A New Disease for Europe of Ficus microcarpa Caused by Botryosphaeriaceae Species
Abstract
:1. Introduction
2. Results
2.1. Surveys and Fungal Isolations
2.2. Morphological Characterization and Phylogenetic Analysis
2.3. Pathogenicity Test
3. Discussion
4. Materials and Methods
4.1. Surveys and Fungal Isolations
4.2. Morphological and Molecular Characterization
4.3. Phylogenetic Analysis
4.4. Pathogenicity Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wagner, W.L.; Herbst, D.R.; Sohmer, S.H. Manual of the Flowering Plants of Hawai’i, 2 Vols; Bishop Museum Special Publication; University of Hawai’i and Bishop Museum Press: Honolulu, HI, USA, 1999; Volume 83. [Google Scholar]
- Riffle, R.L. The Tropical Look; Timber Press: Portland, OR, USA, 1998. [Google Scholar]
- Starr, F.; Starr, K.; Loope, L. Ficus microcarpa. Chinese Banyan, Moraceae. United States Geological Survey-Biological Resources Division Haleakala Field Station, Maui, Hawai’i. 2003. Available online: http://www.hear.org/starr/hiplants/reports/pdf/ficus_microcarpa (accessed on 16 February 2022).
- Fici, S.; Raimondo, F.M. On the real identity of Ficus magnolioides. Curtis’s Bot. Mag. 1996, 13, 105–107. [Google Scholar] [CrossRef]
- Heisler, G.M. Trees Modify Metropolitan Climate and Noise. J. Arboric. 1977, 311, 201–207. [Google Scholar]
- Scott, K.; Simpson, J.; McPherson, E. Effects of Tree Cover on Parking Lot Microclimate and Vehicle Emissions. J. Arboric. 1999, 25, 129–142. [Google Scholar] [CrossRef]
- Tyznik, A. Trees as Design Elements in the Landscape. J. Arboric. 1981, 7, 53–55. [Google Scholar]
- Wolf, K. Urban Nature Benefits: Psycho-Social Dimensions of People and Plants; University of Washington-Center for Urban Horticulture: Seattle, WA, USA, 1998. [Google Scholar]
- Farr, D.F.; Rossman, A.Y. Fungal Databases, U.S. National Fungus Collections, ARS, USDA. Available online: https://nt.ars-grin.gov/fungaldatabases/ (accessed on 10 January 2022).
- Moral, J.; Morgan, D.; Trapero, A.; Michailides, T.J. Ecology and epidemiology of diseases of nut crops and olives caused by Botryosphaeriaceae fungi in California and Spain. Plant Dis. 2019, 103, 1809–1827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slippers, B.; Wingfield, M.J. Botryosphaeriaceae as endophytes and latent pathogens of woody plants: Diversity, ecology and impact. Fungal Biol. Rev. 2007, 21, 90–106. [Google Scholar] [CrossRef]
- Phillips, A.J.L.; Alves, A.; Abdollahzadeh, J.; Slippers, B.; Wingfield, M.J.; Groenewald, J.Z.; Crous, P.W. The Botryosphaeriaceae: Genera and species known from culture. Stud. Mycol. 2013, 76, 51–167. [Google Scholar] [CrossRef] [Green Version]
- Aiello, D.; Gusella, G.; Fiorenza, A.; Guarnaccia, V.; Polizzi, G. Identification of Neofusicoccum parvum causing canker and twig blight on Ficus carica in Italy. Phytopathol. Mediterr. 2020, 59, 147–153. [Google Scholar] [CrossRef]
- Al-Bedak, O.A.; Mohamed, R.A.; Seddek, N.H. First detection of Neoscytalidium dimidiatum associated with canker disease in Egyptian Ficus trees. For. Pathol. 2018, 48, e12411. [Google Scholar] [CrossRef]
- Banihashemi, Z.; Javadi, A.R. Further investigations on the biology of Phomopsis cinerascens, the cause of fig canker in Iran. Phytopathol. Mediterr. 2009, 48, 454–460. [Google Scholar] [CrossRef]
- Çeliker, N.M.; Michailides, T.J. First report of Lasiodiplodia theobromae causing canker and shoot blight of fig in Turkey. New Dis. Rep. 2012, 25, 12. [Google Scholar] [CrossRef]
- El-Atta, H.A.; Aref, I.M. Pathogenic mortality of Ficus spp. Int. J. Plant Animal Environ. Sci. 2013, 3, 204–210. [Google Scholar]
- Elshafie, A.E.; Ba-Omar, T. First report of Albizia lebbeck dieback caused by Scytalidium dimidiatum in Oman. Mycopathologia 2002, 154, 37–40. [Google Scholar] [CrossRef]
- Giha, O.H. Hendersonula toruloidea associated with serious wilt disease of shade trees in the Sudan. Plant Dis. Rep. 1975, 59, 899–902. [Google Scholar]
- Güney, İ.G.; Bozoğlu, T.; Özer, G.; Türkölmez, Ş.; Derviş, S. First report of Neoscytalidium dimidiatum associated with dieback and canker of common fig (Ficus carica L.) in Turkey. J. Plant Dis. Prot. 2022, 1–5. [Google Scholar] [CrossRef]
- Gusella, G.; Morgan, D.P.; ad Michailides, T.J. Further Investigation on Limb Dieback of Fig (Ficus carica) Caused by Neoscytalidium dimidiatum in California. Plant Dis. 2020, 105, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Hampson, M.C. Phomopsis canker on weeping fig in Newfoundland. Can. Plant. Dis. Surv. 1981, 61, 3–5. [Google Scholar]
- Javadi, A.R.; Banihashemi, Z. Biology and pathogenicity of Phomopsis cinerascens, the causal agent of fig canker in Fars Province of Iran. In III International Symposium on Fig; ISHS Acta Horticulturae, Vilamoura: Algarve, Portugal, 2005; Volume 798, pp. 219–222. [Google Scholar] [CrossRef]
- Lima, M.L.P.; Uesugi, C.H.; Santos, G.R. First record of dieback of Ficus benjamina caused by Phomopsis cinerescens in the States of Tocantins and Minas Gerais. Fitopatol. Bras. 2005, 30, 91. [Google Scholar] [CrossRef] [Green Version]
- Mayorquin, J.S.; Eskalen, A.; Downer, A.J.; Hodel, D.R.; Liu, A. First report of multiple species of the Botryosphaeriaceae causing bot canker disease of Indian laurel-lea fig in California. Plant Dis. 2012, 96, 459. [Google Scholar] [CrossRef]
- Mirzaee, M.R.; Mohammadi, M.; Rahimian, H. Nattrassia mangiferae, the cause of die-back and trunk cankers of Ficus religiosa and branch wilt of Psidium guajava in Iran. J. Phytopathol. 2002, 150, 244–247. [Google Scholar] [CrossRef]
- Mohali, S.R.; Castro Medina, F.; Úrbez-Torres, J.R.; Gubler, W.D. First report of Lasiodiplodia theobromae and L. venezuelensis associated with blue stain on Ficus insipida wood from the Natural Forest of Venezuela. Forest Pathol. 2017, 47, e12355. [Google Scholar] [CrossRef]
- Ray, J.D.; Burgess, T.; Lanoiselet, V.M. First record of Neoscytalidium dimidiatum and N. novaehollandiae on Mangifera indica and N. dimidiatum on Ficus carica in Australia. Australas. Plant Dis. Notes 2010, 5, 48–50. [Google Scholar] [CrossRef] [Green Version]
- Rehab, M.A.; Rashed, M.F.; Ammar, M.I.; El-Morsy, S.A. Dieback and sooty canker of Ficus trees in Egypt and its control. Pak. J. Biol. Sci. 2014, 17, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Penerbit, U.M.T. Health of trees in Titiwangsa recreational park, Kuala Lumpur, Malaysia. J. Sustain. Sci. Manag. 2013, 8, 191–196. [Google Scholar]
- Ahmad, S.; Iqbal, S.H.; Khalid, A.N. Fungi of Pakistan; Sultan Ahmad Mycological Society of Pakistan Lahore: Lahore, Pakistan, 1997; p. 248. [Google Scholar]
- Anonymous. List of plant diseases in Taiwan. Pl. Protect. Soc. 1979, 404, 238–245. [Google Scholar]
- Sawada, K. Descriptive catalogue of Taiwan (Formosan) fungi. Part XI. Special Publ. Coll. Agric. Natl. Taiwan Univ. 1959, 8, 268. [Google Scholar]
- Hodel, D.R.; Downer, A.J.; Mathews, D.M. Sooty canker, a devastating disease of Indian laurel-leaf fig trees. West. Arb. 2009, 35, 28–32. [Google Scholar]
- Gusella, G.; Giambra, S.; Conigliaro, G.; Burruano, S.; Polizzi, G. Botryosphaeriaceae species causing canker and dieback of English walnut (Juglans regia) in Italy. Forest Pathol. 2020, 51, e12661. [Google Scholar] [CrossRef]
- Gusella, G.; Lawrence, D.P.; Aiello, D.; Luo, Y.; Polizzi, G.; Michailides, T. Etiology of Botryosphaeria Panicle and Shoot Blight of Pistachio (Pistacia vera) caused by Botryosphaeriaceae in Italy. Plant Dis. 2021, in press. [Google Scholar] [CrossRef]
- Gusella, G.; Costanzo, M.B.; Aiello, D.; Polizzi, G. Characterization of Neofusicoccum parvum causing canker and dieback on Brachychiton species. Eur. J. Plant Pathol. 2021, 161, 999–1005. [Google Scholar] [CrossRef]
- Ismail, A.M.; Cirvilleri, G.; Lombard, L.; Crous, P.W.; Groenewald, J.Z.; Polizzi, G. Characterisation of Neofusicoccum species causing mango dieback in Italy. J. Plant Pathol. 2013, 95, 549–557. [Google Scholar] [CrossRef]
- Luo, Y.; Niederholzer, F.; Lightle, D.; Felts, D.; Lake, J.; Michailides, T.J. Limited Evidence for Accumulation of Latent Infections of Canker-Causing Pathogens in Shoots of Stone Fruit and Nut Crops in California. Phytopathology 2021, 111, 1963–1971. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Lichtemberg, P.S.F.; Niederholzer, F.J.A.; Lightle, D.M.; Felts, D.G.; Michailides, T.J. Understanding the process of latent infection of canker-causing pathogens in stone fruit and nut crops in California. Plant Dis. 2019, 103, 2374–2384. [Google Scholar] [CrossRef] [PubMed]
- Marsberg, A.; Kemler, M.; Jami, F.; Nagel, J.H.; Postma-smidt, A.; Naidoo, S.; Wingfield, M.J.; Crous, P.W.; Spatafora, J.W.; Hesse, C.N.; et al. Botryosphaeria dothidea: A latent pathogen of global importance to woody plant health. Mol. Plant Pathol. 2017, 18, 477–488. [Google Scholar] [CrossRef]
- Luo, Y.; Gu, S.; Felts, D.; Puckett, R.D.; Morgan, D.P.; Michailides, T.J. Development of qPCR systems to quantify shoot infections by canker-causing pathogens in stone fruits and nut crops. J. Appl. Microbiol. 2017, 122, 416–428. [Google Scholar] [CrossRef]
- Luo, Y.; Niederholzer, F.J.A.; Felts, D.G.; Puckett, R.D.; Michailides, T.J. Inoculum quantification of canker-causing pathogens in prune and walnut orchards using real-time PCR. J. Appl. Microbiol. 2020, 129, 1337–1348. [Google Scholar] [CrossRef]
- Slippers, B.; Crous, P.W.; Jami, F.; Groenewald, J.Z.; Wingfield, M.J. Diversity in the Botryosphaeriales: Looking back, looking forward. Fungal Biol. 2017, 121, 307–321. [Google Scholar] [CrossRef]
- Batista, E.; Lopes, A.; Alves, A. What Do We Know about Botryosphaeriaceae? An Overview of a Worldwide Cured Dataset. Forests 2021, 12, 313. [Google Scholar] [CrossRef]
- Garcia, J.F.; Lawrence, D.P.; Morales-Cruz, A.; Travadon, R.; Minio, A.; Hernandez-Martinez, R.; Rolshausen, P.E.; Baumgartner, K.; Cantu, D. Phylogenomics of plant-associated Botryosphaeriaceae species. Front. Microbiol. 2021, 12, 587. [Google Scholar] [CrossRef]
- Blodgett, J.T.; Stanosz, G.R. Sphaeropsis sapinea and host water stress in a red pine plantation in central Wisconsin. Phytopathology 1995, 85, 1044. [Google Scholar] [CrossRef] [Green Version]
- Schoeneweiss, D.F. The role of environmental stress in diseases of woody plants. Plant Dis. 1981, 65, 308–314. [Google Scholar] [CrossRef]
- Swart, W.J.; Wingfield, M.J. Biology and control of Sphaeropsis sapinea on Pinus species in South Africa. Plant Dis. 1991, 75, 761–766. [Google Scholar] [CrossRef]
- Gange, A.C.; Gange, E.G.; Mohammad, A.B.; Boddy, L. Host shifts in fungi caused by climate change? Fungal Ecol. 2011, 4, 184–190. [Google Scholar] [CrossRef]
- Boddy, L. Fungal community ecology and wood decomposition processes: From standing tree to complete decay of coarse woody debris. Ecol. Bull. 2001, 49, 43–56. [Google Scholar]
- Boddy, L.; Heilmann-Clausen, J. Basidiomycete community development in temperate angiosperm wood. In Ecology of Saprotrophic Basidiomycetes; Boddy, L., Frankland, J., van West, P., Eds.; Academic Press: London, UK, 2008; pp. 211–237. [Google Scholar]
- Boddy, L. Interspecific combative interactions between wood decaying basidiomycetes. FEMS Microbiol. Ecol. 2000, 31, 185–194. [Google Scholar] [CrossRef]
- Toljander, Y.K.; Lindahl, B.D.; Holmer, L.; Hogberg, N.O.S. Environmental fluctuations facilitate species co-existence and increase decomposition in communities of wood-decay fungi. Oecologia 2006, 148, 625–631. [Google Scholar] [CrossRef]
- Woodward, S.; Boddy, L. Interactions between saprotrophic fungi. In Ecology of Saprotrophic Basidiomycetes; Boddy, L., Frankland, J., van West, P., Eds.; Academic Press: London, UK, 2008; pp. 125–141. [Google Scholar]
- Desprez-Loustau, M.L.; Marcais, B.; Nageleisen, L.M.; Piou, D.; Vannini, A. Interactive effects of drought and pathogens in forest trees. Ann. Forest Sci. 2006, 63, 597–612. [Google Scholar] [CrossRef] [Green Version]
- Lopes, A.; Barradas, C.; Phillips, A.J.L.; Alves, A. Diversity and phylogeny of Neofusicoccum species occurring in forest and urban environments in Portugal. Mycosphere 2016, 7, 906–920. [Google Scholar] [CrossRef]
- Mehl, J.W.M.; Slippers, B.; Roux, J.; Wingfield, M.J. Cankers and other diseases caused by Botryosphaeriaceae. In Infectious Forest Diseases; Paolo Gonthier, P., Nicolotti, G., Eds.; CAB International: Boston, MS, USA, 2013; pp. 298–317. [Google Scholar]
- Tubby, K.V.; Webber, J.F. Pests and diseases threatening urban trees under a changing climate. Forestry 2010, 83, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Kuntzmann, P.; Villaume, S.; Bertsch, C. Conidia dispersal of Diplodia species in a French vineyard. Phytopathol. Mediterr. 2009, 48, 150–154. [Google Scholar]
- Urbez-Torres, J.R.; Battany, M.; Bettiga, L.J.; Gispert, C.; McGourty, G.; Roncoroni, J.; Smith, R.J.; Verdegaal, P.; Gubler, W.D. Botryosphaeriaceae species spore-trapping studies in California vineyards. Plant Dis. 2010, 94, 717–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moral, J.; Morgan, D.; Michailides, T.J. Management of Botryosphaeria canker and blight diseases of temperate zone nut crops. Crop Prot. 2019, 126, 104927. [Google Scholar] [CrossRef]
- Holtz, B.A. Plant protection for pistachio. HortTechnology 2002, 12, 626–632. [Google Scholar] [CrossRef] [Green Version]
- Berbegal, M.; Ramón-Albalat, A.; León, M.; Armengol, J. Evaluation of long-term protection from nursery to vineyard provided by Trichoderma atroviride SC1 against fungal grapevine trunk pathogens. Pest Manag Sci. 2020, 76, 967–977. [Google Scholar] [CrossRef]
- Holland, L.A.; Travadon, R.; Lawrence, D.P.; Nouri, M.T.; Trouillas, F.P. Evaluation of pruning wound protection products for the management of almond canker diseases in California. Plant Dis. 2021, 105, 3368–3375. [Google Scholar] [CrossRef]
- Pertot, I.; Prodorutti, D.; Colombini, A.; Pasini, L. Trichoderma atroviride SC1 prevents Phaeomoniella chlamydospora and Phaeoacremonium aleophilum infection of grapevine plants during the grafting process in nurseries. Biocontrol 2016, 61, 257–267. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Michael, A., Innis, D.H., Gelfand, J.J., Sninsky, T.J., Eds.; White Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999, 91, 553–556. [Google Scholar] [CrossRef]
- Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microb. 1995, 61, 1323–1330. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Swofford, D.L. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods); v 4.0a, build 169; Sinauer Associates: Sunderland, MA, USA, 2002; Available online: https://paup.phylosolutions.com (accessed on 16 February 2022).
- Bezerra, J.D.P.; Crous, P.W.; Aiello, D.; Gullino, M.L.; Polizzi, G.; Guarnaccia, V. Genetic Diversity and Pathogenicity of Botryosphaeriaceae Species Associated with Symptomatic Citrus Plants in Europe. Plants 2021, 10, 492. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Groenewald, J.Z.; Lombard, L.; Schumacher, R.K.; Phillips, A.J.L.; Crous, P.W. Evaluating species in Botryosphaeriales. Persoonia 2021, 46, 63–115. [Google Scholar] [CrossRef]
- Nylander, J.A.A. MrModeltest v2; Program distributed by the author; Evolutionary Biology Centre, Uppsala University: Uppsala, Sweden, 2004. [Google Scholar]
- Zwickl, D.J. Genetic Algorithm Approaches for the Phylogenetic Analysis of Large Biological Sequence Datasets under the Maximum Likelihood Criterion. Ph.D. Thesis, The University of Texas, Austin, TX, USA, 2006. [Google Scholar]
- Analytical Software. Statistix 10. User’s Manual; Analytical Software: Tallahassee, FL, USA, 2013. [Google Scholar]
Scheme 1. | Isolate ID | ITS | tef1-α | tub2 |
---|---|---|---|---|
Botryosphaeria agaves | CBS 133992 = MFLUCC 11-0125T | JX646791 | JX646856 | JX646841 |
B. agaves | CBS 141505 = CPC 26299 | KX306750 | MT592030 | MT592463 |
B. corticis | CBS 119047T | DQ299245 | EU017539 | EU673107 |
B. corticis | CBS 119048 = CAP 198 | DQ299246 | EU017540 | MT592464 |
B. dothidea | CBS 115476 = CMW 8000T | AY236949 | AY236898 | AY236927 |
B. dothidea | CBS 110302 = CAP 007 | AY259092 | AY573218 | EU673106 |
B. dothidea | FM1 | OM241975 | OM262426 | OM262439 |
B. dothidea | FM2 | OM241976 | OM262427 | OM262440 |
B. dothidea | FM3 | OM241977 | OM262428 | OM262441 |
B. dothidea | FM6 | OM241978 | OM262429 | OM262442 |
B. dothidea | FM7 | OM241979 | OM262430 | OM262443 |
B. dothidea | FM9 | OM241980 | OM262431 | OM262444 |
B. fabicerciana | CBS 118831 = CMW 14009 | DQ316084 | MT592032 | MT592468 |
B. fabicerciana | CBS 127193 = CMW 27094T | HQ332197 | HQ332213 | KF779068 |
B. kuwatsukai | CGMCC 3.18007 | KX197074 | KX197094 | KX197101 |
B. kuwatsukai | CGMCC 3.18008 | KX197075 | KX197095 | KX197102 |
B. qingyuanensis | CERC 2946 = CGMCC 3.18742T | KX278000 | KX278105 | KX278209 |
B. qingyuanensis | CERC 2947 = CGMCC 3.18743 | KX278001 | KX278106 | KX278210 |
B. ramosa | CERC 2001 = CGMCC 3.187396 | KX277989 | KX278094 | KX278198 |
B. ramosa | CBS 122069 = CMW 26167T | EU144055 | EU144070 | KF766132 |
Guignardia philoprina | CBS 447.68 | FJ824768 | FJ824773 | FJ824779 |
Neofusicoccum arbuti | CBS 116131 = AR 4014T | AY819720 | KF531792 | KF531793 |
N. arbuti | CBS 117090 = UW13 | AY819724 | KF531791 | KF531794 |
N. australe | CBS 139662 = CMW 6837T | AY339262 | AY339270 | AY339254 |
N. australe | CMW 6853 | AY339263 | AY339271 | AY339255 |
N. brasiliense | CMM 1285 | JX513628 | JX513608 | KC794030 |
N. brasiliense | CMM 1338T | JX513630 | JX513610 | KC794031 |
N. cordaticola | CBS 123634 = CMW 13992T | EU821898 | EU821868 | EU821838 |
N. cordaticola | CBS 123635 | EU821903 | EU821873 | EU821843 |
N. cryptoaustrale | CBS 122813 = CMW 23785T | FJ752742 | FJ752713 | FJ752756 |
N. dianense | CSF6075 = CGMCC3.20082T | MT028605 | MT028771 | MT028937 |
N. eucalypticola | CBS 115679 = CMW 6539T | AY615141 | AY615133 | AY615125 |
N. eucalypticola | CBS 115766 = CMW 6217 | AY615143 | AY615135 | AY615127 |
N. eucalyptorum | CBS 115791 = CMW 10125 = BOT 24T | AF283686 | AY236891 | AY236920 |
N. eucalyptorum | CBS 145975 = CPC 29337 | MT587477 | MT592190 | MT592682 |
N. hellenicum | CERC 1947 = CFCC 50067T | KP217053 | KP217061 | KP217069 |
N. hellenicum | CERC 1948 = CFCC 50068 | KP217054 | KP217062 | KP217070 |
N. hongkongense | CERC2973 = CGMCC3.18749T | KX278052 | KX278157 | KX278261 |
N. hongkongense | CERC 2968 = CGMCC 3.18748 | KX278051 | KX278156 | KX278260 |
N. kwambonambiense | CBS 123639 = CMW 14023T | EU821900 | EU821870 | EU821840 |
N. kwambonambiense | CBS 123641 = CMW 14140 | EU821919 | EU821889 | EU821859 |
N. lumnitzerae | CBS 139674 = CMW 41469T | KP860881 | KP860724 | KP860801 |
N. lumnitzerae | CBS 139675 = CMW 41228 | MT587480 | MT592193 | MT592685 |
N. luteum | CBS 110497 = CPC 4594 = CAP 037 | EU673311 | EU673277 | EU673092 |
N. luteum | CBS 110299 = LM 926 = CAP 002T | AY259091 | KX464688 | DQ458848 |
N. macroclavatum | CBS 118223 = CMW 15955 = WAC 12444T | DQ093196 | DQ093217 | DQ093206 |
N. magniconidium | CSF5876 = CGMCC3.20077T | MT028612 | MT028778 | MT028944 |
N. mangiferae | CBS 118531 = CMW 7024T | AY615185 | DQ093221 | AY615173 |
N. mediterraneum | CBS 121558 | GU799463 | GU799462 | GU799461 |
N. mediterraneum | CBS 121718 = CPC 13137T | GU251176 | GU251308 | GU251836 |
N. mediterraneum | FA10 | OM241968 | OM241976 | OM262432 |
N. microconidium | CERC3497 = CGMCC3.18750T | KX278053 | KX278158 | KX278262 |
N. microconidium | CBS 118821 = CMW 13998 | MT587497 | MT592212 | MT592704 |
N. ningerense | CSF6028 = CGMCC3.20078T | MT028613 | MT028779 | MT028945 |
N. nonquaesitum | CBS 126655 = L3IE1 = PD484T | GU251163 | GU251295 | GU251823 |
N. nonquaesitum | CBS 133501 = UCR532 | MT587498 | MT592213 | MT592705 |
N. occulatum | CBS 128008 = MUCC 227T | EU301030 | EU339509 | EU339472 |
N. occulatum | MUCC 286 = WAC 12395 | EU736947 | EU339511 | EU339474 |
N. parvum | CBS 138823 = ICMP 8003 = CMW 9081T | AY236943 | AY236888 | AY236917 |
N. parvum | CBS 110301 = CAP 074 | AY259098 | AY573221 | EU673095 |
N. parvum | FA1 | OM241969 | OM262420 | OM262433 |
N. parvum | FA2 | OM241970 | OM262421 | OM262434 |
N. parvum | FA3 | OM241971 | OM262422 | OM262435 |
N. parvum | FM8 | OM241972 | OM262423 | OM262436 |
N. parvum | FB4 | OM241973 | OM262424 | OM262437 |
N. parvum | FB6 | OM241974 | OM262425 | OM262438 |
N. parviconidium | CSF5667 = CGMCC3.20074T | MT028615 | MT028781 | MT028947 |
N. pennatisporum | WAC 13153 = MUCC 510T | EF591925 | EF591976 | EF591959 |
N. pistaciae | CBS 595.76T | KX464163 | KX464676 | KX464953 |
N. podocarpi | CBS 131677 = CMW 35494 | MT587508 | MT592223 | MT592715 |
N. podocarpi | CBS 131678 = CMW 35499 | MT587509 | MT592224 | MT592716 |
N. protearum | CBS 114176 = CPC 1775 = JT 189T | AF452539 | KX464720 | KX465006 |
N. protearum | CBS 115177 = CPC 4357 | FJ150703 | MT592239 | MT592731 |
N. ribis | CBS 115475 = CMW 7772T | AY236935 | AY236877 | AY236906 |
N. ribis | CBS 124923 = CMW 28320 | FJ900608 | FJ900654 | FJ900635 |
N. ribis | CBS 124924T | FJ900607 | FJ900653 | FJ900634 |
N. ribis | CBS 123645 = CMW 14058T | EU821904 | EU821874 | EU821844 |
N. ribis | CBS 123646 = CMW 14060 | EU821905 | EU821875 | EU821845 |
N. sinense | CGMCC3.18315T | KY350148 | KY817755 | KY350154 |
N. sinoeucalypti | CERC2005 = CGMCC3.18752T | KX278061 | KX278166 | KX278270 |
N. sinoeucalypti | CERC3415 | KX278063 | KX278168 | KX278272 |
N. stellenboschiana | CBS 110864 = CPC 4598 | AY343407 | AY343348 | KX465047 |
N. terminaliae | CBS 125263 = CMW 26679T | GQ471802 | GQ471780 | KX465052 |
N. terminaliae | CBS 125264 = CMW 26683 | GQ471804 | GQ471782 | KX465053 |
N. ursorum | CBS 122811 = CMW 24480T | FJ752746 | FJ752709 | KX465056 |
N. ursorum | CBS 122812 = CMW 23790 | FJ752745 | FJ752708 | KX465057 |
N. yunnanense | CSF6142 = CGMCC3.20083T | MT028667 | MT028833 | MT028999 |
N. viticlavatum | CBS 112878 = CPC 5044 = JM 86T | AY343381 | AY343342 | KX465058 |
N. viticlavatum | CBS 112977 = STE-U 5041 | AY343380 | AY343341 | KX465059 |
N. vitifusiforme | CBS 110887 = CPC 5252 = JM5T | AY343383 | AY343343 | KX465061 |
N. vitifusiforme | CBS 121112 = STE-U 5912 | EF445349 | EF445391 | KX465016 |
Phyllosticta citricarpa | CBS 102374 | FJ824767 | FJ538371 | FJ824778 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiorenza, A.; Aiello, D.; Costanzo, M.B.; Gusella, G.; Polizzi, G. A New Disease for Europe of Ficus microcarpa Caused by Botryosphaeriaceae Species. Plants 2022, 11, 727. https://doi.org/10.3390/plants11060727
Fiorenza A, Aiello D, Costanzo MB, Gusella G, Polizzi G. A New Disease for Europe of Ficus microcarpa Caused by Botryosphaeriaceae Species. Plants. 2022; 11(6):727. https://doi.org/10.3390/plants11060727
Chicago/Turabian StyleFiorenza, Alberto, Dalia Aiello, Mariangela Benedetta Costanzo, Giorgio Gusella, and Giancarlo Polizzi. 2022. "A New Disease for Europe of Ficus microcarpa Caused by Botryosphaeriaceae Species" Plants 11, no. 6: 727. https://doi.org/10.3390/plants11060727
APA StyleFiorenza, A., Aiello, D., Costanzo, M. B., Gusella, G., & Polizzi, G. (2022). A New Disease for Europe of Ficus microcarpa Caused by Botryosphaeriaceae Species. Plants, 11(6), 727. https://doi.org/10.3390/plants11060727