Effect of Pb-Contaminated Water on Ludwigia stolonifera (Guill. & Perr.) P.H. Raven Physiology and Phytoremediation Performance
Abstract
:1. Introduction
2. Results
2.1. Lead Removal and Accumulation
2.2. Pigment Content
2.3. Antioxidant Enzymes
2.4. Fresh and Dry Weight
2.5. Protein
2.6. Carbohydrate
3. Discussion
4. Materials and Methods
4.1. Plant Material and Growth Conditions
4.2. Metal Content Measurement
4.3. Determination of Photosynthetic Pigments
4.4. Antioxidant Enzymes Activity
4.5. Fresh and Dry Weight
4.6. Determination of Organic Solutes
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magdolenova, Z.; Collins, A.; Kumar, A.; Dhawan, A.; Stone, V.; Dusinska, M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 2014, 8, 233–278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, X.; Yang, H.; Cui, Z. Biochemical mechanism of phytoremediation process of lead and cadmium pollution with Mucor circinelloides and Trichoderma asperellum. Ecotoxicol. Environ. Saf. 2018, 157, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Arise, R.O.; Aboyewa, J.A.; Osioma, E. Biochemical changes in Lumbricus terrestris and Phytoaccumulation of Heavy Metals from Ugberikoko Petroleum Flow Station Swamps, Delta State, Nigeria. Nig. J. Basic Appl. Sci. 2015, 23, 141–155. [Google Scholar]
- Zeng, L.S.; Liao, M.; Chen, C.L.; Huang, C.Y. Effects of lead contamination on soil microbial activity and rice physiological indices in soil Pb–rice (Oryza sativa L.) system. Chemosphere 2006, 65, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Aboelkassem, A.; Abd-Elaal, A.M.; Gad, A.M.; Saber, A.S. Experimental study on removal of toxic metals and nutrient salts from secondary treated wastewater using Echinochloa pyramidalis and Ludwigia stolonifera. J. Environ. Stud. 2021, 24, 15–25. [Google Scholar] [CrossRef]
- Abd-Elaal, A.M.; Aboelkassem, A.; Gad, A.M.; Ahmed, S.A. Removal of heavy metals from wastewater by natural growing plants on River Nile banks in Egypt. Water Pract. Technol. 2020, 15, 947–959. [Google Scholar] [CrossRef]
- USEPA. Introduction to Phytoremediation; EPA 600/R-99/107; United States Environmental Protection Agency: Cincinnati, OH, USA, 2000.
- Mazej, Z.G.; Germ, M. Myriophyllum spicatum and Najas marina as Bioindicators of Trace Element Contamination in Lakes. J. Freshw. Ecol. 2010, 3, 25421–25426. [Google Scholar]
- Hammad, D.M. Cu, Ni and Zn phytoremediation and translocation by water hyacinth plant at different aquatic environments. Aust. J. Basic Appl. Sci. 2011, 5, 11–22. [Google Scholar]
- Cunningham, S.D.; Ow, D.W. Promises and prospects of phytoremediation. Plant Physiol. 1996, 110, 715–719. [Google Scholar] [CrossRef]
- Gardea-Torresdey, J.L.; Peralta-Videa, J.R.; Montes, M.; de la Rosa, G.; Corral-Diaz, B. Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: Impact on plant growth and uptake of nutritional elements. Bioresour. Technol. 2005, 92, 229–235. [Google Scholar] [CrossRef]
- Jadia, C.D.; Fulekar, M.H. Phytoremediation of heavy metals: Recent techniques. Afr. J. Biotechnol. 2009, 8, 921–928. [Google Scholar]
- Maine, M.A.; Duarte, M.V.; Sune, N.L. Cadmium uptake by Pistia stratiotes. Water Res. 2001, 35, 2629–2634. [Google Scholar] [CrossRef]
- Mishra, V.K.; Tripathi, B.D. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour. Technol. 2008, 99, 7091–7097. [Google Scholar] [CrossRef] [PubMed]
- Garbisu, C.; Alkorta, I. Phytoextraction: A cost-effective plant-based technology for the removal of metals from the environment. Bioresour. Technol. 2001, 77, 229–236. [Google Scholar] [CrossRef]
- El-Khatib, A.A.; Hegazy, A.K.; Aboelkassem, A. Bioaccumulation potential and physiological responses of aquatic macrophytes to pb pollution. Int. J. Phytoremediat. 2014, 16, 29–45. [Google Scholar] [CrossRef]
- Ali Nafea, E.-S.M. Ecological performance of Ludwigia stolonifera (Guill & Perr.) P.H. Raven under different pollution loads. Egypt. J. Aquat. Biol. Fish. 2019, 23, 39–50. [Google Scholar]
- Saleh, H.M.; Bayoumi, T.A.; Mahmoud, H.H. Uptake of cesium and cobalt radionuclides from simulated radioactive wastewater by Ludwigia stolonifera aquatic plant. Nucl. Eng. Des. 2017, 315, 194–199. [Google Scholar] [CrossRef]
- Rocío Fernández San Juan, M.; Carolina, B.; Albornoz, K.L.; Roberto, N. Bioaccumulation of heavy metals in Limnobium laevigatum and Ludwigia peploides: Their phytoremediation potential in water contaminated with heavy metals. Environ. Earth Sci. 2018, 77, 404. [Google Scholar] [CrossRef]
- Singh, R.; Tripathi, R.D.; Dwivedi, S.; Kumar, A.; Trivedi, P.K.; Chakrabarty, D. Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour. Technol. 2010, 101, 3025–3032. [Google Scholar] [CrossRef]
- Veselý, T.; Tlustoš, P.; Száková, J. The Use of Water Lettuce (Pistia stratiotes L.) for Rhizofiltration of a Highly Polluted Solution by Cadmium and Lead. Int. J. Phytoremediat. 2011, 13, 859–872. [Google Scholar] [CrossRef]
- Soda, S.; Hamada, T.; Yamaoka, Y.; Ike, M.; Nakazato, H.; Saeki, Y.; Kasamatsu, T.; Sakurai, Y. Constructed wetlands for advanced treatment of wastewater with a complex matrix from a metal processing plant: Bioconcentration and translocation factors of various metals in Acorus gramineus and Cyperus alternifolius. Ecol. Eng. 2012, 39, 63–70. [Google Scholar] [CrossRef]
- Salawu, M.O.; Sunday, E.T.; Oloyede, H.O.B. Bioaccumulative activity of Ludwigia peploides on heavy metals-contaminated water. Environ. Technol. Innov. 2018, 10, 324–334. [Google Scholar] [CrossRef]
- Albornoz, C.B.; Larsen, K.; Landa, R.; Quiroga, M.A.; Najle, R.; Marcovecchio, J. Lead and zinc determinations in Festuca arundinacea and Cynodon dactylon collected from contaminated soils in Tandil (Buenos Aires Province, Argentina). Environ. Earth Sci. 2016, 75, 742. [Google Scholar] [CrossRef]
- Galal, T.M.; Al-Sodany, Y.M.; Al-Yasi, H.M. Phytostabilization as a phytoremediation strategy for mitigating water pollutants by the floating macrophyte Ludwigia stolonifera (Guill. & Perr.) P.H. Raven. Int. J. Phytoremediat. 2020, 22, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Eid, E.M.; Galal, T.M.; Sewelam, N.A.; Talha, N.I.; Abdallah, S.M. Phytoremediation of heavy metals by four aquatic macrophytes and their potential use as contamination indicators: A comparative assessment. Environ. Sci. Pollut. Res. Int. 2020, 27, 12138–12151. [Google Scholar] [CrossRef] [PubMed]
- Afshan, S.; Ali, S.; Bharwana, S.A.; Rizwan, M.; Farid, M.; Abbas, F.; Ibrahim, M.; Mehmood, M.A.; Abbasi, G.H. Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environ. Sci. Pollut. Res. 2015, 22, 11679–11689. [Google Scholar] [CrossRef] [PubMed]
- Farmer, E.E.; Mueller, M.J. ROS-mediated lipid peroxidation and RES-activated signaling. Annu. Rev. Plant Biol. 2013, 64, 429–450. [Google Scholar] [CrossRef]
- Kanwal, U.; Ali, S.; Shakoor, M.B.; Farid, M.; Hussain, S.; Yasmeen, T.; Adrees, M.; Bharwana, S.A.; Abbas, F. EDTA ameliorates phytoextraction of lead and plant growth by reducing morphological and biochemical injuries in Brassica napus L. under lead stress. Environ. Sci. Pollut. Res. 2014, 21, 9899–9910. [Google Scholar] [CrossRef]
- Keller, C.; Rizwan, M.; Davidian, J.C.; Pokrovsky, O.S.; Bovet, N.; Chaurand, P.; Meunier, J.D. Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 μM Cu. Planta 2015, 241, 847–860. [Google Scholar] [CrossRef] [Green Version]
- Rizwan, M.; Meunier, J.D.; Davidian, J.C.; Pokrovsky, O.S.; Bovet, N.; Keller, C. Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environ. Sci. Pollut. Res. 2015, 23, 1414–1427. [Google Scholar] [CrossRef]
- Tauqeer, H.M.; Ali, S.; Rizwan, M.; Ali, Q.; Saeed, R.; Iftikhar, U.; Ahmad, R.; Farid, M.; Abbasi, G.H. Phytoremediation of heavy metals by Alternanthera bettzickiana: Growth and physiological response. Ecotoxicol. Environ. Saf. 2016, 126, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Gu, B.; Yang, Z.; Zhang, T. The role of submerged macrophytes in phytoremediation of arsenic from contaminated water: A case study on Vallisneria natans (Lour.) Hara. Ecotoxicol. Environ. Saf. 2018, 165, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Huan, X.; Shitao, P.; Xianbin, L.; Jianna, J.; Han, W. Phytoremediation of nutrients and organic carbon from contaminated water by aquatic macrophytes and the physiological response. Environ. Technol. Innov. 2021, 21, 101295. [Google Scholar]
- Piotrowska, A.; Bajguz, A.; Godlewska-Zykiewicz, B.; Czerpak, R.; Kaminska, M. Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environ. Exp. Bot. 2009, 66, 507–513. [Google Scholar] [CrossRef]
- Ehsan, S.; Ali, S.; Noureen, S.; Mahmood, K.; Farid, M.; Ishaque, W.; Shakoor, M.B.; Rizwan, M. Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol. Environ. Saf. 2014, 106, 164–172. [Google Scholar] [CrossRef]
- Myśliwa-Kurdziel, B.; Prasad, M.N.V.; Strzałka, K. Heavy Metal Influence on the Light Phase of Photosynthesis, Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants; Springer: Dordrecht, The Netherlands, 2002; pp. 229–255. [Google Scholar]
- Cakmak, I.; Marschner, H. Magnesium deficiency and highlight intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol. 1992, 98, 1222–1226. [Google Scholar] [CrossRef] [Green Version]
- Ghnaya, B.A.; Charles, G.; Hourmant, A.; Hamida, B.J.; Branchard, M.C.R. Physiological behavior of four rapeseed cultivars (Brassica napus L.) submitted to metal stress. Physiology 2009, 332, 363–370. [Google Scholar]
- Ahmad, M.S.; Ashraf, M.; Hussain, M. Phytotoxic effects of nickel on yield and concentration of macro- and micro-nutrients in sunflower (Helianthus annuus L.) Achenes. J. Hazard. Mater. 2010, 10, 234–240. [Google Scholar] [CrossRef]
- Emamverdian, A.; Ding, Y.; Mokhberdoran, F.; Xie, Y. Heavy metal stress and some mechanisms of plant defense response. Sci. World J. 2015, 18, 756120. [Google Scholar] [CrossRef]
- Duman, F.; Koca, F.D. Single and combined effects of exposure concentration and duration on biological responses of Ceratophyllum demersum L. Exposed to Cr species. Int. J. Phytoremediat. 2014, 16, 1192–1208. [Google Scholar] [CrossRef]
- Muhammet, D.; Mehmet, K.; Muhammad, A. Cadmium and lead bioaccumulation potentials of an aquatic macrophyte Ceratophyllum demersum L.: A laboratory study. Ecotoxicol. Environ. Saf. 2018, 148, 431–440. [Google Scholar]
- Alfadul, S.M.S.; Al-Fredan, M.A.A. Effects of Cd, Cu, Pb, and Zn combinations on Phragmites australis metabolism, metal accumulation and distribution. Arab. J. Sci. Eng. 2013, 38, 11–19. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, L.L.; Li, J.; He, X.J.; Cai, J.C. Bioaccumulation and tolerance characteristics of a submerged plant (Ceratophyllum demersum L.) exposed to toxic metal lead. Ecotoxicol. Environ. Saf. 2015, 122, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Dhir, B.; Sharmila, P.; Pardha, S.P.; Sharma, P.; Kumar, R.; Mehta, D. Heavy metal induced physiological alterations in Salvinia natans. Ecotoxicol. Environ. Saf. 2011, 74, 1678–1684. [Google Scholar] [CrossRef] [PubMed]
- Leal-Alvarado, D.A.; Espadas, F.; Sáenz-Carbonell, L.; Talavera, C. Lead accumulation reduces photosynthesis in the lead hyper-accumulator Salvinia minima Baker by affecting the cell membrane and inducing stomatal closure. Aquat. Toxicol. 2016, 171, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Manios, T.; Stentiford, E.I.; Millner, P.A. The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metaliferus water. Ecol. Eng. 2003, 20, 65–74. [Google Scholar] [CrossRef]
- Fawzy, M.A.; Badr, N.E.; El-Khatib, A.A.; Aboelkassem, A.M. Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile. Environ. Monit. Assess. 2012, 184, 1753–1771. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Calif. Agric. Exp. STN 1950, 347, 1–32. [Google Scholar]
- Kara, Y.; Zeytunluoglu, A. Bioaccumulation of Toxic Metals (Cd and Cu) by Groenlandia densa (L.) Fourr. Bull. Environ. Contam. Toxicol. 2007, 79, 609–612. [Google Scholar] [CrossRef]
- Pandey, P.K.; Verma, Y.; Choubey, S.; Pandey, M.; Chandrasekhar, K. Biosorptive removal of cadmium from contaminated ground water and industrial effluents. Bioresour Technol. 2008, 99, 4420–4429. [Google Scholar] [CrossRef]
- Kastratović, V.; Jaćimović, Z.; Đurović, D.; Bigović, M.; Krivokapić, S. Lemna minor L. as bioindicator of heavy metal pollution in skadar lake (Montenegro). Kragujev. J. Sci. 2015, 37, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Ye, Z.H.; Wong, M.H. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ. Pollut. 2004, 132, 29–40. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Transmycol. 1983, 11, 591–593. [Google Scholar] [CrossRef] [Green Version]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Çakmak, I.; Atli, M.; Kaya, R.; Evliya, H.; Marschner, H. Association of high light and zinc deficiency in cold induced leaf chlorosis in grapefruit and mandarin trees. J. Plant Physiol. 1994, 146, 355–360. [Google Scholar] [CrossRef]
- Ekmekci, Y.; Terzioglu, S. Effects of oxidative stress induced by paraquat on wild and cultivated wheats. Pestic. Biochem. Physiol. 2005, 83, 69–81. [Google Scholar] [CrossRef]
- Sedmak, J.J.; Grossberg, S.E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal. Biochem. 1977, 79, 544–552. [Google Scholar] [CrossRef]
- Bizzo, A.L.; Intorne, A.C.; Gomes, P.H.; Susuki, M.S.; Esteves, B.D. Short-term physiological responses to copper stress in Salvinia auriculata Aubl. Acta Limnol. Bras. 2014, 26, 268–277. [Google Scholar] [CrossRef] [Green Version]
Concentration (mg/L) | Pb Concentration in Solution (mg/L) | |||
---|---|---|---|---|
1 d | 3 d | 7 d | 10 d | |
0 | ND | ND | ND | ND |
10 | 2.67 a ± 0.04 | 1.27 b ± 0.28 | 0.59 c ± 0.13 | 0.44 c ± 0.04 |
25 | 8.11 a ± 0.75 | 3.98 b ± 0.58 | 2.31 bc ± 0.14 | 1.84 c ± 0.95 |
50 | 33.09 a ± 4.40 | 17.96 b ± 1.33 | 7.23 c ± 0.41 | 4.14 c ± 0.70 |
100 | 43.9 a ± 4.61 | 26.43 b ± 0.64 | 11.99 c ± 0.78 | 9.92 c ± 0.92 |
Concentration (mg/L) | Pb Removal Efficiency (%) | |||
---|---|---|---|---|
1 d | 3 d | 7 d | 10 d | |
0 | ND | ND | ND | ND |
10 | 73.28 | 87.22 | 94.06 | 95.58 |
25 | 67.53 | 84.06 | 90.76 | 92.61 |
50 | 33.81 | 64.06 | 85.53 | 91.71 |
100 | 56.11 | 73.56 | 88.01 | 90.08 |
Concentration (mg/L) | Pb Accumulation (mg/kgDW) | |||
---|---|---|---|---|
1 d | 3 d | 7 d | 10 d | |
0 | ND | ND | ND | ND |
10 | 320.33 c ± 34.26 | 665.75 b ± 18.27 | 834.33 ab ± 87.58 | 875 a ± 90.13 |
25 | 866.66 c ± 105.97 | 1668 b ± 165.5 | 2543.16 a ± 265.92 | 2681.67 a ± 408.36 |
50 | 1871.75 c ± 294.20 | 3140.5 b ± 453.44 | 4725 a ± 270.41 | 4975 a ± 340.18 |
100 | 3963.3 c ± 509.24 | 5078.7 b ± 153.98 | 6540 a ± 51.96 | 6840 a ± 90 |
Concentration (mg/L) | (BCF) | (TF) | ||||||
---|---|---|---|---|---|---|---|---|
1 d | 3 d | 7 d | 10 d | 1 d | 3 d | 7 d | 10 d | |
10 | 119.90 | 520.79 | 1406.17 | 1981.13 | 1.24 | 1.11 | 1.16 | 1.17 |
25 | 106.77 | 418.74 | 1426.07 | 1452.16 | 0.92 | 1.08 | 1.16 | 1.16 |
50 | 56.55 | 174.79 | 653.22 | 1199.75 | 1.27 | 1.41 | 1.48 | 1.49 |
100 | 90.28 | 192.13 | 530.11 | 689.51 | 1.53 | 1.58 | 1.58 | 1.85 |
Person’s Correlation | Regression Analysis | |||||
---|---|---|---|---|---|---|
(c) | (t) | R2 (c) (%) | R2 (t) (%) | Equation Model (c) | Equation Model (t) | |
Chlorophyll a | −0.627 *** | −0.677 *** | 39.9 | 45.9 | y = 1134−0.3032x | y = 1198−34.62x |
p < 0.001, r = −0.63 | p < 0.001, r = −0.68 | |||||
Chlorophyll b | −0.536 *** | −0.588 *** | 28.7 | 34.6 | y = 647.5−0.3314x | y = 720.7−38.44x |
p < 0.001, r = −0.54 | p < 0.001, r = −0.60 | |||||
Carotenoid | 0.357 * | 0.868 *** | 12.8 | 75.3 | y = 559.2 + 0.3426x | y = 194.0 + 87.98x |
p < 0.05, r = 0.36 | p < 0.001, r = 0.86 | |||||
Total chlorophyll | −0.590 *** | −0.664 *** | 34.75 | 44.1 | y = 1759.2–6.04x | y = 1829.3–66.6x |
p < 0.001, r = −0.58 | p < 0.001, r = −0.66 | |||||
Chl a/ Chl b | 0.176 | 0.563 *** | 3.11 | 31.7 | y = 2.136 + 0.0049x | y = 1.551 + 0.1553x |
p < 0.001, r = 0.17 | p < 0.001, r = 0.56 | |||||
APX | 0.546 *** | 0.540 *** | 29.9 | 29.1 | y = 4.187 + 0.0039x | y = 3.593 + 0.4087x |
p < 0.001, r = 0.55 | p < 0.001, r = 0.50 | |||||
POD | 0.407 ** | 0.786 *** | 16.5 | 56.8 | y = 1284 + 0.830x | y = 661.1 + 169.6x |
p < 0.01, r = 0.41 | p < 0.001, r = 0.75 | |||||
SOD | 0.841 *** | 0.461 *** | 70.7 | 21.3 | y = 20.17 + 0.0808x | y = 30.42 + 4.689x |
p <0.001, r = 0.84 | p < 0.01, r = 0.47 | |||||
Fresh weight | −0.578 *** | 0.378 ** | 33.39 | 14.27 | y = 2.681−0.0104x | y = 1.853 + 0.0663x |
p < 0.001, r = −0.57 | p < 0.001, r = 0.37 | |||||
Dry weight | −0.758 *** | 0.276 | 57.48 | 7.61 | y = 37.02−0.199x | y = 24.10 + 0.708x |
p < 0.001, r = −0.76 | p < 0.001, r = 0.27 | |||||
Protein | 0.273 | −0.731 *** | 7.45 | 53.43 | y = 8.188 + 0.0135x | y = 10.677–0.354x |
p < 0.001, r = 0.27 | p < 0.001, r = −0.73 | |||||
Carbohydrate | 0.287 | −0.687 *** | 6.87 | 45.78 | y = 54.67 + 0.0221x | y = 70.877–0.954x |
p < 0.001, r = 0.36 | p < 0.001, r = −0.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aboelkassem, A.; Alzamel, N.M.; Alzain, M.N.; Loutfy, N. Effect of Pb-Contaminated Water on Ludwigia stolonifera (Guill. & Perr.) P.H. Raven Physiology and Phytoremediation Performance. Plants 2022, 11, 636. https://doi.org/10.3390/plants11050636
Aboelkassem A, Alzamel NM, Alzain MN, Loutfy N. Effect of Pb-Contaminated Water on Ludwigia stolonifera (Guill. & Perr.) P.H. Raven Physiology and Phytoremediation Performance. Plants. 2022; 11(5):636. https://doi.org/10.3390/plants11050636
Chicago/Turabian StyleAboelkassem, Amany, Nurah M. Alzamel, Mashail Nasser Alzain, and Naglaa Loutfy. 2022. "Effect of Pb-Contaminated Water on Ludwigia stolonifera (Guill. & Perr.) P.H. Raven Physiology and Phytoremediation Performance" Plants 11, no. 5: 636. https://doi.org/10.3390/plants11050636
APA StyleAboelkassem, A., Alzamel, N. M., Alzain, M. N., & Loutfy, N. (2022). Effect of Pb-Contaminated Water on Ludwigia stolonifera (Guill. & Perr.) P.H. Raven Physiology and Phytoremediation Performance. Plants, 11(5), 636. https://doi.org/10.3390/plants11050636