Quality Assessment of Cookies Made from Composite Flours Containing Malted Barley Flour and Wheat Flour
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Analyzes of Malt and Composite Flour
2.1.1. Reducing Sugar Content
2.1.2. Solvent Retention Capacity (SRC) of Composite Flours
2.1.3. Pasting Properties of Composite Flours
2.2. Physical Properties of Cookies
2.2.1. Dimensional and Textural Properties of MBF:WF Cookies
2.2.2. Color of MBF:WF Cookies
2.3. Total Phenolic Content (TPC) and Antioxidant Activity (AOA) of MBF:WF Cookies
2.4. Sensory Evaluation
2.5. Limitations to the Study
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Reducing Sugar Content in Flour
3.2.2. Solvent Retention Capacity (SRC) of Composite Flours
3.2.3. Pasting Properties of Composite Flours
3.2.4. Production of the Composite Cookies
3.2.5. Physical Analysis
3.2.6. Color Evaluation
3.2.7. Total Phenolic Content (TPC) and Antioxidant Activity (AOA)
3.2.8. Sensory Analysis
3.2.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ullrich, S.E. (Ed.) Significance, Adaptation, Production, and Trade of Barley. In Barley: Production, Improvement, and Uses; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2011; pp. 3–13. [Google Scholar] [CrossRef]
- Farag, M.A.; Xiao, J.; Abdallah, H.M. Nutritional Value of Barley Cereal and Better Opportunities for Its Processing as a Value-Added Food: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 1092–1104. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific Opinion on the Substantiation of a Health Claim Related to Barley Beta-Glucans and Lowering of Blood Cholesterol and Reduced Risk of (Coronary) Heart Disease Pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2470. [Google Scholar] [CrossRef] [Green Version]
- Food and Drug Administration, HHS. Food Labeling: Health Claims; Soluble Fiber from Certain Foods and Risk of Coronary Heart Disease. Interim Final Rule. Fed Regist. 2008, 73, 9938–9947. [Google Scholar]
- Pyler, E.J.; Gorton, L.A. Bakery Ingridients. In Baking Science and Technology; Volume I: Fundamentals & Ingredients; Pyler, E.J., Gorton, L.A., Eds.; Baking Science and Technology; Sosland Publishing Company: Kansas, MO, USA, 2008; pp. 189–190. [Google Scholar]
- Celus, I.; Brijs, K.; Delcour, J.A. The Effects of Malting and Mashing on Barley Protein Extractability. J. Cereal Sci. 2006, 44, 203–211. [Google Scholar] [CrossRef]
- Kuusela, P.; Hämäläinen, J.J.; Reinikainen, P.; Olkku, J. A Simulation Model for the Control of Beta-Glucanase Activity and Beta-Glucan Degradation During Germination in Malting. J. Inst. Brew. 2004, 110, 309–319. [Google Scholar] [CrossRef]
- Šimić, G.; Lalić, A.; Horvat, D.; Abičić, I.; Beraković, I. β-Glucan Content and β-Glucanase Activity of Winter and Spring Malting Barley Cultivars. Acta Aliment. 2015, 44, 542–548. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Abu-Ghannam, N.; Gallaghar, E. Barley for Brewing: Characteristic Changes during Malting, Brewing and Applications of Its By-Products. Compr. Rev. Food Sci. Food Saf. 2010, 9, 318–328. [Google Scholar] [CrossRef] [Green Version]
- Hertrich, J.D. Topics in Brewing: Malting. Tech. Q. Master Brew. Assoc. Am. 2013, 50, 29–41. [Google Scholar] [CrossRef]
- Manley, D. Technology of Biscuits, Crackers and Cookies; Woodhead Publishing Limited: Sawston, UK, 2000. [Google Scholar] [CrossRef]
- Sharma, S.; Chopra, R. Nutritional, Sensory and Textural Analysis of Biscuits Supplemented with Malted Barley (Hordeum Vulgare). Int. J. Food Nutr. Sci. 2015, 4, 97–101. [Google Scholar]
- El-Hadary, M.; El-Arby, G.; Abdel-Hady, M.; Abo-Elmaaty, S. Utilization of Barley Malt as a Partial Replacement of Wheat Flour in Biscuits Industries. Zagazig J. Agric. Res. 2018, 45, 239–249. [Google Scholar] [CrossRef]
- Alka, V.; Pinky, B.; Neelam, K. Grab a Healthy Bite: Nutritional Evaluation of Barley Based Cookies. Asian J. Dairy Food Res. 2017, 36, 76–79. [Google Scholar] [CrossRef] [Green Version]
- Arif, M.; Abbas Bangash, J.; Khan, F.; Abid, H. Effect of Soaking and Malting on the Selected Nutrient Profile of Barley. J. Biochem. Mol. Biol. Res. 2011, 44, 18–21. [Google Scholar]
- Baranwal, D. Malting: An Indigenous Technology Used for Improving the Nutritional Quality of Grains- A Review. Asian J. Dairy Food Res. 2017, 36, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, D.O.; Gonçalves, L.M.; Guido, L.F. Overall Antioxidant Properties of Malt and How They Are Influenced by the Individual Constituents of Barley and the Malting Process. Compr. Rev. Food Sci. Food Saf. 2016, 15, 927–943. [Google Scholar] [CrossRef]
- Boivin, P. Pro- and Anti-Oxidant Enzymatic Activity in Malt. Cerevisia 2001, 26, 109–115. [Google Scholar]
- Mikulíková, R.; Sobotová, K. Determination of Acrylamide in Malt with GC/MS. Acta Chim. Slov. 2007, 54, 98–101. [Google Scholar]
- Manohar, R.S. Baking. In Conventional and Advanced Food Processing Technologies; Bhattacharya, S., Ed.; John Wiley & Sons, Ltd: Chichester, UK, 2015; pp. 159–196. [Google Scholar]
- Pareyt, B.; Talhaoui, F.; Kerckhofs, G.; Brijs, K.; Goesaert, H.; Wevers, M.; Delcour, J.A. The Role of Sugar and Fat in Sugar-Snap Cookies: Structural and Textural Properties. J. Food Eng. 2009, 90, 400–408. [Google Scholar] [CrossRef]
- Nwanekezi, E.C. Composite Flours for Baked Products and Possible Challenges—A Review. Niger. Food J. 2013, 31, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Chandra, S.; Singh, S.; Kumari, D. Evaluation of Functional Properties of Composite Flours and Sensorial Attributes of Composite Flour Biscuits. J. Food Sci. Technol. 2014, 52, 1–8. [Google Scholar] [CrossRef]
- Ho, L.H.; Chong, L.C.; Tan, T.C. Composite Flour as a New Approach to Improve the Nutritional Value of Foods: Product Quality Challenges. In Flour: Production, Varieties and Nutrition; Torres Pérez, M.D., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2018; pp. 141–174. [Google Scholar]
- Jukić, M.; Lukinac, J.; Čuljak, J.; Pavlović, M.; Šubarić, D.; Koceva Komlenić, D. Quality Evaluation of Biscuits Produced from Composite Blends of Pumpkin Seed Oil Press Cake and Wheat Flour. Int. J. Food Sci. Technol. 2019, 54, 602–609. [Google Scholar] [CrossRef]
- Kweon, M.; Slade, L.; Levine, H.; Martin, R.; Souza, E. Exploration of Sugar Functionality in Sugar-Snap and Wire-Cut Cookie Baking: Implications for Potential Sucrose Replacement or Reduction. Cereal Chem. 2009, 86, 425–433. [Google Scholar] [CrossRef]
- Jukić, M.; Komlenić, D.K.; Vasileva, N.; Nakov, G.; Lukinac, J. Functional Cookies with the Addition of Brewer’s Barley Malt and Reduced Sucrose Addition. In Reports Awarded with “Best Paper” Crystal Prize. Proceedings of the 58th Annual Scientific Conference of University of Ruse and Union of Scientists: New Industries, Digital Economy, Society—Projections of the Future II, Ruse, Silistra, Razgrad, Bulgaria, 24–26 October 2020; University of Ruse Publishing Center: Ruse, Bulgaria, 2020; pp. 122–128. [Google Scholar]
- Krapf, J.; Arysanto, A.; Walther, G.; Flöter, E. Effect of Sprouting Conditions on the Properties of Direct Expanded Extruded Wheat. J. Food Process Eng. 2019, 42, e13123. [Google Scholar] [CrossRef]
- Trithavisup, K.; Krusong, K.; Tananuwong, K. In-Depth Study of the Changes in Properties and Molecular Structure of Cassava Starch during Resistant Dextrin Preparation. Food Chem. 2019, 297, 124996. [Google Scholar] [CrossRef] [PubMed]
- Cereals and Grains Association. AACC Approved Methods of Analysis, 11th ed.; AACC International: ST. Paul, MN, USA, 2010. [Google Scholar]
- Ojha, P.; Gautam, N.; Subedi, U.; Dhami, N.B. Malting Quality of Seven Genotypes of Barley Grown in Nepal. Food Sci. Nutr. 2020, 8, 4794–4804. [Google Scholar] [CrossRef] [PubMed]
- BOORTMALT. Pilsen Malt. Available online: https://www.knowde.com/stores/boortmalt-nv/products/boortmalt-nv-lager-pilsen-malt/ (accessed on 2 January 2022).
- BOORTMALT. Amber Malt. Available online: https://www.knowde.com/stores/boortmalt-nv/products/boortmalt-nv-amber-malt/ (accessed on 2 January 2022).
- BOORTMALT. Black Malt. Available online: https://www.knowde.com/stores/boortmalt-nv/products/boortmalt-nv-black-malt/ (accessed on 2 January 2022).
- Koljonen, T.; Hämäläinen, J.J.; Sjöholm, K.; Pietilä, K. A Model for the Prediction of Fermentable Sugar Concentrations during Mashing. J. Food Eng. 1995, 26, 329–350. [Google Scholar] [CrossRef]
- Duke, S.H.; Henson, C.A. A Comparison of Barley Malt Quality Measurements and Malt Sugar Concentrations. J. Am. Soc. Brew. Chem. 2008, 66, 151–161. [Google Scholar] [CrossRef]
- Srivastava, H.C.; Parmar, R.S.; Dave, G.B. Studies on Dextrinization. Part I. Pyrodextrinization of Corn Starch in the Absence of Any Added Catalyst. Starch—Stärke 1970, 22, 49–54. [Google Scholar] [CrossRef]
- Kweon, M.; Slade, L.; Levine, H. Solvent Retention Capacity (SRC) Testing of Wheat Flour: Principles and Value in Predicting Flour Functionality in Different Wheat-Based Food Processes and in Wheat Breeding—A Review. Cereal Chem. J. 2011, 88, 537–552. [Google Scholar] [CrossRef]
- Slukova, M.; Velebna, N.; Krejcirova, L.; Honcu, I.; Budilova, E. The Advanced Approaches to Nutritional and Breadmaking Quality of Wheat, Barley and Rye Flour. J. Food Sci. Eng. 2012, 2, 218–226. [Google Scholar] [CrossRef]
- Meints, B.; Cuesta-Marcos, A.; Ross, A.S.; Fisk, S.; Kongraksawech, T.; Marshall, J.M.; Murphy, K.; Hayes, P.M. Developing Winter Food Barley for the Pacific Northwest of the US. Crop Sci. 2015, 55, 1563–1573. [Google Scholar] [CrossRef] [Green Version]
- Švec, I.; Hrušková, M.; Karas, J.; Hofmanová, T. Solvent Retention Capacity for Different Wheats and Flours Evaluation. Czech J. Food Sci. 2012, 30, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Schlörmann, W.; Zetzmann, S.; Wiege, B.; Haase, N.U.; Greiling, A.; Lorkowski, S.; Dawczynski, C.; Glei, M. Impact of Different Roasting Conditions on Chemical Composition, Sensory Quality and Physicochemical Properties of Waxy-Barley Products. Food Funct. 2019, 10, 5436–5445. [Google Scholar] [CrossRef] [PubMed]
- Balet, S.; Guelpa, A.; Fox, G.; Manley, M. Rapid Visco Analyser (RVA) as a Tool for Measuring Starch-Related Physiochemical Properties in Cereals: A Review. Food Anal. Methods 2019, 12, 2344–2360. [Google Scholar] [CrossRef]
- Vinje, M.A.; Duke, S.H.; Henson, C.A. Comparison of Factors Involved in Starch Degradation in Barley Germination under Laboratory and Malting Conditions. J. Am. Soc. Brew. Chem. 2015, 73, 195–205. [Google Scholar] [CrossRef]
- Coghe, S.; D’Hollander, H.; Verachtert, H.; Delvaux, F.R. Impact of Dark Specialty Malts on Extract Composition and Wort Fermentation. J. Inst. Brew. 2005, 111, 51–60. [Google Scholar] [CrossRef]
- Prado, R.; Gastl, M.; Becker, T. Aroma and Color Development during the Production of Specialty Malts: A Review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4816–4840. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Gujral, H.S.; Rosell, C.M. Effects of Roasting on Barley β-Glucan, Thermal, Textural and Pasting Properties. J. Cereal Sci. 2011, 53, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, T.P.R.; Leonel, M.; Garcia, É.L.; do Carmo, E.L.; Franco, C.M.L. Crystallinity, Thermal and Pasting Properties of Starches from Different Potato Cultivars Grown in Brazil. Int. J. Biol. Macromol. 2016, 82, 144–149. [Google Scholar] [CrossRef] [Green Version]
- Juszczak, L.; Gałkowska, D.; Witczak, T.; Fortuna, T. Effect of Maltodextrins on the Rheological Properties of Potato Starch Pastes and Gels. Int. J. Food Sci. 2013, 2013, 869362. [Google Scholar] [CrossRef] [Green Version]
- Pongsawatmanit, R.; Thanasukarn, P.; Ikeda, S. Effect of Sucrose on RVA Viscosity Parameters, Water Activity and Freezable Water Fraction of Cassava Starch Suspensions. Sci. Asia 2002, 28, 129–134. [Google Scholar] [CrossRef]
- Kweon, M.; Slade, L.; Levine, H.; Gannon, D. Cookie- Versus Cracker-Baking—What’s the Difference? Flour Functionality Requirements Explored by SRC and Alveography. Crit. Rev. Food Sci. Nutr. 2014, 54, 115–138. [Google Scholar] [CrossRef] [PubMed]
- Van der Sman, R.G.M.; Renzetti, S. Understanding Functionality of Sucrose in Biscuits for Reformulation Purposes. Crit. Rev. Food Sci. Nutr. 2019, 59, 2225–2239. [Google Scholar] [CrossRef] [PubMed]
- Pareyt, B.; Delcour, J.A. The Role of Wheat Flour Constituents, Sugar, and Fat in Low Moisture Cereal Based Products: A Review on Sugar-Snap Cookies. Crit. Rev. Food Sci. Nutr. 2008, 48, 824–839. [Google Scholar] [CrossRef]
- Maache-Rezzoug, Z.; Bouvier, J.-M.; Allaf, K.; Patras, C. Effect of Principal Ingredients on Rheological Behaviour of Biscuit Dough and on Quality of Biscuits. J. Food Eng. 1998, 35, 23–42. [Google Scholar] [CrossRef]
- Agrahar-Murugkar, D.; Gulati, P.; Kotwaliwale, N.; Gupta, C. Evaluation of Nutritional, Textural and Particle Size Characteristics of Dough and Biscuits Made from Composite Flours Containing Sprouted and Malted Ingredients. J. Food Sci. Technol. 2015, 52, 5129–5137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slade, L.; Levine, H.; Ievolella, J.; Wang, M. The Glassy State Phenomenon in Applications for the Food Industry: Application of the Food Polymer Science Approach to Structure–Function Relationships of Sucrose in Cookie and Cracker Systems. J. Sci. Food Agric. 1993, 63, 133–176. [Google Scholar] [CrossRef]
- Struck, S.; Jaros, D.; Brennan, C.S.; Rohm, H. Sugar Replacement in Sweetened Bakery Goods. Int. J. Food Sci. Technol. 2014, 49, 1963–1976. [Google Scholar] [CrossRef]
- Mokrzycki, W.S.; Tatol, M. Colour Difference ΔE—A Survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Sharma, P.; Gujral, H.S. Antioxidant and Polyphenol Oxidase Activity of Germinated Barley and Its Milling Fractions. Food Chem. 2010, 120, 673–678. [Google Scholar] [CrossRef]
- Dvořáková, M.; Guido, L.F.; Dostálek, P.; Skulilová, Z.; Moreira, M.M.; Barros, A.A. Antioxidant Properties of Free, Soluble Ester and Insoluble-Bound Phenolic Compounds in Different Barley Varieties and Corresponding Malts. J. Inst. Brew. 2008, 114, 27–33. [Google Scholar] [CrossRef]
- Echavarría, A.P.; Pagán, J.; Ibarz, A. Melanoidins Formed by Maillard Reaction in Food and Their Biological Activity. Food Eng. Rev. 2012, 4, 203–223. [Google Scholar] [CrossRef]
- Coghe, S.; Vanderhaegen, B.; Pelgrims, B.; Basteyns, A.-V.; Delvaux, F.R. Characterization of Dark Specialty Malts: New Insights in Color Evaluation and Pro- and Antioxidative Activity. J. Am. Soc. Brew. Chem. 2003, 61, 125–132. [Google Scholar] [CrossRef]
- Ahmad, R.S.; Hussain, M.B.; Majeed, M.; Khan, M.U.; Shariati, M.A. Investigation of Changes in Antioxidant Activities of Caramelization Products under Various Time Regimes and PH Ranges. Carpathian J. Food Sci. Technol. 2018, 10, 116–128. [Google Scholar]
- Chen, K.; Zhao, J.; Shi, X.; Abdul, Q.; Jiang, Z. Characterization and Antioxidant Activity of Products Derived from Xylose–Bovine Casein Hydrolysate Maillard Reaction: Impact of Reaction Time. Foods 2019, 8, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjakul, S.; Visessanguan, W.; Phongkanpai, V.; Tanaka, M. Antioxidative Activity of Caramelisation Products and Their Preventive Effect on Lipid Oxidation in Fish Mince. Food Chem. 2005, 90, 231–239. [Google Scholar] [CrossRef]
- Biguzzi, C.; Schlich, P.; Lange, C. The Impact of Sugar and Fat Reduction on Perception and Liking of Biscuits. Food Qual. Prefer. 2014, 35, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Lukinac, J.; Koceva Komlenić, D.; Mastanjević, K.; Nakov, G.; Mastanjević, K.; Krstanović, V.; Jukić, M. Evaluation of Visual Characteristics of Beer Using the Computer Vision Method. Ukr. Food J. 2020, 9, 780–794. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
Flour | Reducing Sugar Content (g/100 g) 1 |
---|---|
WF | 0.43 ± 0.09 d |
Pilsen MBF | 7.75 ± 0.21 c |
Amber MBF | 17.05 ± 0.19 b |
Black MBF | 61.02 ± 0.32 a |
MBF:WF 1 | Sucrose (%) 2 | Color | Shape | Texture | Odour | Taste | Overall |
---|---|---|---|---|---|---|---|
WF (Control) | |||||||
0:100 | 100 | 7.9 ± 1.0 a 3 | 7.9 ± 0.6 a | 7.2 ± 1.2 a | 7.3 ± 1.3 a | 7.6 ± 0.5 a | 7.6 ± 0.7 a |
WF | |||||||
0:100 | 66.6 | 6.7 ± 1.2 abc | 5.7 ± 1.7 bcd | 5.9 ± 0.8 abc | 6.0 ± 1.2 ab | 6.1 ± 0.6 abc | 6.1 ± 1.0 abc |
0:100 | 33.3 | 3.6 ± 0.9 def | 2.4 ± 1.3 ef | 3.1 ± 1.0 cde | 3.3 ± 1.3 cd | 3.0 ± 0.8 def | 3.0 ± 1.1 def |
0:100 | 0 | 2.1 ± 1.1 f | 1.6 ± 1.0 f | 1.6 ± 0.9 e | 2.1 ± 1.2 d | 1.7 ± 0.7 g | 1.5 ± 0.6 f |
PILSEN:WF | |||||||
20:80 | 66.6 | 6.6 ± 1.0 abc | 7.2 ± 1.1 ab | 6.5 ± 1.0 ab | 6.6 ± 1.0 a | 6.5 ± 0.8 ab | 6.6 ± 1.0 abc |
40:60 | 33.3 | 4.9 ± 1.0 bcde | 4.3 ± 0.7 cde | 5.1 ± 1.6 abcd | 5.1 ± 1.2 abc | 4.1 ± 0.6 cdef | 4.7 ± 0.9 cde |
60:40 | 0 | 3.0 ± 1.2 ef | 2.9 ± 1 ef | 3.1 ± 1.2 cde | 3.4 ± 1.5 bcd | 2.2 ± 1.1 fg | 2.6 ± 0.8 ef |
AMBER:WF | |||||||
20:80 | 66.6 | 7.3 ± 1.0 ab | 7.3 ± 0.7 ab | 7.0 ± 1.6 a | 7.3 ± 1.3 a | 7.4 ± 1.9 a | 7.1 ± 1.7 ab |
40:60 | 33.3 | 6.1 ± 1.9 abcd | 5.3 ± 1.3 bcd | 4.7 ± 1.3 abcd | 5.3 ± 1.3 abc | 5.1 ± 1.2 bcd | 5.1 ± 1.1 bcd |
60:40 | 0 | 4.4 ± 2.1 cdef | 3.6 ± 1.7 def | 3.3 ± 1.3 cde | 3.7 ± 1.3 bcd | 2.4 ± 1.2 efg | 3.3 ± 0.9 de |
BLACK:WF | |||||||
20:80 | 66.6 | 4.8 ± 1.5 bcde | 6.3 ± 1.4 abc | 4.4 ± 1.8 bcd | 3.4 ± 1.4 bcd | 4.3 ± 1.5 cde | 4.7 ± 1.3 cde |
40:60 | 33.3 | 2.7 ± 1.3 ef | 3.6 ± 1.0 def | 2.7 ± 1.4 de | 2.3 ± 1.2 d | 2.0 ± 0.8 fg | 2.7 ± 0.9 ef |
60:40 | 0 | 2.1 ± 1.6 f | 2.0 ± 0.9 ef | 1.6 ± 0.8 e | 1.5 ± 0.7 d | 1.4 ± 0.9 g | 1.5 ± 0.8 f |
Flour | Protein | Fat | Fiber | Carbohydrate | Ash |
---|---|---|---|---|---|
WF | 10.6 | 1.6 | 0.71 | 86.5 | 0.57 |
Pilsen MBF | 11.2 | 1.5 | 4.8 | 80.3 | 2.21 |
Amber MBF | 11.1 | 1.4 | 4.9 | 80.5 | 2.09 |
Black MBF | 10.8 | 1.4 | 5.1 | 80.6 | 2.15 |
WF (g) 1 | MBF (g) | Shortening (g) | Sucrose (g) | NaCl (g) | NaHCO3 (g) | Water (mL) | |
---|---|---|---|---|---|---|---|
WF (Control) | 100 | - | 28.4 | 57.8 (100%) 2 | 0.9 | 1.1 | 21.0 |
WF | 100 | - | 28.4 | 38.1 (66.6%) | 0.9 | 1.1 | 20.4 |
100 | - | 28.4 | 19.1 (33.3%) | 0.9 | 1.1 | 19.2 | |
100 | - | 28.4 | - (0%) | 0.9 | 1.1 | 18.0 | |
PILSEN:WF | 80 | 20 | 28.4 | 38.1 (66.6%) | 0.9 | 1.1 | 22.8 |
60 | 40 | 28.4 | 19.1 (33.3%) | 0.9 | 1.1 | 23.8 | |
40 | 60 | 28.4 | - (0%) | 0.9 | 1.1 | 26.6 | |
AMBER:WF | 80 | 20 | 28.4 | 38.1 (66.6%) | 0.9 | 1.1 | 21.2 |
60 | 40 | 28.4 | 19.1 (33.3%) | 0.9 | 1.1 | 24.0 | |
40 | 60 | 28.4 | - (0%) | 0.9 | 1.1 | 27.1 | |
BLACK:WF | 80 | 20 | 28.4 | 38.1 (66.6%) | 0.9 | 1.1 | 20.6 |
60 | 40 | 28.4 | 19.1 (33.3%) | 0.9 | 1.1 | 20.0 | |
40 | 60 | 28.4 | - (0%) | 0.9 | 1.1 | 19.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jukić, M.; Nakov, G.; Komlenić, D.K.; Vasileva, N.; Šumanovac, F.; Lukinac, J. Quality Assessment of Cookies Made from Composite Flours Containing Malted Barley Flour and Wheat Flour. Plants 2022, 11, 761. https://doi.org/10.3390/plants11060761
Jukić M, Nakov G, Komlenić DK, Vasileva N, Šumanovac F, Lukinac J. Quality Assessment of Cookies Made from Composite Flours Containing Malted Barley Flour and Wheat Flour. Plants. 2022; 11(6):761. https://doi.org/10.3390/plants11060761
Chicago/Turabian StyleJukić, Marko, Gjore Nakov, Daliborka Koceva Komlenić, Nastia Vasileva, Franjo Šumanovac, and Jasmina Lukinac. 2022. "Quality Assessment of Cookies Made from Composite Flours Containing Malted Barley Flour and Wheat Flour" Plants 11, no. 6: 761. https://doi.org/10.3390/plants11060761
APA StyleJukić, M., Nakov, G., Komlenić, D. K., Vasileva, N., Šumanovac, F., & Lukinac, J. (2022). Quality Assessment of Cookies Made from Composite Flours Containing Malted Barley Flour and Wheat Flour. Plants, 11(6), 761. https://doi.org/10.3390/plants11060761