Effect of UV-B Radiation on Flavonoids and Phenols Accumulation in Tempisque (Sideroxylon capiri Pittier) Callus
Abstract
:1. Introduction
2. Results
2.1. Explant Disinfection and Callus Induction
2.2. Effect of UV-B Radiation on Callus Growth
2.3. Effect of UV-B Radiation on Morphology and Phenolization of Callus
2.4. Total Phenol and Flavonoid Content in Callus Irradiated with UV-B Light
2.5. Effect of UV-B Radiation on Gallic Acid, Quercetin and Kaempferol Concentrations
3. Discussion
3.1. Explant Disinfection
3.2. Callus Induction
3.3. Effect of UV-B Radiation on Callus Growth
3.4. Effect of UV-B Radiation on the Morphology and Phenolization of Callus
3.5. Total Phenol and Flavonoid Content in Calluses Irradiated with UV-B Light
3.6. Effect of UV-B Radiation on Gallic Acid, Quercetin and Kaempferol Concentrations
4. Materials and Methods
4.1. Plant Material and Desinfestation
4.2. Callus Induction
4.3. Experiment with UV-B Radiation
Experimental Design for the Effect of UV-B Radiation on Callus Cultures
4.4. Fresh Weight and Growth Index
4.5. Preparation of Methanolic Extracts
4.6. Determination of Total Phenol Content
4.7. Determination of Total Flavonoids Content
4.8. Quantification of Gallic Acid, Quercetin and Kaempferol in Methanolic Extracts by HPLC
4.9. Statistic Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TDZ | Thidiazuron |
2,4-D | 2,4-dichlorophenoxyacetic acid |
CFI | Callus formation index |
ROS | Reactive Oxygen Species |
UVR8 | Ultraviolet resistance locus 8 |
COP 1 | Constitutive photomorphogenic 1 |
HY5 | Elongated Hypocotyl 5 |
DELLA | (aspartic acid–glutamic acid–leucine–leucine–alanine) proteins |
PIF | Phytochrome Interacting Factors |
Aux/AIA | Auxin/indole-3-acetic acid |
References
- García, E.; Di Stefano, J. Fenología de árbol Sideroxylon capiri (Sapotaceae) en el Bosque Seco Tropical de Costa Rica. Revista Biología Tropical 2005, 53, 5–14. [Google Scholar]
- Lazos-Monterrosa, F.A.; Orantes-García, C.; Farrera-Sarmiento, O.; Verdugo-Valdez, A.G.; Sánchez-Cortés, M.S.; Ruíz-Meza, L.E. Evaluation of the viability and germination of tempisque [Sideroxylon capiri (A.DC.) Pittier Sapotaceae]. Int. J. Exp. Bot. 2015, 84, 138–143. [Google Scholar]
- Diario Oficial de la Federación. Norma Oficial Mexicana NOM-059-SEMARNAT-2010 Protección Ambiental-Especies Nativas de México de Flora y Fauna Silvestres-Categorías de Riesgo y Especificaciones Para Su Inclusión, Exclusión o Cambio-Lista de Especies en Riesgo; Diario Oficial de la Federación: Mexico City, Mexico, 2010; 78p. [Google Scholar]
- Robles-García, M.A.; Aguilar, A.; Gutiérrez-Lomelí, M.; Rodríguez-Félix, F.; Morales Del-Rio, J.A. Qualitative identification of secondary metabolites and cytotoxity determination of tempisque extracts (Sideroxylon capiri) PITTIER. Biotecnia 2016, 18, 3–8. [Google Scholar] [CrossRef]
- Constantino-Alcazar, J.; Abud-Archila, M.; Valdez-Salas, B.; Gutiérrez-Miceli, F.; Ceceña-Duran, C.; López-Valenzuela, B.; Gonzalez-Mendoza, D. Synthesis and Characterization of Green Potassium Nanoparticles from Sideroxylon Capiri and Evaluation of Their Potential Antimicrobial. J. Renew. Mater. 2021, 9, 1699–1706. [Google Scholar] [CrossRef]
- Akula, R.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef] [PubMed]
- Mierziak, J.; Kostyn, K.; Kulma, A. Flavonoids as Important Molecules of Plant Interactions with the Environment. Molecules 2014, 19, 16240–16265. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. Use of an Extract of Lythrum Salicaria. PubChem Patent Summary for WO-2016102874-A1, 30 June 2016. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/WO-2016102874-A1 (accessed on 26 January 2022).
- Alam, W.; Khan, H.; Shah, M.A.; Cauli, O.; Saso, L. Kaempferol as a Dietary Anti-Inflammatory Agent: Current Therapeutic Standing. Molecules 2020, 25, 4073. [Google Scholar] [CrossRef] [PubMed]
- Podder, B.; Song, K.S.; Song, H.-Y.; Kim, Y.-S. Cytoprotective Effect of Kaempferol on Paraquat-Exposed BEAS-2B Cells via Modulating Expression of MUC5AC. Biol. Pharmacutical Bull. 2014, 37, 1486–1494. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.; Cao, J.; Zhang, G.; Wang, Y. Kaempferol Attenuates Cardiac Hypertrophy via Regulation of ASK1/MAPK Signaling Pathway and Oxidative Stress. Planta Med. 2017, 83, 837–845. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24, 2454. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Jin, F.; Lee, H.J.; Lee, C.J. Kaempferol Regulates the Expression of Airway MUC5AC Mucin Gene via IκBα-NF-κB p65 and p38-p44/42-Sp1 Signaling Pathways. Biomol. Ther. 2020, 29, 303. [Google Scholar] [CrossRef] [PubMed]
- Kale, R.; Saraf, M.; Juvekar, A.; Tayade, P. Decreased B16F10 melanoma growth and impaired tumour vascularization in BDF1 mice with Quercetin-cyclodextrin binary system. J. Pharm. Pharmacol. 2006, 58, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Sim, G.; Kim, J.; Lee, G.; Pyo, H.; Lee, B. Preparation and characterization of Quercetin-loaded polymethyl methacrylate microcapsules using a polyol-in-oil-in-polyol emulsion solvent evaporation method. J. Pharm. Pharmacol. 2007, 59, 1611–1620. [Google Scholar] [CrossRef] [PubMed]
- Saraswat, A.; Maher, T. Development and optimization of stealth liposomal system for enhanced in vitro cytotoxic effect of Quercetin. J. Drug Deliv. Sci. Technol. 2020, 55, 101477. [Google Scholar] [CrossRef]
- Narayani, M.; Srivastava, S. Elicitation: A stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production. Phytochem. Rev. 2017, 16, 1227–1252. [Google Scholar] [CrossRef]
- Sun, M.; Gu, X.; Fu, H.; Zhang, L.; Chen, R.; Cui, L.; Zheng, L.; Zhang, D.; Tian, J. Change of secondary metabolites in leaves of Ginkgo biloba L. in response to UV-B induction. Innov. Food Sci. Emerg. Technol. 2010, 11, 672–676. [Google Scholar] [CrossRef]
- Johnson, C.; Kirby, J.; Naxakis, G.; Pearson, S. Substantial UV-B-mediated induction of essential oils in sweet basil (Ocimum basilicum L.). Phytochemistry 1999, 51, 507–510. [Google Scholar] [CrossRef]
- Kumari, R.; Agrawal, S.B.; Singh, S.; Dubey, N.K. Supplemental ultraviolet-B induced changes in essential oil composition and total phenolics of Acorus calamus L. (sweet flag). Ecotoxicol. Environ. Saf. 2009, 72, 2013–2019. [Google Scholar] [CrossRef]
- Gu, X.-D.; Sun, M.-Y.; Zhang, L.; Fu, H.-W.; Cui, L.; Chen, R.-Z.; Zhang, D.-W.; Tian, J.-K. UV-B Induced Changes in the Secondary Metabolites of Morus alba L. Leaves. Molecules 2010, 15, 2980–2993. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-R.; Chen, Y.-H.; Guo, Q.-S.; Wang, W.-M.; Liu, L.; Fan, J.; Cao, L.-P.; Li, C. Short-term UV-B radiation effects on morphology, physiological traits and accumulation of bioactive compounds in Prunella vulgaris L. J. Plant Interact. 2017, 12, 348–354. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Guo, Q.; Liu, L.; Li, C.; Cao, L.; Qin, Q.; Zhao, M.; Wang, W. Effects of UV-B Radiation on the Content of Bioactive Components and the Antioxidant Activity of Prunella vulgaris L. Spica during Development. Molecules 2018, 23, 989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yildirim, A.B. Ultraviolet-B-induced changes on phenolic compounds, antioxidant capacity and HPLC profile of in vitro-grown plant materials in Echium orientale L. Ind. Crops Prod. 2020, 153, 112584. [Google Scholar] [CrossRef]
- Magnitskiy, V.; Plaza, G. Fisiología de semillas recalcitrantes de árboles tropicales. Agron. Colomb. 2007, 25, 96–103. [Google Scholar]
- Oros, P.B.; Cătană, C.; Cantor, M. Contamination Control of in vitro Cultures of Passiflora Species for Multiplication Purpose. Int. J. Innov. Approaches Agric. 2020, 4, 488–496. [Google Scholar] [CrossRef]
- Ikeuchi, M.; Sugimoto, K.; Iwase, A. Plant callus: Mechanisms of induction and repression. Plant Cell 2013, 25, 3159–3173. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Liu, Y.; Jeong, B. callus induction and browning suppression in tree peony Paeonia ostii Fengdan. Hortic. Environ. Biotechnol. 2020, 61, 591–600. [Google Scholar] [CrossRef]
- Cappelletti, R.; Sabbadini, S.; Mezzetti, B. The use of TDZ for the efficient in vitro regeneration and organogenesis of strawberry and blueberry cultivars. Sci. Hortic. 2016, 207, 117–124. [Google Scholar] [CrossRef]
- Pai, S.R.; Desai, N.S. Effect of TDZ on Various Plant Cultures. In Thidiazuron: From Urea Derivative to Plant Growth Regulator; Springer: Singapore, 2018; pp. 439–454. [Google Scholar] [CrossRef]
- Naaz, A.; Siddique, I.; Ahmad, A. TDZ-Induced Efficient Micropropagation from Juvenile Nodal Segment of Syzygium cumini (Skill): A Recalcitrant Tree. In Propagation and Genetic Manipulation of Plants; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Ibáñez, S.; Rosa, M.; Hilal, M.; Prado, J.G. Leaves of Citrus aurantifolia exhibit a different sensibility to solar UV-B radiation according to development stage in relation to photosynthetic pigments and UV-B absorbing compounds production. J. Photochem. Photobiol. B Biol. 2008, 90, 163–169. [Google Scholar] [CrossRef]
- Manaf, H.H.; Rabie, K.A.E.; Abd El-Aal, M.S. Impact of UV-B radiation on some biochemical changes and growth parameters in Echinacea purpurea callus and suspension culture. Annals Agri. Sci. 2016, 61, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.; Lau, O.S.; Deng, X. Light-regulated transcriptional networks in higher plants. Nat. Rev. Genet. 2007, 8, 217–230. [Google Scholar] [CrossRef]
- Kami, C.; Lorrain, S.; Hornitschek, P.; Fankhauser, C. Light-regulated plant growth and development. Curr. Top. Dev. Biol. 2010, 91, 29–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzini, L.; Favory, J.; Cloix, C.; Faggionato, D.; O’Hara, A.; Kaiserli, E.; Baumeister, R.; Schäfer, E.; Nagy, F.; Jenkins, G.I.; et al. Perception of UV-B by the Arabidopsis UVR8 protein. Science 2011, 332, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Kliebenstein, D.; Lim, J.; Landry, L.; Last, R. Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation. Plant Physiol. 2002, 130, 234–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilbrook, K.; Arongaus, A.; Binkert, M.; Heijde, M.; Yin, R.; Ulm, R. The UVR8 UV-B Photoreceptor: Perception, Signaling and Response. Arab. Book. 2013, 11, e0164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulm, R.; Baumann, A.; Oravecz, A.; Mate, Z.; Adam, E.; Oakeley, E.J.; Schäfer, E.; Nagy, F. Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proc. Natl. Acad. Sci. USA 2004, 101, 1397–1402. [Google Scholar] [CrossRef] [Green Version]
- Wellmann, E. Specific ultraviolet effects in plant morphogenesis. Photochem. Photobiol. 1976, 24, 659–660. [Google Scholar] [CrossRef]
- Bong, F.J.; Chear, N.J.; Ramanathan, S.; Mohana-Kumaran, N.; Subramaniam, S.; Chew, B.L. The development of callus and cell suspension cultures of Sabah Snake Grass (Clinacanthus nutans) for the production of flavonoids and phenolics. Biocatal. Agric. Biotechnol. 2021, 33, 101977. [Google Scholar] [CrossRef]
- Dong, Y.; Fu, C.; Su, P.; Xu, X.; Yuan, J.; Wang, S.; Zhang, M.; Zhao, C.-f.; Yu, L. Mechanisms and effective control of physiological browning phenomena in plant cell cultures. Physiol. Plant. 2015, 156, 13–28. [Google Scholar] [CrossRef]
- Masatsune Murata, M.N.; Murai, N.; Haruta, M.; Homma, S.; Itoh, Y. A Transgenic Apple Callus Showing Reduced Polyphenol Oxidase Activity and Lower Browning Potential. Biosc. Biotech. Biochem. 2014, 65, 383–388. [Google Scholar] [CrossRef]
- Afkhami, F.; Zare, N.; Asghari, R.; Mehdizadeh, M.; Firoozi, B. The effects of ultrasound, temperature, light, chitosan and plant growth regulators on callus induction in saffron (Crocus sativus L.). Saffron Agron. Technol. 2020, 8, 361–375. [Google Scholar] [CrossRef]
- Azarafshan, M.; Peyvandi, M.; Abbaspour, H.; Noormohammadi, Z.; Majd, A. The effects of UV-B radiation on genetic and biochemical changes of Pelargonium graveolens L’Her. Physiol. Mol. Biol. Plants 2020, 26, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Gregan, S.; Winefield, C.; Jordan, B. From UVR8 to flavonol synthase: UV-B-induced gene expression in Sauvignon blanc grape berry. Plant Cell Environ. 2015, 38, 905–919. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, J.; Abozeid, A.; Wu, K.-X.; Guo, X.-R.; Mu, L.-Q.; Tang, Z.-H. UV-B Radiation Largely Promoted the Transformation of Primary Metabolites to Phenols in Astragalus mongholicus Seedlings. Biomolecules 2020, 10, 504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, A.; Singh, D.; Lingwan, M.; Yadukrishnan, P.; Masakapalli, S.; Datta, S. Light signaling and UV-B-mediated plant growth regulation. J. Integr. Plant Biol. 2020, 62, 1270–1292. [Google Scholar] [CrossRef]
- Hectors, K.; Van-Oevelen, S.; Guisez, Y.; Prinsen, E.; Jansen, M. The phytohormone auxin is a component of the regulatory system that controls UV-mediated accumulation of flavonoids and UV-induced morphogenesis. Physiol. Plant. 2012, 145, 594–603. [Google Scholar] [CrossRef]
- Hideg, E.; Jansen, M.; Strid, A. UV-B exposure, ROS, and stress: Inseparable companions or loosely linked associates? Trends Plant Sci. 2013, 18, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Inostroza-Blancheteau, C.; Reyes-Díazc, M.; Arellano, A.; Latsague, M.; Acevedo, P.; Loyola, R.; Arce-Johnson, P.; Alberdi, M. Effects of UV-B radiation on anatomical characteristics, phenolic compounds and gene expression of the phenylpropanoid pathway in highbush blueberry leaves. Plant Physiol. Biochem. 2014, 85, 85–95. [Google Scholar] [CrossRef]
- Tegelberg, R.; Julkunen-Tiitto, R.; Aphalo, P.J. The effects of longterm elevated UV-B on the growth and phenolics of field-grown silver birch (Betula pendula). Glob. Change Biol. 2001, 7, 839–848. [Google Scholar] [CrossRef]
- Ortuñoa, A.; Báidez, A.; Gómez, P.; Arcas, M.C.; Porras, I.; García-Lindón, A.; Del Río, J.A. Citrus paradisi and Citrus sinensis flavonoids: Their influence in the defence mechanism against Penicillium digitatum. Food Chem. 2006, 98, 351–358. [Google Scholar] [CrossRef]
- Day, T.A.; Neale, P.J. Effects of UV-B radiation on terrestrial and aquatic primary producers. Ann. Rev. Ecol. Syst. 2002, 33, 371–396. [Google Scholar] [CrossRef]
- Zu, Y.G.; Pang, H.H.; Yu, J.H.; Li, D.W.; Wei, X.X.; Gao, Y.X.; Tong, L. Responses in the morphology, physiology and biochemistry of Taxus chinensis var. mairei grown under supplementary UV-B radiation. J. Photochem. Photobiol. B Biol. 2010, 98, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Jingwen, Y.; Zhao, Y.; Jiang, X.; Xu, Z. Efficient Rutin and Quercetin Biosynthesis through Flavonoids-Related Gene Expression in Fagopyrum tataricum Gaertn. Hairy Root Cultures with UV-B Irradiation. Front. Plant Sci. 2016, 7, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, K.M.; Bloor, K.; Bradley, S.; Mitchell, J.; Jordan, B. UVB Radiation Induced Increase in Quercetin: Kaempferol Ratio in Wild-Type and Transgenic Lines of Petunia. Photochem. Photobiol. 1998, 68, 323–330. [Google Scholar] [CrossRef]
- Seyoum, A.; Asres, K.; El-Fiky, F. Structure-radical scavenging activity relationships of flavonoids. Phytochemistry 2006, 67, 2058–2070. [Google Scholar] [CrossRef] [PubMed]
- Ryan, K.; Swinny, E.; Markham, K.; Winefield, C. Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry 2002, 59, 23–32. [Google Scholar] [CrossRef]
- Morales, L.O.; Brosché, R.T.; Keinänen, M.; Lindfors, A.; Aphalo, P.J. Effects of solar UV-A and UV-B radiation on gene expression and phenolic accumulation in Betula pendula leaves. Tree Physiol. 2010, 30, 923–934. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Ou-Lee, T.; Raba, R.; Amundson, R.; Last, R.L. Arabidopsis flavonoid mutants are hyper-sensitive to UV-B irradiation. Plant Cell 1993, 5, 171–179. [Google Scholar] [CrossRef]
- Rodríguez-Calzada, T.; Qian, M.; Strid, A.; Neugart, S.; Schreiner, M.; Torres-Pacheco, I.; Guevara-González, R.G. Effect of UV-B radiation on morphology, phenolic compound production, gene expression, and subsequent drought stress responses in chili pepper (Capsicum annuum L.). Plant Physiol. Biochem. 2019, 134, 94–102. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Taha, H.; Ghazy, U.M.; Gabr, A.M.; EL-Kazzaz, A.A.; Ahme, E.A.; Haggag, K.M. Optimization of in vitro culture conditions affecting propagation of mulberry plant. Bull. Natl. Res. Cent. 2020, 44, 60. [Google Scholar] [CrossRef] [Green Version]
- Sesterhenn, K.; Wink, M.; Distl, M. Occurrence of iridoid glycosides in vitro cultures and intact plants of Scrophularia nodosa L. Plant Cell Rep. 2007, 26, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Grąbkowska, R.; Mielicki, W.; Wielanek, M.; Wysokińska, H. Changes of phenylethanoid and iridoid glycoside distribution in various tissues of shoot cultures and regenerated plants of Harpagophytum procumbens (Burch.) DC. ex Meisn. S. Afr. J. Bot. 2014, 95, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.; Orthofer, R.; Lamuela, R. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in Enzymology; Academic Press: London, UK, 1999; pp. 153–178. [Google Scholar]
- Chang, C.; Yang, M.; Wen, H.; Chern, J. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Marchev, A.; Gergiev, V.; Ivanov, I.; Badjakov, I.; Pavlov, A. Two-phase temporary immersion system for Agrobacterium rhizogenes genetic transformation of sage (Salvia tomentosa Mill.). Biotechnol. Lett. 2011, 33, 1873–1878. [Google Scholar] [CrossRef] [PubMed]
Fresh Weight of Callus (mg) | |||||||
---|---|---|---|---|---|---|---|
Exposure Period (Weeks) | Origin of Callus | Exposure Time to UV-B (h/day) | Mean Explant of Origin (LSD = 16.45) | ||||
0 | 1 | 2 | 3 | 4 | |||
2 | Leaf | 612.8 ± 9.7 d | 618.5 ± 12 d | 764.9 ± 21 c | 837 ± 23 b | 907.3 ± 7 a | 748.1 A |
Stem | 547.4 ± 15 e | 558.2 ± 42 e | 563.5 ± 31 e | 803 ± 20 b | 894 ± 6 a | 673.2 B | |
Average exposure time (LSD = 26.0) | 580.1 D | 588.3 D | 664.2 C | 820 B | 900.7 A | Interactions (LSD = 36.78) | |
0 | 1 | 2 | 3 | 4 | Mean explant of origin (LSD = 49.44) | ||
4 | Leaf | 781 ± 129 cd | 858.2 ± 46 bc | 880 ± 64 bc | 919.7 ± 43 b | 1289.4 ± 107 a | 945.8 A |
Stem | 847.1 ± 19 bc | 940.5 ± 60 b | 864.6 ± 25.1 bc | 946 ± 17 b | 695.8 ± 24 cd | 858.8 B | |
Average exposure time (LSD = 78.18) | 814.3 C | 899.4 B | 872.3 BC | 932.9 AB | 992.6 A | Interactions (LSD = 110.56) |
Dry Weight of Callus (mg) | |||||||
---|---|---|---|---|---|---|---|
Exposure Period (Weeks) | Origin of Callus | Exposure Time to UV-B (h/day) | Mean Explant of Origin (LSD = 1.60) | ||||
0 | 1 | 2 | 3 | 4 | |||
2 | Leaf | 53.56 ± 3.1 e | 55.46 ± 0.8 de | 69.63 ± 0.8 c | 78.4 ± 0.7 b | 83.86 ± 0.8 a | 68.18 A |
Stem | 32.46 ± 1.2 g | 35.13 ± 3.8 fg | 36.9 ± 2.7 f | 58.93 ± 1.8 d | 70.2 ± 2.3 c | 46.72 B | |
Average exposure time (LSD = 2.53) | 43.01 D | 45.3 D | 53.26 C | 68.66 B | 77.03 A | Interactions (LSD = 3.58) | |
0 | 1 | 2 | 3 | 4 | Mean explant of origin (LSD = 3.15) | ||
4 | Leaf | 63.2 ± 2.8 f | 75.5 ± 3.9 de | 79.2 ± 5.3 cd | 83.1 ± 1.8 bc | 149.3 ± 9 a | 90.04 A |
Stem | 70.7 ± 0.8 e | 86.9 ± 4.2 b | 77.5 ± 1.9 cde | 82 ± 1.2 bcd | 81.2 ± 1.3 bcd | 79.74 B | |
Average exposure time (LSD = 4.99) | 66.96 C | 81.17 B | 78.31 B | 82.8 B | 115.21 A | Interactions (LSD = 7.06) |
Growth Index of Callus (%) | |||||||
---|---|---|---|---|---|---|---|
Exposure Period (Weeks) | Origin of Callus | Exposure Time to UV-B (h/day) | Mean Explant of Origin (LSD = 6.58) | ||||
0 | 1 | 2 | 3 | 4 | |||
2 | Leaf | 145.1 ± 4 d | 147.4 ±5 d | 206 ± 8 c | 234.8 ± 9 b | 263 ± 3 a | 199.245 A |
Stem | 118.9 ± 6 e | 123 ± 17 e | 125 ± 12 e | 221± 8 b | 257.6 ± 3 a | 169.287 B | |
Average exposure time (LSD = 10.41) | 132.04 D | 135.33 D | 165.67 C | 228 B | 260.27 A | Interactions (LSD = 14.71) | |
0 | 1 | 2 | 3 | 4 | Mean explant of origin (LSD= 19.78) | ||
4 | Leaf | 212 ± 51 cd | 243 ± 19 bc | 252 ± 26 bc | 268 ± 17 b | 415.7 ± 43 a | 278.305 A |
Stem | 238.8 ± 8 bc | 276.2 ± 24 b | 245.8 ± 10 bc | 278.4 ± 7 b | 178.3 ± 10 d | 243.526 B | |
Average exposure time (LSD = 31.27) | 225.73 C | 259.74 B | 248.9 BC | 273.16 AB | 297.02 A | Interactions (LSD = 44.23) |
Total Phenols (mg Gallic Acid Equivalents/g Dry Weight of Callus) | |||||||
---|---|---|---|---|---|---|---|
Exposure Period (weeks) | Origin of Callus | Exposure Time to UV-B (h/day) | Mean Explant of Origin (LSD = 0.31) | ||||
0 | 1 | 2 | 3 | 4 | |||
2 | Leaf | 6.97 ± 0.2 e | 7.3 ± 0.3 e | 9.43 ± 0.5 bc | 8.9 ± 0.6 c | 11.2 ± 0.7 a | 8.77 A |
Stem | 7.07 ± 0.1 e | 7.4 ± 0.3 de | 7.6 ± 0.34 de | 8.2 ± 0.5 d | 9.8 ± 0.4 b | 8.01 B | |
Average exposure time (LSD = 0.49) | 6.99 C | 7.36 C | 8.53 B | 8.58 B | 10.50 A | Interactions (LSD = 0.69) | |
0 | 1 | 2 | 3 | 4 | Mean explant of origin (LSD = 0.23) | ||
4 | Leaf | 8.4 ± 0.1 e | 10.4 ± 0.3 cd | 10.7 ± 0.3 bc | 11 ± 0.1 b | 12.2 ± 0.14 a | 10.55 A |
Steam | 8.5 ± 0.54 e | 8.4 ± 0.2 e | 9.9 ± 0.2 d | 10.5 ± 0.5 bc | 11 ± 0.05 b | 9.70 B | |
Average exposure time (LSD = 0.36) | 8.46 D | 9.42 C | 10.35 C | 10.78 B | 11.62 A | Interactions (LSD = 0.52) |
Total Flavonoids (mg Quercetin Equivalents/g Dry Weight) | |||||||
---|---|---|---|---|---|---|---|
Exposure Period (Weeks) | Origin of Callus | Exposure Time to UV-B (h/day) | Mean Explant of Origin (LSD = 0.23) | ||||
0 | 1 | 2 | 3 | 4 | |||
2 | Leaf | 3.11 ±0.07 ef | 3.39 ±0.3 ef | 3.76 ± 0.17 ef | 6.6 ± 0.12 b | 7.39 ±0.38 a | 4.85 B |
Stem | 4.52 ± 0.43 d | 5.38 ± 0.3 c | 5.79 ± 0.17 c | 5.58 ± 0.43 c | 6.88 ±0.3 ab | 5.63 A | |
Average exposure time (LSD = 0.37) | 3.81 E | 4.39 D | 4.78 C | 6.09 B | 7.13 A | Interactions (LSD = 0.52) | |
0 | 1 | 2 | 3 | 4 | Mean explant of origin (LSD = 0.12) | ||
4 | Leaf | 4.71 ± 0.17 h | 5.75 ±0.18 g | 6.28 ± 0.13 e | 7.5 ± 0.05 b | 8.32 ±0.09 a | 6.5227 A |
Stem | 4.22 ± 0.2 i | 6.1 ±0.14 fg | 6.13 ± 0.18 ef | 6.92 ± 0.18 d | 7.24 ±0.14 c | 6.10749 B | |
Average exposure time (LSD = 0.19) | 4.46 E | 5.88 D | 6.20 C | 7.23 B | 7.78 A | Interactions (LSD = 0.27) |
Treatment | Explant Type | Plant Growth Regulator (mg/mL) | |
---|---|---|---|
2,4-D | TDZ | ||
1 * | Leaf | 0.0 | 0.0 |
2 | Leaf | 0.0 | 0.5 |
3 | Leaf | 0.0 | 1.0 |
4 | Leaf | 0.5 | 0.0 |
5 | Leaf | 0.5 | 0.5 |
6 | Leaf | 0.5 | 1.0 |
7 | Leaf | 1.0 | 0.0 |
8 | Leaf | 1.0 | 0.5 |
9 | Leaf | 1.0 | 1.0 |
10 * | Stem | 0.0 | 0.0 |
11 | Stem | 0.0 | 0.5 |
12 | Stem | 0.0 | 1.0 |
13 | Stem | 0.5 | 0.0 |
14 | Stem | 0.5 | 0.5 |
15 | Stem | 0.5 | 1.0 |
16 | Stem | 1.0 | 0.0 |
17 | Stem | 1.0 | 0.5 |
18 | Stem | 1.0 | 1.0 |
Treatment | Origin of Callus | Exposure Time to UV-B (h/day) |
---|---|---|
1 * | Leaf | 0 |
2 | Leaf | 1 |
3 | Leaf | 2 |
4 | Leaf | 3 |
5 | leaf | 4 |
6 * | Stem | 0 |
7 | Stem | 1 |
8 | Stem | 2 |
9 | Stem | 3 |
10 | Stem | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Silvestre, K.E.; Santiz-Gómez, J.A.; Luján-Hidalgo, M.C.; Ruiz-Lau, N.; Sánchez-Roque, Y.; Gutiérrez-Miceli, F.A. Effect of UV-B Radiation on Flavonoids and Phenols Accumulation in Tempisque (Sideroxylon capiri Pittier) Callus. Plants 2022, 11, 473. https://doi.org/10.3390/plants11040473
Martínez-Silvestre KE, Santiz-Gómez JA, Luján-Hidalgo MC, Ruiz-Lau N, Sánchez-Roque Y, Gutiérrez-Miceli FA. Effect of UV-B Radiation on Flavonoids and Phenols Accumulation in Tempisque (Sideroxylon capiri Pittier) Callus. Plants. 2022; 11(4):473. https://doi.org/10.3390/plants11040473
Chicago/Turabian StyleMartínez-Silvestre, Karina E., José Alfredo Santiz-Gómez, María Celina Luján-Hidalgo, Nancy Ruiz-Lau, Yazmin Sánchez-Roque, and Federico A. Gutiérrez-Miceli. 2022. "Effect of UV-B Radiation on Flavonoids and Phenols Accumulation in Tempisque (Sideroxylon capiri Pittier) Callus" Plants 11, no. 4: 473. https://doi.org/10.3390/plants11040473
APA StyleMartínez-Silvestre, K. E., Santiz-Gómez, J. A., Luján-Hidalgo, M. C., Ruiz-Lau, N., Sánchez-Roque, Y., & Gutiérrez-Miceli, F. A. (2022). Effect of UV-B Radiation on Flavonoids and Phenols Accumulation in Tempisque (Sideroxylon capiri Pittier) Callus. Plants, 11(4), 473. https://doi.org/10.3390/plants11040473