Neurotherapy of Yi-Gan-San, a Traditional Herbal Medicine, in an Alzheimer’s Disease Model of Drosophila melanogaster by Alleviating Aβ42 Expression
Abstract
:1. Introduction
2. Results
2.1. Chromatographic Fingerprints of YGS
2.2. YGS Treatment Shows Better DPPH Free Radical Scavenging Activity
2.3. YGS Treatment Shows Higher Cell Viability of SH-SY5Y Cells
2.4. YGS Treatment Shows Higher Survival Rate for Aβ42 Flies
2.5. YGS Treatment Shows Better Climbing Index for Aβ42 Flies
2.6. YGS Treatment Shows Greater Green Fluorescent Protein (GFP) Fluorescence in the External Eyes for GFP-Aβ42 Flies
2.7. YGS Treatment Shows Reduced Aβ Expression for Aβ42 Flies by IMR Assay
2.8. YGS Treatment Shows Reduced Aβ Expression for GFP-Aβ42 Flies by Western Blotting Assay
3. Discussion
4. Materials and Methods
4.1. Yi-Gan-San (YGS) Preparation
4.2. Phytochemical Screening
4.3. DPPH Assay
4.4. MTT Assay under YGS Treatment
4.5. Animals and Experimental Design
4.6. Survival Rate and Behavior Analysis in Drosophila
4.7. Retinal GFP Expression Assay in Drosophila
4.8. IMR Assay in Drosophila
4.9. Western Blotting in Drosophila
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lawlor, B.A. Behavioral and psychological symptoms in dementia: The role of atypical antipsychotics. J. Clin. Psychiatry 2004, 65, 5–10. [Google Scholar] [PubMed]
- Ballard, C.G.; Gauthier, S.; Cummings, J.L.; Brodaty, H.; Grossberg, G.T.; Robert, P.; Lyketsos, C.G. Management of agitation and aggression associated with Alzheimer disease. Nat. Rev. Neurol. 2009, 5, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Cerejeira, J.; Lagarto, L.; Mukaetova-Ladinska, E. Behavioral and Psychological Symptoms of Dementia. Front. Neurol. 2012, 3, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leinonen, V.; Koivisto, A.M.; Savolainen, S.; Rummukainen, J.; Tamminen, J.N.; Tillgren, T.; Vainikka, S.; Bm, O.T.P.; Mölsä, J.; Fraunberg, M.; et al. Amyloid and tau proteins in cortical brain biopsy and Alzheimer’s disease. Ann. Neurol. 2010, 68, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef] [PubMed]
- Chiu, M.-J.; Yang, S.-Y.; Horng, H.-E.; Yang, C.-C.; Chen, T.-F.; Chieh, J.-J.; Chen, H.-H.; Chen, T.-C.; Ho, C.-S.; Chang, S.-F.; et al. Combined Plasma Biomarkers for Diagnosing Mild Cognition Impairment and Alzheimer’s Disease. ACS Chem. Neurosci. 2013, 4, 1530–1536. [Google Scholar] [CrossRef] [Green Version]
- Mizukami, K.; Asada, T.; Kinoshita, T.; Tanaka, K.; Sonohara, K.; Nakai, R.; Yamaguchi, K.; Hanyu, H.; Kanaya, K.; Takao, T.; et al. A randomized cross-over study of a traditional Japanese medicine (kampo), yokukansan, in the treatment of the behavioural and psychological symptoms of dementia. Int. J. Neuropsychopharmacol. 2009, 12, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Teranishi, M.; Kurita, M.; Nishino, S.; Takeyoshi, K.; Numata, Y.; Sato, T.; Tateno, A.; Okubo, Y. Efficacy and Tolerability of Risperidone, Yokukansan, and Fluvoxamine for the Treatment of Behavioral and Psychological Symptoms of Dementia: A Blinded, Randomized Trial. J. Clin. Psychopharmacol. 2013, 33, 600–607. [Google Scholar] [CrossRef]
- Ikarashi, Y.; Mizoguchi, K. Neuropharmacological efficacy of the traditional Japanese Kampo medicine yokukansan and its active ingredients. Pharmacol. Ther. 2016, 166, 84–95. [Google Scholar] [CrossRef] [Green Version]
- Nakatani, Y.; Tsuji, M.; Amano, T.; Miyagawa, K.; Miyagishi, H.; Saito, A.; Imai, T.; Takeda, K.; Ishii, D.; Takeda, H. Neuroprotective effect of yokukansan against cytotoxicity induced by corticosterone on mouse hippocampal neurons. Phytomedicine 2014, 21, 1458–1465. [Google Scholar] [CrossRef]
- Iwasaki, K.; Satoh-Nakagawa, T.; Maruyama, M.; Monma, Y.; Nemoto, M.; Tomita, N.; Tanji, H.; Fujiwara, H.; Seki, T.; Fujii, M.; et al. A Randomized, Observer-Blind, Controlled Trial of the Traditional Chinese Medicine Yi-Gan San for Improvement of Behavioral and Psychological Symptoms and Activities of Daily Living in Dementia Patients. J. Clin. Psychiatry 2005, 66, 248–252. [Google Scholar] [CrossRef]
- Kawanabe, T.; Yoritaka, A.; Shimura, H.; Oizumi, H.; Tanaka, S.; Hattori, N. Successful Treatment with Yokukansan for Behavioral and Psychological Symptoms of Parkinsonian Dementia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 284–287. [Google Scholar] [CrossRef]
- Nagata, K.; Yokoyama, E.; Yamazaki, T.; Takano, D.; Maeda, T.; Takahashi, S.; Terayama, Y. Effects of Yokukansan on Behavioral and Psychological Symptoms of Vascular Dementia: An Open-Label Trial. Phytomedicine 2012, 19, 524–528. [Google Scholar] [CrossRef]
- Okahara, K.; Ishida, Y.; Hayashi, Y.; Inoue, T.; Tsuruta, K.; Takeuchi, K.; Yoshimuta, H.; Kiue, K.; Ninomiya, Y.; Kawano, J.; et al. Effects of Yokukansan on Behavioral and Psychological Symptoms of Dementia in Regular Treatment for Alzheimer’s Disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 532–536. [Google Scholar] [CrossRef]
- Burr, A.A.; Tsou, W.-L.; Ristic, G.; Todi, S.V. Using membrane-targeted green fluorescent protein to monitor neurotoxic protein-dependent degeneration ofDrosophilaeyes. J. Neurosci. Res. 2014, 92, 1100–1109. [Google Scholar] [CrossRef] [Green Version]
- Yeh, P.-A.; Chien, J.-Y.; Chou, C.-C.; Huang, Y.-F.; Tang, C.-Y.; Wang, H.-Y.; Su, M.-T. Drosophila notal bristle as a novel assessment tool for pathogenic study of Tau toxicity and screening of therapeutic compounds. Biochem. Biophys. Res. Commun. 2010, 391, 510–516. [Google Scholar] [CrossRef]
- Tan, F.H.P.; Azzam, G. Drosophila melanogaster: Deciphering Alzheimer’s Disease. Malays. J. Med. Sci. 2017, 24, 6–20. [Google Scholar] [CrossRef]
- Edwards, P.; Wischik, C.M. Monitoring pathological assembly of tau and ?-amyloid proteins in Alzheimer’s disease. Acta Neuropathol. 1995, 89, 50–56. [Google Scholar] [CrossRef]
- Braak, H.; Del Tredici, K. The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain 2015, 138, 2814–2833. [Google Scholar] [CrossRef]
- He, Z.; Guo, J.L.; McBride, J.D.; Narasimhan, S.; Kim, H.; Changolkar, L.; Zhang, B.; Gathagan, R.; Yue, C.; Dengler, C.; et al. Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat. Med. 2018, 24, 29–38. [Google Scholar] [CrossRef]
- Olsson, B.; Lautner, R.; Andreasson, U.; Öhrfelt, A.; Portelius, E.; Bjerke, M.; Hölttä, M.; Rosén, C.; Olsson, C.; Strobel, G.; et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Lancet Neurol. 2016, 15, 673–684. [Google Scholar] [CrossRef]
- Bjerke, M.; Engelborghs, S. Cerebrospinal Fluid Biomarkers for Early and Differential Alzheimer’s Disease Diagnosis. J. Alzheimer’s Dis. 2018, 62, 1199–1209. [Google Scholar] [CrossRef] [Green Version]
- Chieh, J.-J.; Huang, K.-W.; Chuang, C.P.; Wei, W.C.; Dong, J.J.; Lee, Y.Y. Immunomagnetic Reduction Assay on Des-Gamma-Carboxy Prothrombin for Screening of Hepatocellular Carcinoma. IEEE Trans. Biomed. Eng. 2015, 63, 1681–1686. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Chiu, M.-J.; Chen, T.-F.; Horng, H.-E. Detection of Plasma Biomarkers Using Immunomagnetic Reduction: A Promising Method for the Early Diagnosis of Alzheimer’s Disease. Neurol. Ther. 2017, 6, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-Y.; Liu, H.-C.; Chen, W.-P. Immunomagnetic Reduction Detects Plasma Aβ1–42 Levels as a Potential Dominant Indicator Predicting Cognitive Decline. Neurol. Ther. 2020, 9, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Teunissen, C.E.; Chiu, M.-J.; Yang, C.-C.; Yang, S.-Y.; Scheltens, P.; Zetterberg, H.; Blennow, K. Plasma Amyloid-β (Aβ42) Correlates with Cerebrospinal Fluid Aβ42 in Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 62, 1857–1863. [Google Scholar] [CrossRef] [PubMed]
- Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative diseases and oxidatives stress. Nat. Rev. Drug Discov. 2004, 3, 205–214. [Google Scholar] [CrossRef]
- Doo, A.-R.; Kim, S.-N.; Park, J.-Y.; Cho, K.H.; Hong, J.; Eun-Kyung, K.; Moon, S.K.; Jung, W.S.; Lee, H.; Jung, J.H.; et al. Neuroprotective effects of an herbal medicine, Yi-Gan San on MPP+/MPTP-induced cytotoxicity in vitro and in vivo. J. Ethnopharmacol. 2010, 131, 433–442. [Google Scholar] [CrossRef]
- Heitman, E.; Ingram, D.K. Cognitive and neuroprotective effects of chlorogenic acid. Nutr. Neurosci. 2017, 20, 32–39. [Google Scholar] [CrossRef]
- Zhang, J.-G.; Geng, C.-A.; Huang, X.-Y.; Chen, X.-L.; Ma, Y.-B.; Zhang, X.-M.; Chen, J.-J. Chemical and biological comparison of different sections of Uncaria rhynchophylla (Gou-Teng). Eur. J. Mass Spectrom. 2017, 23, 11–21. [Google Scholar] [CrossRef]
- Lin, C.-M.; Lin, Y.-T.; Lee, T.-L.; Imtiyaz, Z.; Hou, W.-C.; Lee, M.-H. In vitro and in vivo evaluation of the neuroprotective activity of Uncaria hirsuta Haviland. J. Food Drug Anal. 2020, 28, 147–158. [Google Scholar] [CrossRef]
- Lee, T.-K.; Kang, I.-J.; Kim, B.; Sim, H.J.; Kim, D.-W.; Ahn, J.H.; Lee, J.-C.; Ryoo, S.; Shin, M.C.; Cho, J.H.; et al. Experimental Pretreatment with Chlorogenic Acid Prevents Transient Ischemia-Induced Cognitive Decline and Neuronal Damage in the Hippocampus through Anti-Oxidative and Anti-Inflammatory Effects. Molecules 2020, 25, 3578. [Google Scholar] [CrossRef]
- Gao, L.; Li, X.; Meng, S.; Ma, T.; Wan, L.; Xu, S. Chlorogenic Acid Alleviates Aβ25-35-Induced Autophagy and Cognitive Impairment via the mTOR/TFEB Signaling Pathway. Drug Des. Dev. Ther. 2020, 14, 1705–1716. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, Y.; Zhao, L.; Wang, C.; Ma, W.; Ge, G.; Wang, Y.; Ullah, I.; Muhammad, F.; Alwayli, D.; et al. Ferulic acid delayed amyloid β-induced pathological symptoms by autophagy pathway via a fasting-like effect in Caenorhabditis elegans. Food Chem. Toxicol. 2020, 146, 111808. [Google Scholar] [CrossRef]
- Zhai, K.-F.; Duan, H.; Cui, C.-Y.; Cao, Y.-Y.; Si, J.-L.; Yang, H.-J.; Wang, Y.-C.; Cao, W.-G.; Gao, G.-Z.; Wei, Z.-J. Liquiritin from Glycyrrhiza uralensis Attenuating Rheumatoid Arthritis via Reducing Inflammation, Suppressing Angiogenesis, and Inhibiting MAPK Signaling Pathway. J. Agric. Food Chem. 2019, 67, 2856–2864. [Google Scholar] [CrossRef]
- Jia, S.-L.; Wu, X.-L.; Li, X.-X.; Dai, X.-L.; Gao, Z.-L.; Lu, Z.; Zheng, Q.; Sun, Y.-X. Neuroprotective effects of liquiritin on cognitive deficits induced by soluble amyloid-β1–42 oligomers injected into the hippocampus. J. Asian Nat. Prod. Res. 2016, 18, 1186–1199. [Google Scholar] [CrossRef]
- Sun, X.; Zeng, H.; Wang, Q.; Yu, Q.; Wu, J.; Feng, Y.; Deng, P.; Zhang, H. Glycyrrhizin ameliorates inflammatory pain by inhibiting microglial activation-mediated inflammatory response via blockage of the HMGB1-TLR4-NF-kB pathway. Exp. Cell Res. 2018, 369, 112–119. [Google Scholar] [CrossRef]
- Kong, Z.-H.; Chen, X.; Hua, H.-P.; Liang, L.; Liu, L.-J. The Oral Pretreatment of Glycyrrhizin Prevents Surgery-Induced Cognitive Impairment in Aged Mice by Reducing Neuroinflammation and Alzheimer’s-Related Pathology via HMGB1 Inhibition. J. Mol. Neurosci. 2017, 63, 385–395. [Google Scholar] [CrossRef]
- Gong, W.-X.; Zhou, Y.-Z.; Qin, X.-M.; DU, G.-H. Involvement of mitochondrial apoptotic pathway and MAPKs/NF-κ B inflammatory pathway in the neuroprotective effect of atractylenolide III in corticosterone-induced PC12 cells. Chin. J. Nat. Med. 2019, 17, 264–274. [Google Scholar] [CrossRef]
- Zhu, W.-L.; Zheng, J.-Y.; Cai, W.-W.; Dai, Z.; Li, B.-Y.; Xu, T.-T.; Liu, H.-F.; Liu, X.-Q.; Wei, S.-F.; Luo, Y.; et al. Ligustilide improves aging-induced memory deficit by regulating mitochondrial related inflammation in SAMP8 mice. Aging 2020, 12, 3175–3189. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, M.-T.; Jheng, Y.-S.; Lu, C.-W.; Wu, W.-J.; Yang, S.-Y.; Chuang, W.-C.; Lee, M.-C.; Wu, C.-H. Neurotherapy of Yi-Gan-San, a Traditional Herbal Medicine, in an Alzheimer’s Disease Model of Drosophila melanogaster by Alleviating Aβ42 Expression. Plants 2022, 11, 572. https://doi.org/10.3390/plants11040572
Su M-T, Jheng Y-S, Lu C-W, Wu W-J, Yang S-Y, Chuang W-C, Lee M-C, Wu C-H. Neurotherapy of Yi-Gan-San, a Traditional Herbal Medicine, in an Alzheimer’s Disease Model of Drosophila melanogaster by Alleviating Aβ42 Expression. Plants. 2022; 11(4):572. https://doi.org/10.3390/plants11040572
Chicago/Turabian StyleSu, Ming-Tsan, Yong-Sin Jheng, Chen-Wen Lu, Wen-Jhen Wu, Shieh-Yueh Yang, Wu-Chang Chuang, Ming-Chung Lee, and Chung-Hsin Wu. 2022. "Neurotherapy of Yi-Gan-San, a Traditional Herbal Medicine, in an Alzheimer’s Disease Model of Drosophila melanogaster by Alleviating Aβ42 Expression" Plants 11, no. 4: 572. https://doi.org/10.3390/plants11040572
APA StyleSu, M. -T., Jheng, Y. -S., Lu, C. -W., Wu, W. -J., Yang, S. -Y., Chuang, W. -C., Lee, M. -C., & Wu, C. -H. (2022). Neurotherapy of Yi-Gan-San, a Traditional Herbal Medicine, in an Alzheimer’s Disease Model of Drosophila melanogaster by Alleviating Aβ42 Expression. Plants, 11(4), 572. https://doi.org/10.3390/plants11040572