Dynamics of Fertility-Related Traits in Tomato Landraces under Mild and Severe Heat Stress
Abstract
:1. Introduction
2. Results
2.1. Selected Genotypes and Thermic Regimes in the Experimental Fields
2.2. Effect of Heat Stress on Vegetative and Reproductive Traits
2.3. Estimates of Heritability under Control and Heat Field Conditions
2.4. Correlations among Traits
3. Discussion
4. Materials and Methods
4.1. Plant Material and Growth Conditions
4.2. Phenotyping of Vegetative and Reproductive Traits in the Control and Heat Fields
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bita, C.E.; Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 2013, 4, 273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foolad, M.R.; Panthee, D.R. Marker-assisted selection in tomato breeding. Crit. Rev. Plant Sci. 2012, 31, 93–123. [Google Scholar] [CrossRef]
- Picken, A. A review of pollination and fruit set in the tomato (Lycopersicon esculentum Mill.). J. Hortic. Sci. 1984, 59, 1–13. [Google Scholar] [CrossRef]
- Levitt, J. Responses of Plants to Environmental Stresses; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Boyer, J.S. Plant productivity and the environment. Science 1982, 218, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Giaveno, C.; Ferrero, J. Introduction of tropical maize genotypes to increase silage production in the central area of Santa Fe, Argentina. Crop Breed. Appl. Biotechnol. 2003, 3, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Blanchard-Gros, R.; Bigot, S.; Martinez, J.-P.; Lutts, S.; Guerriero, G.; Quinet, M. Comparison of drought and heat resistance strategies among six populations of Solanum chilense and two cultivars of Solanum lycopersicum. Plants 2021, 10, 1720. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Asner, G.P. Climate and management contributions to recent trends in U.S. agricultural yields. Science 2003, 299, 1032. [Google Scholar] [CrossRef] [PubMed]
- Karapanos, I.C.; Mahmood, S.; Thanopoulos, C. Fruit set in solanaceous vegetable crops as affected by floral and environmental factors. Eur. J. Plant Sci. Biotechnol. 2008, 2, 88–105. [Google Scholar]
- Malik, S.; Zhao, D. Epigenetic regulation of heat stress in plant male reproduction. Front. Plant Sci. 2022, 13, 826473. [Google Scholar] [CrossRef]
- Firon, N.; Shaked, R.; Peet, M.M.; Pharr, D.M.; Zamski, E.; Rosenfeld, K.; Althan, L.; Pressman, E. Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Sci. Hortic. 2006, 109, 212–217. [Google Scholar] [CrossRef]
- Hoshikawa, K.; Pham, D.; Ezura, H.; Schafleitner, R.; Nakashima, K. Genetic and molecular mechanisms conferring heat stress tolerance in tomato plants. Front. Plant Sci. 2021, 12, 786688. [Google Scholar] [CrossRef] [PubMed]
- Iwahori, S. High temperature injury in tomato. IV. Development of normal flower buds and morphological abnormalities of flower buds treated with high temperature. J. Jpn. Soc. Hortic. Sci. 1965, 34, 33–41. [Google Scholar] [CrossRef]
- Iwahori, S. High temperature injuries in tomato. V. Fertilization and development of embryos with special reference to the abnormalities caused by high temperature. J. Jpn. Soc. Hortic. Sci. 1966, 35, 55–62. [Google Scholar] [CrossRef]
- Pressman, E.; Shaked, R.; Firon, N. Tomato (Lycopersicon esculentum) response to heat stress: Focus on pollen grains. Plant Stress 2007, 1, 216–227. [Google Scholar]
- Hanson, P.M.; Chen, J.-t.; Kuo, G. Gene action and heritability of high-temperature fruit set in tomato line CL5915. Am. Soc. Hortic. Sci. 2002, 37, 172–175. [Google Scholar] [CrossRef] [Green Version]
- Sato, S.; Kamiyama, M.; Iwata, T.; Makita, N.; Furukawa, H.; Ikeda, H. Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann. Bot. 2006, 97, 731–738. [Google Scholar] [CrossRef]
- Fernández-Muñoz, R.; Cuartero, J. Effect of temperature and irradiance on stigma exsertion, ovule viability and embryo development in tomato. J. Hortic. Sci. 1991, 66, 395–401. [Google Scholar] [CrossRef]
- Singh, U.; Patel, P.K.; Singh, A.K.; Tiwari, V.; Kumar, R.; Rai, N.; Bahadur, A.; Tiwari, S.K.; Singh, M.; Singh, B. Screening of tomato genotypes under high temperature stress for reproductive traits. Veget. Sci. 2015, 42, 52–55. [Google Scholar] [CrossRef]
- Riccini, A.; Picarella, M.E.; De Angelis, F.; Mazzucato, A. Bulk RNA-Seq analysis to dissect the regulation of stigma position in tomato. Plant Mol. Biol. 2021, 105, 263–285. [Google Scholar] [CrossRef]
- Moyle, L.C. Ecological and evolutionary genomics in the wild tomatoes (Solanum sect. Lycopersicon). Evolution 2008, 62, 2995–3013. [Google Scholar] [CrossRef]
- Bernacchi, D.; Tanksley, S.D. An interspecific backcross of Lycopersicon esculentum x L. hirsutum: Linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics 1997, 147, 861–877. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-Y.; Cong, B.; Wing, R.; Vrebalov, J.; Tanksley, S.D. Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science 2007, 318, 643–645. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Ye, L.; Zheng, Y.; Wang, Y.; Yang, D.; Liu, X.; Chen, L.; Zhang, Y.; Fei, Z. Identification and expression profiling of microRNAs involved in the stigma exsertion under high-temperature stress in tomato. BMC Genom. 2017, 18, 843. [Google Scholar] [CrossRef]
- Cheng, M.-Z.; Gong, C.; Zhang, B.; Qu, W.; Qi, H.-N.; Chen, X.-L.; Wang, X.-Y.; Zhang, Y.; Liu, J.-Y.; Ding, X.-D.; et al. Morphological and anatomical characteristics of exserted stigma sterility and the location and function of SlLst (Solanum lycopersicum Longstyles) gene in tomato. Theor. Appl. Genet. 2021, 134, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Song, J.; Yu, H.; Wang, X.; Yu, C.; Wang, Y.; Li, F.; Lu, Y.; Wang, T.; Ouyang, B.; et al. A mutation in a C2H2-type zinc finger transcription factor contributed to the transition toward self-pollination in cultivated tomato. Plant Cell 2021, 33, 3293–3308. [Google Scholar] [CrossRef]
- Mazzucato, A.; Papa, R.; Bitocchi, E.; Mosconi, P.; Nanni, L.; Negri, V.; Picarella, M.E.; Siligato, F.; Soressi, G.P.; Tiranti, B.; et al. Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theor. Appl. Genet. 2008, 116, 657–669. [Google Scholar] [CrossRef]
- Cortés-Olmos, C.; Valcárcel, J.V.; Roselló, J.; Díez, M.J.; Cebolla-Cornejo, J. Traditional Eastern Spanish varieties of tomato. Sci. Agric. 2015, 5, 420–431. [Google Scholar] [CrossRef] [Green Version]
- Rudich, J.; Zamski, E.; Regev, Y. Genotypic variation for sensitivity to high temperature in the tomato: Pollination and fruit set. Bot. Gaz. 1977, 138, 448–452. [Google Scholar] [CrossRef]
- Levy, A.; Rabinowitch, H.; Kedar, N. Morphological and physiological characters affecting flower drop and fruit set of tomatoes at high temperatures. Euphytica 1978, 27, 211–218. [Google Scholar] [CrossRef]
- El Ahmadi, A.B.; Stevens, M.A. Reproductive responses of heat tolerant tomatoes to high temperatures. J. Am. Soc. Hortic. Sci. 1979, 104, 68–691. [Google Scholar]
- Dane, F.; Hunter, A.G.; Chambliss, O.L. Fruit set, pollen fertility, and combining ability of selected tomato genotypes under high-temperature field conditions. J. Am. Soc. Hortic. Sci. 1991, 116, 906–910. [Google Scholar] [CrossRef]
- Xu, J.; Wolters-Arts, M.; Mariani, C.; Huber, H.; Rieu, I. Heat stress affects vegetative and reproductive performance and trait correlations in tomato (Solanum lycopersicum). Euphytica 2017, 213, 156. [Google Scholar] [CrossRef] [Green Version]
- Olivieri, F.; Graci, S.; Francesca, S.; Rigano, M.M.; Barone, A. Accelerating the development of heat tolerant tomato hybrids through a multi-traits evaluation of parental lines combining phenotypic and genotypic analysis. Plants 2021, 10, 2168. [Google Scholar] [CrossRef] [PubMed]
- Driedonks, N.; Wolters-Arts, M.; Huber, H.; de Boer, G.-J.; Vriezen, W.; Mariani, C.; Rieu, I. Exploring the natural variation for reproductive thermotolerance in wild tomato species. Euphytica 2018, 214, 67. [Google Scholar] [CrossRef] [Green Version]
- Giordano, L.B.; Boiteux, L.S.; da Silva, J.B.C.; Carrijo, O.A. Seleção de linhagens com tolerância ao calor em germoplasma de tomateiro coletado na região Norte do Brasil. Hortic. Bras. 2005, 23, 105–107. [Google Scholar] [CrossRef]
- Olivieri, F.; Calafiore, R.; Francesca, S.; Schettini, C.; Chiaiese, P.; Rigano, M.M.; Barone, A. High-throughput genotyping of resilient tomato landraces to detect candidate genes involved in the response to high temperatures. Genes 2020, 11, 626. [Google Scholar] [CrossRef]
- Casañas, F.; Simó, J.; Casals, J.; Prohens, J. Toward an evolved concept of landrace. Front. Plant Sci. 2017, 8, 145. [Google Scholar] [CrossRef] [Green Version]
- Corrado, G.; Rao, R. Towards the genomic basis of local adaptation in landraces. Diversity 2017, 9, 51. [Google Scholar] [CrossRef] [Green Version]
- Conti, V.; Romi, M.; Parri, S.; Aloisi, I.; Marino, G.; Cai, G.; Cantini, C. Morpho-physiological classification of Italian tomato cultivars (Solanum lycopersicum L.) according to drought tolerance during vegetative and reproductive growth. Plants 2021, 10, 1826. [Google Scholar] [CrossRef]
- Lohar, D.; Peat, W. Floral characteristics of heat-tolerant and heat-sensitive tomato (Lycopersicon esculentum Mill.) cultivars at high temperature. Sci. Hortic. 1998, 73, 53–60. [Google Scholar] [CrossRef]
- Stoner, A.K.; Otto, B.E. A greenhouse method to evaluate high temperature setting ability in the tomato. HortScience 1975, 10, 264–265. [Google Scholar]
- Giorno, F.; Wolters-Arts, M.; Grillo, S.; Scharf, K.D.; Vriezen, W.H.; Mariani, C. Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers. J. Exp. Bot. 2010, 61, 453–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peet, M.M.; Willits, D.; Gardner, R. Response of ovule development and post-pollen production processes in male sterile tomatoes to chronic, sub-acute high temperature stress. J. Exp. Bot. 1997, 48, 101–111. [Google Scholar] [CrossRef]
- Rick, C.; Dempsey, W. Position of the stigma in relation to fruit setting of the tomato. Bot. Gaz. 1969, 130, 180–186. [Google Scholar] [CrossRef]
- Xu, J.; Driedonks, N.; Rutten, M.J.M.; Vriezen, W.H.; de Boer, G.-J.; Rieu, I. Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Mol. Breed. 2017, 37, 37–58. [Google Scholar] [CrossRef]
- Pandey, R.P.; Kumar, N.; Mishra, S.P. Study on genetic variability, heritability and genetic advance in tomato (Solanum lycopersicum L. Mill.). J. Pharmacogn. Phytochem. 2018, 7, 3387–3389. [Google Scholar]
- Mione, T. Heritability of floral traits estimated with regression for Jaltomata procumbens (Solanaceae). J. Biol. Nat. 2017, 7, 190–200. [Google Scholar]
- Lin, K.; Lo, H.; Lee, S.; Kuo, C.G.; Chen, J.; Yeh, W. RAPD markers for the identification of yield traits in tomatoes under heat stress via bulked segregant analysis. Hereditas 2006, 143, 142–154. [Google Scholar] [CrossRef]
- Akhtar, S.; Ansary, S.H.; Dutta, A.K.; Karak, C. Crucial reproductive characters as screening indices for tomato (Solanum lycopersicum) under high temperature stress. J. Crop Weed 2012, 8, 114–117. [Google Scholar]
- SAS Institute Inc. SAS/IML® 14.1 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2015. [Google Scholar]
Type | Name | Abbreviation | Origin | Previous Characterization 1 | |||
---|---|---|---|---|---|---|---|
GH | FS | FW | SP | ||||
Cultivar | Chico III | CHI | - 2 | D | Block-shaped | 70–80 | 1.0 |
Monalbo | MON | - | I | Round | 60–70 | 1.5 | |
Saladette | SAL | - | D | Plum-shaped | 70–80 | 1.0 3 | |
Landrace | Canestrino di Pisa | Can | Tuscany | I | Pear-shaped | 130–140 | 1.3 |
Costoluto fiorentino | CFio | Tuscany | I | Flattened-ribbed | 90–100 | 1.5 | |
Cuor di bue | CBue | Market | I | Heart-shaped | 130–140 | 2.5 | |
San Marzano | SMar | Campania | I | Elongate | 50–60 | 1.1 | |
Scatolone di Bolsena | SBol | Latium | I | Flattened-ribbed | 130–140 | 1.0 | |
Spagnoletta | Spa | Latium | I | Flattened-ribbed | 90–100 | 1.0 | |
Tondo Perugia | TPer | Umbria | I | Round | 140–150 | 1.0 |
Variable | 2007 | 2019 | ||
---|---|---|---|---|
Control | Heat | Control | Heat | |
Tmin (°C) | 14.2 (10.1–20.4) | 15.7 (10.8–20.5) | 15.3 (9.4–22.6) | 18.4 (14.9–22.6) |
Tmean (°C) | 20.9 (15.1–26.6) | 23.4 (18.5–27.2) | 22.7 (14.7–17.5) | 26.4 (20.3–30.3) |
Tmax (°C) | 27.8 (19.1–33.7) | 30.9 (24.1–35.6) | 28.3 (17.5–36.6) | 32.8 (21.4–36.9) |
Tdiff (°C) | 13.6 (6.7–17.9) | 7.4 (5.5–8.9) | 13.0 (5.1–17.0) | 14.5 (4.0–19.0) |
No. of days with Tmin ≤ 15 °C | 28 | 15 | 16 | 1 |
No. of days with Tmax ≥ 30 °C | 7 | 20 | 20 | 36 |
No. of records with T ≤ 15 °C (%) | 11.8 | 6.3 | 18.1 | 0.001 |
No. of records with T ≥ 30 °C (%) | 2.7 | 13.9 | 13.2 | 26.0 |
Trait | 2007 | 2019 | ||||
---|---|---|---|---|---|---|
Code | Field | Code × Field | Code | Field | Code × Field | |
PH | *** | *** | - | *** | *** | *** |
SP | *** | *** | *** | *** | *** | ** |
PV | *** | - | *** | ** | *** | - |
NF | *** | ** | - | *** | *** | ** |
FSET | *** | *** | - | *** | * | *** |
FW | *** | * | ** | |||
Y | - | *** | *** | |||
SxF | *** | - | - |
Trait | 2007 | 2019 | ||
---|---|---|---|---|
Control | Heat | Control | Heat | |
PH | 0.94 | 0.85 | 0.81 | 0.75 |
SP | 0.84 | 0.74 | 0.77 | 0.76 |
PV | 0.84 | 0.77 | 0.32 | 0.51 |
NF | 0.27 | 0.28 | 0.23 | 0.34 |
FSET | 0.33 | 0.29 | 0.33 | 0.29 |
FW | - 1 | - | 0.62 | 0.74 |
Y | - | - | 0.37 | 0.13 |
SxF | - | - | 0.51 | 0.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farinon, B.; Picarella, M.E.; Mazzucato, A. Dynamics of Fertility-Related Traits in Tomato Landraces under Mild and Severe Heat Stress. Plants 2022, 11, 881. https://doi.org/10.3390/plants11070881
Farinon B, Picarella ME, Mazzucato A. Dynamics of Fertility-Related Traits in Tomato Landraces under Mild and Severe Heat Stress. Plants. 2022; 11(7):881. https://doi.org/10.3390/plants11070881
Chicago/Turabian StyleFarinon, Barbara, Maurizio E. Picarella, and Andrea Mazzucato. 2022. "Dynamics of Fertility-Related Traits in Tomato Landraces under Mild and Severe Heat Stress" Plants 11, no. 7: 881. https://doi.org/10.3390/plants11070881
APA StyleFarinon, B., Picarella, M. E., & Mazzucato, A. (2022). Dynamics of Fertility-Related Traits in Tomato Landraces under Mild and Severe Heat Stress. Plants, 11(7), 881. https://doi.org/10.3390/plants11070881