe essential oil. Food Chem. Toxicol. 2015, 75, 166–172. [Google Scholar] [CrossRef]
- Zámboriné Németh, É.; Thi Nguyen, H. Thujone, a widely debated volatile compound: What do we know about it? Phytochem. Rev. 2020, 19, 405–423. [Google Scholar] [CrossRef]
- Borrelli, F.; Pagano, E.; Romano, B.; Panzera, S.; Maiello, F.; Coppola, D.; De Petrocellis, L.; Buono, L.; Orlando, P.; Izzo, A. Colon carcinogenesis is inhibited by the TRPM8 antagonist cannabigerol, a Cannabis-derived non-psychotropic cannabinoid. Carcinogenesis 2014, 35, 2787–2797. [Google Scholar] [CrossRef] [Green Version]
- Sung, B.; Prasad, S.; Ravindran, J.; Yadav, V.; Aggarwal, B. Capsazepine, a TRPV1 antagonist, sensitizes colorectal cancer cells to apoptosis by TRAIL through ROS-JNK-CHOP-mediated upregulation of death receptors. Free Radic. Biol. Med. 2012, 53, 1977–1987. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Han, J.; Liu, R. Effects of experimental colitis on the expressions of calcitonin gene-related peptide and vanilloid receptor 1 in rat spinal cord sensory neurons. Sheng Li Xue Bao 2008, 60, 143–148. [Google Scholar]
- Li, D.; Chen, S.; Pan, H. VR1 receptor activation induces glutamate release and postsynaptic firing in the paraventricular nucleus. J. Neurophysiol. 2004, 92, 1807–1816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surkin, P.; Dmytrenko, G.; Di Giorgio, N.; Bizzozzero, M.; De Laurentiis, A.; Fernández-Solari, J. Participation of TRPV1 in the activity of the GnRH system in male rats. Eur. J. Neurosci. 2020, 52, 2995–3001. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Bansal, Y.; Sodhi, R.; Khare, P.; Bishnoi, M.; Kondepudi, K.; Medhi, B.; Kuhad, A. Role of TRPV1/TRPV3 channels in olanzapine-induced metabolic alteration: Possible involvement in hypothalamic energy-sensing, appetite regulation, inflammation and mesolimbic pathway. Toxicol. Appl. Pharmacol. 2020, 402, 115124. [Google Scholar] [CrossRef] [PubMed]
- Ordás, P.; Hernández-Ortego, P.; Vara, H.; Fernández-Peña, C.; Reimúndez, A.; Morenilla-Palao, C.; Guadaño-Ferraz, A.; Gomis, A.; Hoon, M.; Viana, F.; et al. Expression of the cold thermoreceptor TRPM8 in rodent brain thermoregulatory circuits. J. Comp. Neurol. 2021, 529, 234–256. [Google Scholar] [CrossRef]
- Turinek, M.; Grobelnik-Mlakar, S.; Bavec, M.; Bavec, F. Biodynamic agriculture research progress and priorities. Renew. Agric. Food Syst. 2009, 24, 146–154. [Google Scholar] [CrossRef]
- Ferrante, C.; Recinella, L.; Ronci, M.; Menghini, L.; Brunetti, L.; Chiavaroli, A.; Leone, S.; Di Iorio, L.; Carradori, S.; Tirillini, B.; et al. Multiple pharmacognostic characterization on hemp commercial cultivars: Focus on inflorescence water extract activity. Food Chem. Toxicol. 2019, 125, 452–461. [Google Scholar] [CrossRef]
- Angelini, P.; Matei, F.; Flores, G.; Pellegrino, R.; Vuguziga, L.; Venanzoni, R.; Tirillini, B.; Emiliani, C.; Orlando, G.; Menghini, L.; et al. Metabolomic profiling, antioxidant and antimicrobial activity of Bidens pilosa. Processes 2021, 9, 903. [Google Scholar] [CrossRef]
- Orlando, G.; Leone, S.; Ferrante, C.; Chiavaroli, A.; Mollica, A.; Stefanucci, A.; Macedonio, G.; Dimmito, M.; Leporini, L.; Menghini, L.; et al. Effects of kisspeptin-10 on hypothalamic neuropeptides and neurotransmitters involved in appetite control. Molecules 2018, 23, 3071. [Google Scholar] [CrossRef] [Green Version]
- di Giacomo, V.; Recinella, R.; Chiavaroli, A.; Orlando, G.; Cataldi, A.; Rapino, M.; Di Valerio, V.; Politi, M.; Antolini, M.; Acquaviva, A.; et al. Metabolomic profile and antioxidant/anti-inflammatory effects of industrial hemp water extract in fibroblasts, keratinocytes and isolated mouse skin specimens. Antioxidants 2021, 10, 44. [Google Scholar] [CrossRef]
- Gu, L.; Lu, J.; Li, Q.; Wu, N.; Zhang, L.; Li, H.; Xing, W.; Zhang, X. A network-based analysis of key pharmacological pathways of Andrographis paniculata acting on Alzheimer’s disease and experimental validation. J. Ethnopharmacol. 2020, 251, 112488. [Google Scholar] [CrossRef]
Relative Content % | |||||
---|---|---|---|---|---|
Compound | tR (min) | LRI | R | S | C |
Monoterpene hydrocarbons | 15.6 | 1.3 | 23.0 | ||
α-pinene | 5.61 | 939 | 1.4 | 0.1 | 4.5 |
camphene | 5.94 | 953 | 3.9 | 0.1 | - |
thuja-2,4(10)-diene | 6.05 | 957 | 0.9 | - | - |
sabinene | 6.55 | 976 | - | - | 2.4 |
β-pinene | 6.69 | 980 | 3.6 | 0.8 | 0.2 |
myrcene | 7.03 | 991 | 1.9 | - | 0.9 |
α-phellandrene | 7.47 | 1005 | 0.4 | - | 0.2 |
δ-3-carene | 7.66 | 1011 | 0.4 | - | 4.9 |
α-terpinene | 7.87 | 1018 | 0.6 | - | 0.9 |
p-cymene | 8.09 | 1026 | - | - | 1.4 |
limonene | 8.23 | 1031 | - | - | 2.4 |
γ-terpinene | 9.30 | 1062 | 1.4 | 0.2 | 1.4 |
terpinolene | 10.34 | 1088 | 1.1 | 0.1 | 3.8 |
Oxygenated monoterpenes | 70.4 | 93.7 | 73.9 | ||
1,8-cineole (eucalyptol) | 8.64 | 1033 | 47.1 | 42.9 | 1.1 |
linalool | 10.83 | 1098 | 2.0 | - | 0.4 |
filifolone | 10.95 | 1108 | 1.6 | - | - |
α-thujone | 11.13 | 1110 | - | 24.3 | 0.4 |
exo-fenchol | 11.26 | 1112 | - | - | 0.2 |
β-thujone | 11.53 | 1114 | - | 14.7 | 0.5 |
cis-p-menth-2-en-1-ol | 11.57 | 1121 | - | - | 1.6 |
α-campholenal | 11.77 | 1125 | 0.2 | - | - |
trans-pinocarveol | 12.24 | 1139 | 0.2 | - | - |
trans-p-menth-2-en-1-ol | 12.27 | 1140 | - | - | 0.9 |
camphor | 12.58 | 1143 | 5.4 | 8.9 | 1.1 |
camphene hydrate | 12.63 | 1148 | - | - | 0.3 |
trans-pinocamphone | 13.15 | 1160 | 0.2 | - | - |
pinocarvone | 13.24 | 1162 | 0.6 | - | - |
borneol | 13.44 | 1165 | 3.7 | 1.9 | 1.6 |
cis-pinocamphone | 13.74 | 1173 | 1.0 | - | - |
4-terpineol | 13.85 | 1177 | 0.7 | 0.6 | 44.5 |
α-terpineol | 14.38 | 1190 | 0.8 | 0.2 | 3.4 |
cis-piperitol | 14.55 | 1193 | - | - | 0.3 |
myrtenol | 14.62 | 1193 | 0.2 | - | - |
trans-piperitol | 15.05 | 1205 | - | - | 0.1 |
verbenone | 15.20 | 1206 | 2.8 | - | 0.1 |
methyl carvacrol | 16.59 | 1244 | - | - | 0.3 |
piperitone | 16.98 | 1252 | - | - | 0.4 |
geraniol | 17.04 | 1255 | 0.4 | - | - |
bornyl acetate | 18.40 | 1285 | 3.4 | 0.2 | 3.5 |
γ-terpinyl acetate | 20.60 | 1341 | - | - | 2.6 |
α-terpinyl acetate | 20.99 | 1350 | - | - | 10.6 |
geranyl acetate | 22.44 | 1383 | 0.1 | - | - |
Sesquiterpene hydrocarbons | 0.7 | 4.3 | 2.3 | ||
α-cubebene | 20.98 | 1351 | - | 0.1 | - |
α-copaene | 22.06 | 1376 | - | 0.2 | - |
α-cedrene | 23.55 | 1409 | - | - | 0.7 |
β-caryophyllene | 23.84 | 1418 | 0.6 | 2.7 | 0.7 |
aromadendrene | 24.61 | 1439 | - | 0.2 | - |
α-humulene | 25.21 | 1454 | 0.1 | 0.6 | 0.2 |
γ-murolene | 26.15 | 1477 | - | 0.2 | - |
germacrene D | 26.30 | 1480 | - | - | 0.6 |
valencene | 26.86 | 1491 | - | 0.1 | - |
δ-cadinene | 27.99 | 1524 | - | 0.2 | - |
Oxygenated sesquiterpenes | - | 0.3 | 0.6 | ||
caryophyllene oxide | 30.23 | 1581 | - | 0.1 | - |
viridiflorol | 30.56 | 1590 | - | 0.2 | - |
cedrol | 30.91 | 1596 | - | - | 0.6 |
Total identified | 86.7 | 99.6 | 99.7 |
Compound a | tR (min) | Precursor Ion (m/z) | HR(+ESI)-MS/MS b Product Ions (m/z) | Molecular Formula | Exper. Mass | Theor. Mass | Error (ppm) | Hydrolate |
---|---|---|---|---|---|---|---|---|
Verbenone | 12.4 | 151.1116 ([M+H]+) | 123.08, 109.07 | C10H14O | 151.1116 | 151.1117 | −0.66 | R, C |
Borneol | 13.6 | 137.1324 ([M+H-H2O]+) | 109.10, 95.09, 81.07 | C10H18O | 137.1324 | 137.1325 | −0.73 | C |
Linalool | 13.8 | 137.1323 ([M+H-H2O]+) | 109.10, 95.09, 81.07 | C10H18O | 137.1323 | 137.1325 | −1.46 | R, C |
4-Terpineol/α-Terpineol | 13.9 | 137.1323 ([M+H-H2O]+) | 109.10, 95.09, 81.07 | C10H18O | 137.1323 | 137.1325 | −1.46 | S, C |
Camphor | 14.1 | 153.1271 ([M+H]+) | 135.12, 109.10, 97.07 | C10H16O | 153.1271 | 153.1274 | −1.96 | R, S |
α/β-Thujone | 14.2 | 153.1272 ([M+H]+) | 135.12, 109.10, 97.07 | C10H16O | 153.1272 | 153.1274 | −1.31 | S |
1,8-Cineole (Eucalyptol) | 14.7 | 137.1323 ([M+H-H2O]+) | 109.10, 95.09, 81.07 | C10H18O | 137.1323 | 137.1325 | −1.46 | R, S |
Piperitone | 14.8 | 153.1271 ([M+H]+) | 135.12, 109.10, 97.07, 81.07, 71.05 | C10H16O | 153.1272 | 153.1274 | −1.31 | C |
MIC * | |||||||||
---|---|---|---|---|---|---|---|---|---|
Trichophyton | Trichophyton | Trichophyton | Trichophyton | Arthroderma | Arthroderma | Arthroderma | Candida | Candida | |
mentagrophytes | tonsurans | rubrum | erinacei | crocatum | quadrifidum | gypseum | albicans | tropicalis | |
Fungal Strain | (CCF 4823) | (CCF 4834) | (CCF 4879) | (CCF 5930) | (CCF 5300) | (CCF 5792) | (CCF 6261) | (YEPGA 6138) | (YEPGA 6184) |
Hydrosol | |||||||||
Cypress | 99.2 | 39.4 | 397.0 | 397.0 | 24.8 | 39.4 | 198.4 | 49.6 | 78.7 |
(62.5–125) | (31.3–62.5) | (250–500) | (250–500) | (15.6–31.3) | (31.3–62.5) | (125–250) | (31.3–62.5) | (62.5–125) | |
Rosemary | 12.4 | 19.7 | 24.8 | 315.0 | 39.4 | 24.8 | 157.5 | 19.7 | 24.8 |
(7.8–15.6) | (15.6–31.3) | (15.6–31.3) | (250–500) | (31.3–62.5) | (15.6–31.3) | (125–250) | (15.6–31.3) | (31.3–62.5) | |
Sage | 19.7 | 24.8 | 24.8 | 397.0 | 49.6 | 99.2 | 315.0 | 19.7 | 24.8 |
(15.6–31.3) | (15.6–31.3) | (15.6–31.3) | (250–500) | (31.3–62.5) | (62.5–125) | (250–500) | (15.6–31.3) | (15.6–31.3) | |
Fluconazole | >16 | 2 | 8 | >16 | 8 | >16 | >16 | 2 | 4 |
Griseofulvin | 1 | 0.125 | 2 | 0.25 | >8 | >8 | >8 | >8 | >8 |
Hydrosol | |||
---|---|---|---|
Cypress | Rosemary | Sage | |
HRP % inhibition | 25.94 ± 1.84 | 19.53 ± 1.58 | 31.58 ± 2.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Politi, M.; Ferrante, C.; Menghini, L.; Angelini, P.; Flores, G.A.; Muscatello, B.; Braca, A.; De Leo, M. Hydrosols from Rosmarinus officinalis, Salvia officinalis, and Cupressus sempervirens: Phytochemical Analysis and Bioactivity Evaluation. Plants 2022, 11, 349. https://doi.org/10.3390/plants11030349
Politi M, Ferrante C, Menghini L, Angelini P, Flores GA, Muscatello B, Braca A, De Leo M. Hydrosols from Rosmarinus officinalis, Salvia officinalis, and Cupressus sempervirens: Phytochemical Analysis and Bioactivity Evaluation. Plants. 2022; 11(3):349. https://doi.org/10.3390/plants11030349
Chicago/Turabian StylePoliti, Matteo, Claudio Ferrante, Luigi Menghini, Paola Angelini, Giancarlo Angeles Flores, Beatrice Muscatello, Alessandra Braca, and Marinella De Leo. 2022. "Hydrosols from Rosmarinus officinalis, Salvia officinalis, and Cupressus sempervirens: Phytochemical Analysis and Bioactivity Evaluation" Plants 11, no. 3: 349. https://doi.org/10.3390/plants11030349
APA StylePoliti, M., Ferrante, C., Menghini, L., Angelini, P., Flores, G. A., Muscatello, B., Braca, A., & De Leo, M. (2022). Hydrosols from Rosmarinus officinalis, Salvia officinalis, and Cupressus sempervirens: Phytochemical Analysis and Bioactivity Evaluation. Plants, 11(3), 349. https://doi.org/10.3390/plants11030349