Different Roles of Introgression on the Demographic Change in Two Snakebark Maples, Acer caudatifolium and A. morrisonense, with Contrasted Postglacial Expansion Routes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and DNA Extraction
2.2. Transferable Expressed Sequence Tag-Simple Sequence Repeat (EST-SSR)
2.3. Genetic Diversity Estimation
2.4. Testing Introgression by STRUCTURE
2.5. Approximate Bayesian Computation (ABC)
3. Results
3.1. Genetic Diversity
3.2. Genetic Introgression
3.3. Approximate Bayesian Computation
4. Discussion
4.1. Secondary Contact during Colonization to Taiwan in Last Glacial Period
4.2. Rapid Range Expansion Rather Than Hybridization Shaped the Genetic Diversity of Wavefront Populations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whitney, K.D.; Ahern, J.R.; Campbell, L.G.; Albert, L.P.; King, M.S. Patterns of hybridization in plants. Perspect. Plant Ecol. Evol. Syst. 2010, 12, 175–182. [Google Scholar] [CrossRef]
- Ellstrand, N.C.; Whitkus, R.; Rieseberg, L. Distribution of spontaneous plant hybrids. Proc. Natl. Acad. Sci. USA 1996, 93, 5090–5093. [Google Scholar] [CrossRef] [Green Version]
- Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 2005, 20, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Wright, S. Evolution in Mendelian populations. Genetics 1931, 16, 97. [Google Scholar] [CrossRef]
- Harrison, R.G.; Larson, E. Hybridization, Introgression, and the Nature of Species Boundaries. J. Hered. 2014, 105, 795–809. [Google Scholar] [CrossRef] [Green Version]
- Haldane, J.B.S. A mathematical theory of natural and artificial selection. (Part VI, Isolation.). Math. Proc. Camb. Philos. Soc. 1930, 26, 220–230. [Google Scholar] [CrossRef]
- Nachman, M.W.; Payseur, B.A. Recombination rate variation and speciation: Theoretical predictions and empirical results from rabbits and mice. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 409–421. [Google Scholar] [CrossRef] [Green Version]
- Kremer, A.; Kleinschmit, J.; Cottrell, J.; Cundall, E.P.; Deans, J.D.; Ducousso, A.; O König, A.; Lowe, A.; Munro, R.C.; Petit, R.J.; et al. Is there a correlation between chloroplastic and nuclear divergence, or what are the roles of history and selection on genetic diversity in European oaks? For. Ecol. Manag. 2002, 156, 75–87. [Google Scholar] [CrossRef]
- Neophytou, C.; Gärtner, S.M.; Vargas-Gaete, R.; Michiels, H.-G. Genetic variation of Central European oaks: Shaped by evolutionary factors and human intervention? Tree Genet. Genomes 2015, 11, 1–15. [Google Scholar] [CrossRef]
- Neophytou, C.; Konnert, M.; Fussi, B. Western and eastern post-glacial migration pathways shape the genetic structure of sycamore maple (Acer pseudoplatanus L.) in Germany. For. Ecol. Manag. 2019, 432, 83–93. [Google Scholar] [CrossRef]
- Pierce, A.A.; Gutierrez, R.; Rice, A.; Pfennig, K.S. Genetic variation during range expansion: Effects of habitat novelty and hybridization. Proc. R. Soc. B Boil. Sci. 2017, 284, 20170007. [Google Scholar] [CrossRef] [PubMed]
- Duffy, K.J.; Stout, J. Effects of conspecific and heterospecific floral density on the pollination of two related rewarding orchids. Plant Ecol. 2011, 212, 1397–1406. [Google Scholar] [CrossRef]
- Morales, C.L.; Traveset, A. Interspecific Pollen Transfer: Magnitude, Prevalence and Consequences for Plant Fitness. Crit. Rev. Plant Sci. 2008, 27, 221–238. [Google Scholar] [CrossRef] [Green Version]
- Choler, P.; Erschbamer, B.; Tribsch, A.; Gielly, L.; Taberlet, P. Genetic introgression as a potential to widen a species’ niche: Insights from alpine Carex curvula. Proc. Natl. Acad. Sci. USA 2004, 101, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Pfennig, K.S.; Kelly, A.L.; Pierce, A.A. Hybridization as a facilitator of species range expansion. Proc. R. Soc. B Boil. Sci. 2016, 283, 20161329. [Google Scholar] [CrossRef] [Green Version]
- Owens, G.L.; Samuk, K. Adaptive introgression during environmental change can weaken reproductive isolation. Nat. Clim. Chang. 2019, 10, 58–62. [Google Scholar] [CrossRef]
- Excoffier, L.; Foll, M.; Petit, R.J. Genetic Consequences of Range Expansions. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 481–501. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, C.; Li, J. Conflicting Phylogenies of Section Macrantha (Acer Aceroideae, Sapindaceae) Based on Chloroplast and Nuclear DNA. Syst. Bot. 2010, 35, 801–810. [Google Scholar] [CrossRef]
- Gao, J.; Liao, P.-C.; Huang, B.-H.; Yu, T.; Zhang, Y.-Y.; Li, J.-Q. Historical biogeography of Acer L. (Sapindaceae): Genetic evidence for Out-of-Asia hypothesis with multiple dispersals to North America and Europe. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Areces-Berazain, F.; Hinsinger, D.D.; Strijk, J.S. Genome-wide supermatrix analyses of maples (Acer, Sapindaceae) reveal recurring inter-continental migration, mass extinction, and rapid lineage divergence. Genomics 2021, 113, 681–692. [Google Scholar] [CrossRef]
- The Red List of Vascular Plants of Taiwan. Available online: https://commons.wikimedia.org/wiki/File:The_Red_List_of_Vascular_Plants_of_Taiwan,_2017.pdf (accessed on 1 February 2022).
- Luo, M.-X.; Lu, H.-P.; Chai, M.-W.; Chang, J.-T.; Liao, P.-C. Environmental Heterogeneity Leads to Spatial Differences in Genetic Diversity and Demographic Structure of Acer caudatifolium. Plants 2021, 10, 1646. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Luo, M.; Lu, H.; Tseng, Y.; Liao, P. Population genetics under the Massenerhebung effect: The influence of topography on the demography of Acer morrisonense. J. Biogeogr. 2021, 48, 1773–1787. [Google Scholar] [CrossRef]
- Doyle, J. DNA Protocols for Plants, in Molecular Techniques in Taxonomy; Springer: Berlin/Heidelberg, Germany, 1991; pp. 283–293. [Google Scholar]
- Porebski, S.; Bailey, L.G.; Baum, B.R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 1997, 15, 8–15. [Google Scholar] [CrossRef]
- Kofler, R.; Schlötterer, C.; Lelley, T. SciRoKo: A new tool for whole genome microsatellite search and investigation. Bioinformatics 2007, 23, 1683–1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falush, D.; Stephens, M.; Pritchard, J.K. Inference of Population Structure Using Multilocus Genotype Data: Linked Loci and Correlated Allele Frequencies. Genetic 2003, 164, 1567–1587. [Google Scholar] [CrossRef]
- Falush, D.; Stephens, M.; Pritchard, J.K. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Notes 2007, 7, 574–578. [Google Scholar] [CrossRef]
- Earl, D.A.; von Holdt, B.M. Structure harvester: A website and program for visualizing structure output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Huang, B.-H.; Huang, C.-W.; Huang, C.-L.; Liao, P.-C. Continuation of the genetic divergence of ecological speciation by spatial environmental heterogeneity in island endemic plants. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Wegmann, D.; Leuenberger, C.; Neuenschwander, S.; Excoffier, L. ABCtoolbox: A versatile toolkit for approximate Bayesian computations. BMC Bioinform. 2010, 11, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Excoffier, L.; Dupanloup, I.; Huerta-Sánchez, E.; Sousa, V.; Foll, M. Robust Demographic Inference from Genomic and SNP Data. PLoS Genet. 2013, 9, e1003905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csilléry, K.; François, O.; Blum, M.G. abc: An R package for approximate Bayesian computation (ABC). Methods Ecol. Evol. 2012, 3, 475–479. [Google Scholar] [CrossRef] [Green Version]
- Sathiamurthy, E.; Voris, H.K. Maps of Holocene sea level transgression and submerged lakes on the Sunda Shelf. Trop. Nat. Hist. 2006, 1–44. [Google Scholar]
- Durkovic, J. Regeneration of Acer caudatifolium Hayata plantlets from juvenile explants. Plant Cell Rep. 2003, 21, 1060–1064. [Google Scholar] [CrossRef]
- Lan, D.; Zhang, W.; Chen, C.; Xie, Z.; Yu, Y.; Cai, F. Transgressions and the sea-level changes of the western Taiwan Strait since the Late Pleistocene. Acta Oceanol. Sin. 1993, 4, 617–627. [Google Scholar]
- Liao, P.C.; Shih, H.C.; Yen, T.B.; Lu, S.Y.; Cheng, Y.P.; Chiang, Y.C. Molecular evaluation of interspecific hybrids between Acer albopurpurascens and A. buergerianum var. formosanum. Bot. Stud. 2010, 51, 413–420. [Google Scholar]
- Edmonds, C.A.; Lillie, A.S.; Cavalli-Sforza, L.L. Mutations arising in the wave front of an expanding population. Proc. Natl. Acad. Sci. USA 2004, 101, 975–979. [Google Scholar] [CrossRef] [Green Version]
- Le Corre, V.; Siol, M.; Vigouroux, Y.; Tenaillon, M.I.; Délye, C. Adaptive introgression from maize has facilitated the establishment of teosinte as a noxious weed in Europe. Proc. Natl. Acad. Sci. USA 2020, 117, 25618–25627. [Google Scholar] [CrossRef]
A. caudatifolium | A. morrisonense | |
---|---|---|
Parameters | Mean | Mean |
Sample size | 371 | 286 |
Number of alleles | 146 | 106 |
Private alleles | 61 | 21 |
Ho | 0.169 ± 0.044 | 0.180 ± 0.050 |
He | 0.341 ± 0.073 | 0.261 ± 0.062 |
F | 0.366 ± 0.082 | 0.398 ± 0.088 |
Source of Variation | df | SS | Var Comp | Var% | Φ |
---|---|---|---|---|---|
A. caudatifolium and A. morrisonense | |||||
Among spp. | 1 | 1614.35 | 2.464 | 47.789 | 0.478 * |
Among pop within spp. | 32 | 557.22 | 0.400 | 7.764 | 0.149 * |
Within pop | 1280 | 2935.94 | 2.292 | 44.447 | 0.556 * |
Total | 1313 | 5107.51 | 5.157 | ||
A. caudstifolium | |||||
Among pop | 19 | 412.72 | 0.526 | 17.488 | 0.175 * |
Within pop | 351 | 1790.28 | 2.480 | 82.512 | |
Total | 370 | 2203.00 | 3.005 | ||
A. morrisonense | |||||
Among pop | 12 | 144.50 | 0.231 | 10.137 | 0.101 * |
Within pop | 273 | 1145.66 | 2.049 | 89.863 | |
Total | 285 | 1290.16 | 2.281 |
Scenario | Neanc | Necau t1 | Nemor t1 | Necau t2 | Nemor t2 | m1 | m2 | t1 | t2 |
---|---|---|---|---|---|---|---|---|---|
mode | 149,670 | 8232 | 24,220 | 1792 | 366 | 8.0 × 10−5 | 2.0 × 10−5 | 22,925 | 18,870 |
Wt. 2.5% perc. | 39,472 | 2848 | 2495 | 1441 | 256 | 5.0 × 10−5 | 0 | 9349 | 14,067 |
Wt. 97.5% perc. | 187,873 | 9750 | 38,419 | 1854 | 381 | 3.3 × 10−4 | 5.7 × 10−4 | 27,664 | 66,799 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, M.-X.; Tseng, Y.-T.; Chang, J.-T.; Chao, C.-T.; Liao, P.-C. Different Roles of Introgression on the Demographic Change in Two Snakebark Maples, Acer caudatifolium and A. morrisonense, with Contrasted Postglacial Expansion Routes. Plants 2022, 11, 644. https://doi.org/10.3390/plants11050644
Luo M-X, Tseng Y-T, Chang J-T, Chao C-T, Liao P-C. Different Roles of Introgression on the Demographic Change in Two Snakebark Maples, Acer caudatifolium and A. morrisonense, with Contrasted Postglacial Expansion Routes. Plants. 2022; 11(5):644. https://doi.org/10.3390/plants11050644
Chicago/Turabian StyleLuo, Min-Xin, Yi-Ting Tseng, Jui-Tse Chang, Chien-Ti Chao, and Pei-Chun Liao. 2022. "Different Roles of Introgression on the Demographic Change in Two Snakebark Maples, Acer caudatifolium and A. morrisonense, with Contrasted Postglacial Expansion Routes" Plants 11, no. 5: 644. https://doi.org/10.3390/plants11050644
APA StyleLuo, M. -X., Tseng, Y. -T., Chang, J. -T., Chao, C. -T., & Liao, P. -C. (2022). Different Roles of Introgression on the Demographic Change in Two Snakebark Maples, Acer caudatifolium and A. morrisonense, with Contrasted Postglacial Expansion Routes. Plants, 11(5), 644. https://doi.org/10.3390/plants11050644